Review
BibTex RIS Cite

An overview of MEMS/NEMS-based applications with the potential to be used in medicine

Year 2025, Volume: 6 Issue: 2, 135 - 142, 30.08.2025
https://doi.org/10.51753/flsrt.1627484

Abstract

The technology of MEMS/NEMS is based on the integration and relationship of mechanical, electronic, and even optical components at the micro- and nanoscale. This technology has provided more sensitive and more effective devices/systems for medical diagnosis, treatment, and monitoring. For example, it has enabled molecular imaging and early diagnosis of diseases with its integration with medical imaging and biosensor technology. Also, its use in drug targeting and controlled drug release systems has paved the way for promising, effective, and personalized treatments. In short, the technology of MEMS/NEMS currently plays a significant role in medicine and will have even greater potential in the future. Due to increasing studies, researchers who work or will work in this field have started to need a general perspective. For this reason, this review study aims to provide an overview of MEMS/NEMS-based medical applications. This review addresses the applications of MEMS/NEMS in medicine, including biosensors, medical imaging, surgical devices, drug studies, Lab-on-a-Chip, and Organ-on-a-Chip systems. Also, it briefly expresses the fundamentals of MEMS/NEMS and highlights the challenges, and future uses for MEMS/NEMS in medicine.

Thanks

I would like to express my heartfelt thanks to my wife, Betül Sevim, who assisted in the design of the figures, evaluated the first draft of the paper, and helped me see the deficiencies. This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

