Review
BibTex RIS Cite

Unraveling the regulatory roles of microRNAs in livestock

Year 2025, Volume: 6 Issue: 3, 209 - 218, 31.12.2025
https://doi.org/10.51753/flsrt.1700810

Abstract

MicroRNAs (miRNAs) are small non-coding RNA molecules that play a central role in the post-transcriptional regulation of gene expression. They are essential regulators of key physiological processes in animals, including development, immunity, metabolism, and reproduction, thereby maintaining cellular homeostasis. In recent years, miRNA research in livestock has advanced rapidly, revealing that these molecules are not only fundamental biological regulators but also hold significant practical potential for applications such as monitoring reproductive performance, enhancing heat-stress tolerance, and enabling early detection of metabolic disorders. This review provides a comprehensive and comparative overview of recent miRNA studies conducted in major livestock species, including cattle, sheep, goats, chickens, and honey bees, highlighting species-specific regulatory patterns, molecular mechanisms, and emerging biotechnological applications. The reviewed evidence demonstrates that miRNA expression profiles vary across developmental stages, physiological conditions, and tissue types, offering valuable insights for the development of diagnostic biomarkers, molecular breeding strategies, and production optimization tools. However, the majority of existing studies remain focused on expression profiling, while the functional validation of miRNA-mRNA interactions is still underrepresented. As a result, many conclusions regarding miRNA function are limited to bioinformatic predictions rather than experimental verification. This review critically evaluates these methodological limitations and outlines future perspectives within the frameworks of functional genomics, systems biology, and molecular breeding. In conclusion, a deeper understanding of miRNA-mediated regulatory networks will not only advance fundamental biological knowledge but also drive practical innovations in sustainable livestock production, precision breeding, and animal health management.

References

  • Ashby, R., Forêt, S., Searle, I., & Maleszka, R. (2016). MicroRNAs in Honey Bee Caste Determination. Scientific Reports, 6, 18794.
  • Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281-297.
  • Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136(2), 215-233.
  • Bilbao-Arribas, M., Guisasola-Serrano, A., Varela-Martínez, E., & Jugo, B. M. (2023). The sheep miRNAome: Characterization and distribution of miRNAs in 21 tissues. Gene, 851, 146998.
  • Cendron, F., Rosani, U., Franzoi, M., Boselli, C., Maggi, F., De Marchi, M., & Penasa, M. (2024). Analysis of miRNAs in milk of four livestock species. BMC Genomics, 25(1), 859.
  • Cheng, M., McCarl, B., & Fei, C. (2022). Climate change and livestock production: A literature review. Atmosphere, 13(1), 140.
  • Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F., & Hannon, G. J. (2004). Processing of primary microRNAs by the Microprocessor complex. Nature, 432(7014), 231-235.
  • Do, D., Li, R., & Dudemaine, P. L. (2017). MicroRNA roles in signalling during lactation: an insight from differential expression, time course and pathway analyses of deep sequence data. Scientific Reports, 7, 44605.
  • Do, D. N., Dudemaine, P. L., Mathur, M., Suravajhala, P., Zhao, X., & Ibeagha-Awemu, E. M. (2021). miRNA regulatory functions in farm animal diseases, and biomarker potentials for effective therapies. International journal of molecular sciences, 22(6), 3080.
  • Dong, J., Jiang, X., Liu, N., Li, H., Zhao, J., He, J., & Gao, X. (2023). Identification and analysis of differentially expressed microRNAs in endometrium to explore the regulation of sheep fecundity. BMC Genomics, 24(1), 600.
  • Ender, C., Krek, A., Friedländer, M. R., Beitzinger, M., Weinmann, L., Chen, W., Pfeffer, S., Rajewsky, N., & Meister, G. (2008). A human snoRNA with microRNA-like functions. Mol. Cell., 32(4), 519–528.
  • Fabian, M. R., & Sonenberg, N. (2012). The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nature Structural & Molecular Biology, 19(6), 586-593.
  • Fan, X., Zhang, W., Zhang, K., Zhang, J., Long, Q., Wu, Y., Zhang, K., Zhu, L., Chen, D., & Guo, R. (2022). In-depth investigation of microRNA-mediated cross-kingdom regulation between Asian honey bee and microsporidian. Frontiers in Microbiology, 13, 1003294.
  • Freitas, F. C., Pires, C. V., Claudianos, C., Cristino, A. S., & Simões, Z. L. (2017). MicroRNA-34 directly targets pair-rule genes and cytoskeleton component in the honey bee. Scientific Reports, 7, 40884.
  • Fu, J., Liu, J., Zou, X., Deng, M., Liu, G., Sun, B., ... & Li, Y. (2024). Transcriptome analysis of mRNA and miRNA in the development of LeiZhou goat muscles. Scientific Reports, 14, 9858.
  • Gharehdaghi, L., Bakhtiarizadeh, M. R., He, K., Harkinezhad, T., Tahmasbi, G., & Li, F. (2021). Diet-derived transmission of MicroRNAs from host plant into honey bee Midgut. BMC Genomics, 22(1), 587.
  • Ha, M., & Kim, V. N. (2014). Regulation of microRNA biogenesis. Nature Reviews Molecular Cell Biology, 15(8), 509-524.
  • Han, F., Zhou, L., Zhao, L., Wang, L., Liu, L., Li, H., ... & Liu, N. (2021). Identification of miRNA in sheep intramuscular fat and the role of miR-193a-5p in proliferation and differentiation of 3T3-L1. Frontiers in Genetics, 12, 633295.
  • Han, J., Lee, Y., Yeom, K. H., Kim, Y. K., Jin, H., & Kim, V. N. (2004). The Drosha-DGCR8 complex in primary microRNA processing. Genes & Development, 18(24), 3016-3027.
  • Hosseinzadeh, S., & Hasanpur, K. (2024). Whole genome discovery of regulatory genes responsible for the response of chicken to heat stress. Scientific Reports, 14(1), 6544.
  • Houseley, J., & Tollervey, D. (2009). The many pathways of RNA degradation. Cell, 136(4), 763-776.