References

  • Acharya, N. (2024). Magnetically driven MWCNT-Fe3O4-water hybrid nanofluidic transport through a micro-wavy channel: A novel MEMS design for drug delivery application. Materials Today Communications, 38, 107844.
  • Al-Gawati, M. A., Albrithen, H., Alhazaa, A. N., & Alodhayb, A. N. (2022). Sensitivity enhancement of microelectromechanical sensors using femtosecond laser for biological and chemical applications. Surface and Interface Analysis, 54(10), 1060-1069.
  • Azizipour, N., Avazpour, R., Rosenzweig, D. H., Sawan, M., & Ajji, A. (2020). Evolution of biochip technology: A review from lab-on-a-chip to organ-on-a-chip. Micromachines, 11(6), 599.
  • Bakri, M. H., Özarslan, A. C., Erarslan, A., Basaran Elalmis, Y., & Ciftci, F. (2024). Biomedical applications of wearable biosensors. Next Materials, 3, 100084.
  • Basu, A. K., Basu, A., Ghosh, S., & Bhattacharya, S. (2021). MEMS Applications in Biology and Healthcare. AIP Publishing Melville.
  • Bhushan, B. (2011). MEMS/NEMS and BioMEMS/BioNEMS: Materials, Devices, and Biomimetics. In B. Bhushan (Ed.), Nanotribology and Nanomechanics II: Nanotribology, Biomimetics, and Industrial Applications (pp. 833-945). Springer Berlin Heidelberg.
  • Bie, Y.-Q., Grosso, G., Heuck, M., Furchi, M. M., Cao, Y., Zheng, J., Bunandar, D., Navarro-Moratalla, E., Zhou, L., & Efetov, D. K. (2017). A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nature Nanotechnology, 12(12), 1124-1129.
  • Biswas, S., Gogoi, A. K., & Biswas, M. (2023). Damping Estimation and Analysis for High Performance Inertial MEMS for Early Detection of Neurological Disorders During Pregnancy. In MEMS and Microfluidics in Healthcare: Devices and Applications Perspectives (pp. 213-224). Springer.
  • Chircov, C., & Grumezescu, A. M. (2022). Microelectromechanical Systems (MEMS) for Biomedical Applications. Micromachines, 13(2).
  • Drexler, P., Steinbauer, M., Alsaleem, F., Ciotola, F., Pyxaras, S., Rittger, H., & Buia, V. (2024). MEMS Technology in Cardiology: Advancements and Applications in Heart Failure Management Focusing on the CardioMEMS Device. Sensors 2024, Vol. 24, Page 2922, 24(9), 2922.
  • Dylla, H. F., & Corneliussen, S. T. (2005). John Ambrose Fleming and the beginning of electronics. Journal of Vacuum Science & Technology A, 23(4), 1244-1251.
  • Economidou, S. N., Uddin, M. J., Marques, M. J., Douroumis, D., Sow, W. T., Li, H., Reid, A., Windmill, J. F. C., & Podoleanu, A. (2021). A novel 3D printed hollow microneedle microelectromechanical system for controlled, personalized transdermal drug delivery. Additive Manufacturing, 38.
  • Ehrlich, D., Carey, L., Chiou, J., Desmarais, S., El-Difrawy, S., Koutny, L., Lam, R., Matsudaira, P., Mckenna, B., & Mitnik-Gankin, L. (2002). MEMS-based systems for DNA sequencing and forensics. SENSORS, 2002 IEEE, 1, 448-449.
  • Ewii, U. E., Onugwu, A. L., Nwokpor, V. C., Akpaso, I. abasi, Ogbulie, T. E., Aharanwa, B., Chijioke, C., Verla, N., Iheme, C., Ujowundu, C., Anyiam, C., & Attama, A. A. (2024). Novel drug delivery systems: Insight into self-powered and nano-enabled drug delivery systems. Nano TransMed, 3, 100042.
  • Fan, X., He, C., Ding, J., Gao, Q., Ma, H., Lemme, M. C., & Zhang, W. (2024). Graphene MEMS and NEMS. Microsystems & Nanoengineering, 10(1), 154.
  • Feng, P. X.-L., Young, D. J., & Zorman, C. A. (2017). MEMS/NEMS devices and applications. Springer Handbook of Nanotechnology, 395-429.
  • Gertner, M. E., & Krummel, T. M. (2004). 11 Micro-and Nanoelectromechanical Systems in Medicine and Surgery. Nanoscale Technology in Biological Systems, 245.
  • Gonçalves, J. M., de Faria, L. V, Nascimento, A. B., Germscheidt, R. L., Patra, S., Hernández-Saravia, L. P., Bonacin, J. A., Munoz, R. A. A., & Angnes, L. (2022). Sensing performances of spinel ferrites MFe2O4 (M= Mg, Ni, Co, Mn, Cu and Zn) based electrochemical sensors: A review. Analytica Chimica Acta, 1233, 340362.
  • Harun-Or-Rashid, M., Aktar, M. N., Preda, V., & Nasiri, N. (2024). Advances in electrochemical sensors for real-time glucose monitoring. Sensors and Diagnostics, 3(6), 893-913.
  • Industryarc, (2023). Medical Device Connectivity Market worth $7.4 billion by 2028, https://www.industryarc.com/Report/17077/bio-mems-market.html, Last Accessed on April 2025.
  • Islam, N., & Sayed, S. (2012). MEMS microfluidics for Lab-on-a-Chip Applications. INTECH Open Access Publisher.
  • Kaisti, M., Leppänen, J., Lahdenoja, O., Kostiainen, P., Pankaaia, M., Meriheina, U., & Koivisto, T. (2017). Wearable pressure sensor array for health monitoring. 2017 Computing in Cardiology (CinC), 1-4.
  • Kalaiarasi, A. R., & Aishwarya, G. P. (2023). Microsensor for Cancer Detection and MEMS Actuator for Cancer Therapy. Transactions on Electrical and Electronic Materials, 24(1), 82-90.
  • Kuru, C. İ., & Ulucan-Karnak, F. (2024). Lab-on-a-chip: A Stepping Stone for Personalized Healthcare Management. Lab-on-a-Chip Devices for Advanced Biomedicines, 221-243.
  • Langari, M. M., Nikzad, M., & Labidi, J. (2023). Nanocellulose-based sensors in medical/clinical applications: The state-of-the-art review. Carbohydrate Polymers, 304.
  • Lee, H. J., Choi, N., Yoon, E.-S., & Cho, I.-J. (2018). MEMS devices for drug delivery. Advanced Drug Delivery Reviews, 128, 132-147.
  • Li, X., Yu, H., Gan, X., Xia, X., Xu, P., Li, J., Liu, M., & Li, Y. (2009). Integrated MEMS/NEMS resonant cantilevers for ultrasensitive biological detection. Journal of Sensors, 2009.
  • Li, Y., Denny, P., Ho, C.-M., Montemagno, C., Shi, W., Qi, F., Wu, B., Wolinsky, L., & Wong, D. T. (2005). The oral fluid MEMS/NEMS chip (OFMNC): Diagnostic & translational applications. Advances in Dental Research, 18(1), 3-5.
  • Lim, Y. C., Kouzani, A. Z., & Duan, W. (2010). Lab-on-a-chip: a component view. Microsystem Technologies, 16, 1995-2015.
  • Lyshevski, S. E. (2018). MEMS and NEMS: systems, devices, and structures. CRC press. MacK, C. A. (2011). Fifty years of Moore’s law. IEEE Transactions on Semiconductor Manufacturing, 24(2), 202-207.
  • Madou, M. J. (2018). Fundamentals of Microfabrication and Nanotechnology, Three-Volume Set. Fundamentals of Microfabrication and Nanotechnology, Three-Volume Set.
  • Manikandan, N., Muruganand, S., Divagar, M., & Viswanathan, C. (2019). Design and fabrication of MEMS based intracranial pressure sensor for neurons study. Vacuum, 163, 204-209.
  • Manvi, M., & Mruthyunjaya Swamy, K. B. (2022). Microelectronic materials, microfabrication processes, micromechanical structural configuration based stiffness evaluation in MEMS: A review. Microelectronic Engineering, 263.
  • MarketandMarkets, (2023). Bio-MEMS Market Share, Size and Industry Growth Analysis 2024 - 2030, https://www.marketsandmarkets.com/PressReleases/medical-device-connectivity.asp, Last Accessed on April 2025.
  • Mehdipoor, M., & Badri Ghavifekr, H. (2022). Design and analysis of a new MEMS biosensor based on coupled mechanical resonators for microfluidics applications. Analog Integrated Circuits and Signal Processing, 111(2), 277-286.
  • Meng, E., & Hoang, T. (2012). MEMS-enabled implantable drug infusion pumps for laboratory animal research, preclinical, and clinical applications. Advanced Drug Delivery Reviews, 64(14), 1628-1638.
  • Nalini, M., Gayathiri, R., Ajitha, K., & Kirthika, S. (2021). Eye power and pressure detection using MEMS sensor. Materials Today: Proceedings, 46, 3772-3774.
  • Neumann, A. P., Sage, E., Boll, D., Reinhardt-Szyba, M., Fon, W., Masselon, C., Hentz, S., Sader, J. E., Makarov, A., & Roukes, M. L. (2024). A Hybrid Orbitrap-Nanoelectromechanical Systems Approach for the Analysis of Individual, Intact Proteins in Real Time. Angewandte Chemie International Edition, 63(33), e202317064.
  • Ong, Z., & Al-Sarawi, S. F. (2005). Surgical application of MEMS devices. Smart Structures, Devices, and Systems II, 5649, 849-860.
  • Pachkawade, V. (2025). Bioinspired micro-electromechanical systems/nano-electromechanical systems: an overview, applications, and perspective. Nature-Derived Sensors: Basic Principles and Recent Advances, 267-293.
  • Padha, B., Yadav, I., Dutta, S., & Arya, S. (2023). Recent Developments in Wearable NEMS/MEMS-Based Smart Infrared Sensors for Healthcare Applications. ACS Applied Electronic Materials, 5(10), 5386-5411.
  • Pattni, B. S., & Torchilin, V. P. (2015). Targeted Drug Delivery Systems: Strategies and Challenges. In P. V Devarajan & S. Jain (Eds.), Targeted Drug Delivery : Concepts and Design (pp. 3-38). Springer International Publishing.
  • Phan, D. T., Nguyen, C. H., Nguyen, T. D. P., Tran, L. H., Park, S., Choi, J., Lee, B. Il, & Oh, J. (2022). A Flexible, Wearable, and Wireless Biosensor Patch with Internet of Medical Things Applications. Biosensors, 12(3).
  • Podder, I., Fischl, T., & Bub, U. (2023). Artificial Intelligence Applications for MEMS-Based Sensors and Manufacturing Process Optimization. Telecom, 4(1), 165-197.
  • Preeti, M., Guha, K., Baishnab, K. L., Dusarlapudi, K., & Raju, K. N. (2019). Low frequency MEMS accelerometers in health monitoring-A review based on material and design aspects. Materials Today: Proceedings, 18, 2152-2157.
  • Qiu, Z., & Piyawattanamatha, W. (2017). New endoscopic imaging technology based on MEMS sensors and actuators. Micromachines, 8(7), 210.
  • Reddy, B. N., Saravanan, S., Manjunath, V., & Reddy, P. R. S. (2024). Review on Next-Gen Healthcare: The Role of MEMS and Nanomaterials in Enhancing Diagnostic and Therapeutic Outcomes. Biomaterials Connect, 1(1), 1-10.
  • Rezai, P., Wu, W. I., & Selvaganapathy, P. R. (2012). Microfabrication of polymers for bioMEMS. In MEMS for Biomedical Applications (pp. 3-45). Elsevier.
  • Schulz, M. (2009). Polymer derived ceramics in MEMS/NEMS–a review on production processes and application. Advances in Applied Ceramics, 108(8), 454-460.
  • Sevim, G. (2024). Blockchain Applications in Neurological Disorders and Oncology. In Computational Intelligence for Oncology and Neurological Disorders (pp. 18-30). CRC Press.
  • Sevim, G., Değer, G., & Büyükköroğlu, G. (2025). Theoretical Modeling of the Interactions of CoFe2O4-BaTiO3 Magnetoelectric Nanoparticles with Cancer and Healthy Cells. Current Medicinal Chemistry, 32.
  • Shaporin, A. V, Hanf, M., & Doetzel, W. (2005). Novel characterization method for MEMS devices. Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS IV, 5716, 198-206.
  • Shen, Y. (2023). Current Status and Application of Micro-electromechanical Systems (MEMS). Highlights in Science, Engineering and Technology, 46, 97-105.
  • Shulaker, M. M., Hills, G., Park, R. S., Howe, R. T., Saraswat, K., Wong, H.-S. P., & Mitra, S. (2017). Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature, 547(7661), 74-78.
  • Sitaramgupta, V. S. N., Sakorikar, T., & Pandya, H. J. (2022). An MEMS-Based Force Sensor: Packaging and Proprioceptive Force Recognition Through Vibro-Haptic Feedback for Catheters. IEEE Transactions on Instrumentation and Measurement, 71.
  • Song, P., Tng, D. J. H., Hu, R., Lin, G., Meng, E., & Yong, K. (2013). An electrochemically actuated MEMS device for individualized drug delivery: an in vitro study. Advanced Healthcare Materials, 2(8), 1170-1178.
  • Stapf, H., Selbmann, F., Joseph, Y., & Rahimi, P. (2024). Membrane-Based NEMS/MEMS Biosensors. ACS Applied Electronic Materials, 6(4), 2120-2133.
  • Sun, Y., Dong, Y., Gao, R., Chu, Y., Zhang, M., Qian, X., & Wang, X. (2018). Wearable pulse wave monitoring system based on MEMS sensors. Micromachines, 9(2), 90.
  • Tilli, M., Motooka, T., Airaksinen, V.-M., Franssila, S., Paulasto-Kröckel, M., & Lindroos, V. (2015). Handbook of Silicon Based MEMS Materials and Technologies, 2nd Edition, In Handbook of Silicon Based MEMS Materials and Technologies: Second Edition.
  • Wu, Q., Liu, J., Wang, X., Feng, L., Wu, J., Zhu, X., Wen, W., & Gong, X. (2020). Organ-on-a-chip: Recent breakthroughs and future prospects. Biomedical Engineering Online, 19, 1-19.
  • Yeom, S.-H., Kang, B.-H., Kim, K.-J., & Kang, S.-W. (2011). Nanostructures in biosensor—A review. Front. Biosci, 16, 997-1023.
  • Young, D. J., Zorman, C. A., & Mehregany, M. (2010). MEMS/NEMS devices and applications. Springer Handbook of Nanotechnology, 359-387.
  • Zhu, H., Fohlerová, Z., Pekárek, J., Basova, E., & Neužil, P. (2020). Recent advances in lab-on-a-chip technologies for viral diagnosis. Biosensors and Bioelectronics, 153, 112041.
  • Zhu, Y., & Chang, T.-H. (2015). A review of microelectromechanical systems for nanoscale mechanical characterization. Journal of Micromechanics and Microengineering, 25(9), 093001.
  • Ziober, B. L., Mauk, M. G., Falls, E. M., Chen, Z., Ziober, A. F., & Bau, H. H. (2008). Lab‐on‐a‐chip for oral cancer screening and diagnosis. Head & Neck: Journal for the Sciences and Specialties of the Head and Neck, 30(1), 111-121.

An overview of MEMS/NEMS-based applications with the potential to be used in medicine

Year 2025, Volume: 6 Issue: 2, 135 - 142, 30.08.2025
https://doi.org/10.51753/flsrt.1627484

Abstract

The technology of MEMS/NEMS is based on the integration and relationship of mechanical, electronic, and even optical components at the micro- and nanoscale. This technology has provided more sensitive and more effective devices/systems for medical diagnosis, treatment, and monitoring. For example, it has enabled molecular imaging and early diagnosis of diseases with its integration with medical imaging and biosensor technology. Also, its use in drug targeting and controlled drug release systems has paved the way for promising, effective, and personalized treatments. In short, the technology of MEMS/NEMS currently plays a significant role in medicine and will have even greater potential in the future. Due to increasing studies, researchers who work or will work in this field have started to need a general perspective. For this reason, this review study aims to provide an overview of MEMS/NEMS-based medical applications. This review addresses the applications of MEMS/NEMS in medicine, including biosensors, medical imaging, surgical devices, drug studies, Lab-on-a-Chip, and Organ-on-a-Chip systems. Also, it briefly expresses the fundamentals of MEMS/NEMS and highlights the challenges, and future uses for MEMS/NEMS in medicine.

Thanks

I would like to express my heartfelt thanks to my wife, Betül Sevim, who assisted in the design of the figures, evaluated the first draft of the paper, and helped me see the deficiencies. This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

References

  • Acharya, N. (2024). Magnetically driven MWCNT-Fe3O4-water hybrid nanofluidic transport through a micro-wavy channel: A novel MEMS design for drug delivery application. Materials Today Communications, 38, 107844.
  • Al-Gawati, M. A., Albrithen, H., Alhazaa, A. N., & Alodhayb, A. N. (2022). Sensitivity enhancement of microelectromechanical sensors using femtosecond laser for biological and chemical applications. Surface and Interface Analysis, 54(10), 1060-1069.
  • Azizipour, N., Avazpour, R., Rosenzweig, D. H., Sawan, M., & Ajji, A. (2020). Evolution of biochip technology: A review from lab-on-a-chip to organ-on-a-chip. Micromachines, 11(6), 599.
  • Bakri, M. H., Özarslan, A. C., Erarslan, A., Basaran Elalmis, Y., & Ciftci, F. (2024). Biomedical applications of wearable biosensors. Next Materials, 3, 100084.
  • Basu, A. K., Basu, A., Ghosh, S., & Bhattacharya, S. (2021). MEMS Applications in Biology and Healthcare. AIP Publishing Melville.
  • Bhushan, B. (2011). MEMS/NEMS and BioMEMS/BioNEMS: Materials, Devices, and Biomimetics. In B. Bhushan (Ed.), Nanotribology and Nanomechanics II: Nanotribology, Biomimetics, and Industrial Applications (pp. 833-945). Springer Berlin Heidelberg.
  • Bie, Y.-Q., Grosso, G., Heuck, M., Furchi, M. M., Cao, Y., Zheng, J., Bunandar, D., Navarro-Moratalla, E., Zhou, L., & Efetov, D. K. (2017). A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nature Nanotechnology, 12(12), 1124-1129.
  • Biswas, S., Gogoi, A. K., & Biswas, M. (2023). Damping Estimation and Analysis for High Performance Inertial MEMS for Early Detection of Neurological Disorders During Pregnancy. In MEMS and Microfluidics in Healthcare: Devices and Applications Perspectives (pp. 213-224). Springer.
  • Chircov, C., & Grumezescu, A. M. (2022). Microelectromechanical Systems (MEMS) for Biomedical Applications. Micromachines, 13(2).
  • Drexler, P., Steinbauer, M., Alsaleem, F., Ciotola, F., Pyxaras, S., Rittger, H., & Buia, V. (2024). MEMS Technology in Cardiology: Advancements and Applications in Heart Failure Management Focusing on the CardioMEMS Device. Sensors 2024, Vol. 24, Page 2922, 24(9), 2922.
  • Dylla, H. F., & Corneliussen, S. T. (2005). John Ambrose Fleming and the beginning of electronics. Journal of Vacuum Science & Technology A, 23(4), 1244-1251.
  • Economidou, S. N., Uddin, M. J., Marques, M. J., Douroumis, D., Sow, W. T., Li, H., Reid, A., Windmill, J. F. C., & Podoleanu, A. (2021). A novel 3D printed hollow microneedle microelectromechanical system for controlled, personalized transdermal drug delivery. Additive Manufacturing, 38.
  • Ehrlich, D., Carey, L., Chiou, J., Desmarais, S., El-Difrawy, S., Koutny, L., Lam, R., Matsudaira, P., Mckenna, B., & Mitnik-Gankin, L. (2002). MEMS-based systems for DNA sequencing and forensics. SENSORS, 2002 IEEE, 1, 448-449.
  • Ewii, U. E., Onugwu, A. L., Nwokpor, V. C., Akpaso, I. abasi, Ogbulie, T. E., Aharanwa, B., Chijioke, C., Verla, N., Iheme, C., Ujowundu, C., Anyiam, C., & Attama, A. A. (2024). Novel drug delivery systems: Insight into self-powered and nano-enabled drug delivery systems. Nano TransMed, 3, 100042.
  • Fan, X., He, C., Ding, J., Gao, Q., Ma, H., Lemme, M. C., & Zhang, W. (2024). Graphene MEMS and NEMS. Microsystems & Nanoengineering, 10(1), 154.
  • Feng, P. X.-L., Young, D. J., & Zorman, C. A. (2017). MEMS/NEMS devices and applications. Springer Handbook of Nanotechnology, 395-429.
  • Gertner, M. E., & Krummel, T. M. (2004). 11 Micro-and Nanoelectromechanical Systems in Medicine and Surgery. Nanoscale Technology in Biological Systems, 245.
  • Gonçalves, J. M., de Faria, L. V, Nascimento, A. B., Germscheidt, R. L., Patra, S., Hernández-Saravia, L. P., Bonacin, J. A., Munoz, R. A. A., & Angnes, L. (2022). Sensing performances of spinel ferrites MFe2O4 (M= Mg, Ni, Co, Mn, Cu and Zn) based electrochemical sensors: A review. Analytica Chimica Acta, 1233, 340362.
  • Harun-Or-Rashid, M., Aktar, M. N., Preda, V., & Nasiri, N. (2024). Advances in electrochemical sensors for real-time glucose monitoring. Sensors and Diagnostics, 3(6), 893-913.
  • Industryarc, (2023). Medical Device Connectivity Market worth $7.4 billion by 2028, https://www.industryarc.com/Report/17077/bio-mems-market.html, Last Accessed on April 2025.
  • Islam, N., & Sayed, S. (2012). MEMS microfluidics for Lab-on-a-Chip Applications. INTECH Open Access Publisher.
  • Kaisti, M., Leppänen, J., Lahdenoja, O., Kostiainen, P., Pankaaia, M., Meriheina, U., & Koivisto, T. (2017). Wearable pressure sensor array for health monitoring. 2017 Computing in Cardiology (CinC), 1-4.
  • Kalaiarasi, A. R., & Aishwarya, G. P. (2023). Microsensor for Cancer Detection and MEMS Actuator for Cancer Therapy. Transactions on Electrical and Electronic Materials, 24(1), 82-90.
  • Kuru, C. İ., & Ulucan-Karnak, F. (2024). Lab-on-a-chip: A Stepping Stone for Personalized Healthcare Management. Lab-on-a-Chip Devices for Advanced Biomedicines, 221-243.
  • Langari, M. M., Nikzad, M., & Labidi, J. (2023). Nanocellulose-based sensors in medical/clinical applications: The state-of-the-art review. Carbohydrate Polymers, 304.
  • Lee, H. J., Choi, N., Yoon, E.-S., & Cho, I.-J. (2018). MEMS devices for drug delivery. Advanced Drug Delivery Reviews, 128, 132-147.
  • Li, X., Yu, H., Gan, X., Xia, X., Xu, P., Li, J., Liu, M., & Li, Y. (2009). Integrated MEMS/NEMS resonant cantilevers for ultrasensitive biological detection. Journal of Sensors, 2009.
  • Li, Y., Denny, P., Ho, C.-M., Montemagno, C., Shi, W., Qi, F., Wu, B., Wolinsky, L., & Wong, D. T. (2005). The oral fluid MEMS/NEMS chip (OFMNC): Diagnostic & translational applications. Advances in Dental Research, 18(1), 3-5.
  • Lim, Y. C., Kouzani, A. Z., & Duan, W. (2010). Lab-on-a-chip: a component view. Microsystem Technologies, 16, 1995-2015.
  • Lyshevski, S. E. (2018). MEMS and NEMS: systems, devices, and structures. CRC press. MacK, C. A. (2011). Fifty years of Moore’s law. IEEE Transactions on Semiconductor Manufacturing, 24(2), 202-207.
  • Madou, M. J. (2018). Fundamentals of Microfabrication and Nanotechnology, Three-Volume Set. Fundamentals of Microfabrication and Nanotechnology, Three-Volume Set.
  • Manikandan, N., Muruganand, S., Divagar, M., & Viswanathan, C. (2019). Design and fabrication of MEMS based intracranial pressure sensor for neurons study. Vacuum, 163, 204-209.
  • Manvi, M., & Mruthyunjaya Swamy, K. B. (2022). Microelectronic materials, microfabrication processes, micromechanical structural configuration based stiffness evaluation in MEMS: A review. Microelectronic Engineering, 263.
  • MarketandMarkets, (2023). Bio-MEMS Market Share, Size and Industry Growth Analysis 2024 - 2030, https://www.marketsandmarkets.com/PressReleases/medical-device-connectivity.asp, Last Accessed on April 2025.
  • Mehdipoor, M., & Badri Ghavifekr, H. (2022). Design and analysis of a new MEMS biosensor based on coupled mechanical resonators for microfluidics applications. Analog Integrated Circuits and Signal Processing, 111(2), 277-286.
  • Meng, E., & Hoang, T. (2012). MEMS-enabled implantable drug infusion pumps for laboratory animal research, preclinical, and clinical applications. Advanced Drug Delivery Reviews, 64(14), 1628-1638.
  • Nalini, M., Gayathiri, R., Ajitha, K., & Kirthika, S. (2021). Eye power and pressure detection using MEMS sensor. Materials Today: Proceedings, 46, 3772-3774.
  • Neumann, A. P., Sage, E., Boll, D., Reinhardt-Szyba, M., Fon, W., Masselon, C., Hentz, S., Sader, J. E., Makarov, A., & Roukes, M. L. (2024). A Hybrid Orbitrap-Nanoelectromechanical Systems Approach for the Analysis of Individual, Intact Proteins in Real Time. Angewandte Chemie International Edition, 63(33), e202317064.
  • Ong, Z., & Al-Sarawi, S. F. (2005). Surgical application of MEMS devices. Smart Structures, Devices, and Systems II, 5649, 849-860.
  • Pachkawade, V. (2025). Bioinspired micro-electromechanical systems/nano-electromechanical systems: an overview, applications, and perspective. Nature-Derived Sensors: Basic Principles and Recent Advances, 267-293.
  • Padha, B., Yadav, I., Dutta, S., & Arya, S. (2023). Recent Developments in Wearable NEMS/MEMS-Based Smart Infrared Sensors for Healthcare Applications. ACS Applied Electronic Materials, 5(10), 5386-5411.
  • Pattni, B. S., & Torchilin, V. P. (2015). Targeted Drug Delivery Systems: Strategies and Challenges. In P. V Devarajan & S. Jain (Eds.), Targeted Drug Delivery : Concepts and Design (pp. 3-38). Springer International Publishing.
  • Phan, D. T., Nguyen, C. H., Nguyen, T. D. P., Tran, L. H., Park, S., Choi, J., Lee, B. Il, & Oh, J. (2022). A Flexible, Wearable, and Wireless Biosensor Patch with Internet of Medical Things Applications. Biosensors, 12(3).
  • Podder, I., Fischl, T., & Bub, U. (2023). Artificial Intelligence Applications for MEMS-Based Sensors and Manufacturing Process Optimization. Telecom, 4(1), 165-197.
  • Preeti, M., Guha, K., Baishnab, K. L., Dusarlapudi, K., & Raju, K. N. (2019). Low frequency MEMS accelerometers in health monitoring-A review based on material and design aspects. Materials Today: Proceedings, 18, 2152-2157.
  • Qiu, Z., & Piyawattanamatha, W. (2017). New endoscopic imaging technology based on MEMS sensors and actuators. Micromachines, 8(7), 210.
  • Reddy, B. N., Saravanan, S., Manjunath, V., & Reddy, P. R. S. (2024). Review on Next-Gen Healthcare: The Role of MEMS and Nanomaterials in Enhancing Diagnostic and Therapeutic Outcomes. Biomaterials Connect, 1(1), 1-10.
  • Rezai, P., Wu, W. I., & Selvaganapathy, P. R. (2012). Microfabrication of polymers for bioMEMS. In MEMS for Biomedical Applications (pp. 3-45). Elsevier.
  • Schulz, M. (2009). Polymer derived ceramics in MEMS/NEMS–a review on production processes and application. Advances in Applied Ceramics, 108(8), 454-460.
  • Sevim, G. (2024). Blockchain Applications in Neurological Disorders and Oncology. In Computational Intelligence for Oncology and Neurological Disorders (pp. 18-30). CRC Press.
  • Sevim, G., Değer, G., & Büyükköroğlu, G. (2025). Theoretical Modeling of the Interactions of CoFe2O4-BaTiO3 Magnetoelectric Nanoparticles with Cancer and Healthy Cells. Current Medicinal Chemistry, 32.
  • Shaporin, A. V, Hanf, M., & Doetzel, W. (2005). Novel characterization method for MEMS devices. Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS IV, 5716, 198-206.
  • Shen, Y. (2023). Current Status and Application of Micro-electromechanical Systems (MEMS). Highlights in Science, Engineering and Technology, 46, 97-105.
  • Shulaker, M. M., Hills, G., Park, R. S., Howe, R. T., Saraswat, K., Wong, H.-S. P., & Mitra, S. (2017). Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature, 547(7661), 74-78.
  • Sitaramgupta, V. S. N., Sakorikar, T., & Pandya, H. J. (2022). An MEMS-Based Force Sensor: Packaging and Proprioceptive Force Recognition Through Vibro-Haptic Feedback for Catheters. IEEE Transactions on Instrumentation and Measurement, 71.
  • Song, P., Tng, D. J. H., Hu, R., Lin, G., Meng, E., & Yong, K. (2013). An electrochemically actuated MEMS device for individualized drug delivery: an in vitro study. Advanced Healthcare Materials, 2(8), 1170-1178.
  • Stapf, H., Selbmann, F., Joseph, Y., & Rahimi, P. (2024). Membrane-Based NEMS/MEMS Biosensors. ACS Applied Electronic Materials, 6(4), 2120-2133.
  • Sun, Y., Dong, Y., Gao, R., Chu, Y., Zhang, M., Qian, X., & Wang, X. (2018). Wearable pulse wave monitoring system based on MEMS sensors. Micromachines, 9(2), 90.
  • Tilli, M., Motooka, T., Airaksinen, V.-M., Franssila, S., Paulasto-Kröckel, M., & Lindroos, V. (2015). Handbook of Silicon Based MEMS Materials and Technologies, 2nd Edition, In Handbook of Silicon Based MEMS Materials and Technologies: Second Edition.
  • Wu, Q., Liu, J., Wang, X., Feng, L., Wu, J., Zhu, X., Wen, W., & Gong, X. (2020). Organ-on-a-chip: Recent breakthroughs and future prospects. Biomedical Engineering Online, 19, 1-19.
  • Yeom, S.-H., Kang, B.-H., Kim, K.-J., & Kang, S.-W. (2011). Nanostructures in biosensor—A review. Front. Biosci, 16, 997-1023.
  • Young, D. J., Zorman, C. A., & Mehregany, M. (2010). MEMS/NEMS devices and applications. Springer Handbook of Nanotechnology, 359-387.
  • Zhu, H., Fohlerová, Z., Pekárek, J., Basova, E., & Neužil, P. (2020). Recent advances in lab-on-a-chip technologies for viral diagnosis. Biosensors and Bioelectronics, 153, 112041.
  • Zhu, Y., & Chang, T.-H. (2015). A review of microelectromechanical systems for nanoscale mechanical characterization. Journal of Micromechanics and Microengineering, 25(9), 093001.
  • Ziober, B. L., Mauk, M. G., Falls, E. M., Chen, Z., Ziober, A. F., & Bau, H. H. (2008). Lab‐on‐a‐chip for oral cancer screening and diagnosis. Head & Neck: Journal for the Sciences and Specialties of the Head and Neck, 30(1), 111-121.
There are 65 citations in total.

Details

Primary Language English
Subjects Biophysics, Micro and Nanosystems, Nanoelectromechanical Systems
Journal Section Review
Authors

Gençay Sevim 0000-0002-2157-3209

Submission Date January 27, 2025
Acceptance Date May 8, 2025
Publication Date August 30, 2025
Published in Issue Year 2025 Volume: 6 Issue: 2

Cite

APA Sevim, G. (2025). An overview of MEMS/NEMS-based applications with the potential to be used in medicine. Frontiers in Life Sciences and Related Technologies, 6(2), 135-142. https://doi.org/10.51753/flsrt.1627484

Creative Commons License

Frontiers in Life Sciences and Related Technologies is licensed under a Creative Commons Attribution 4.0 International License.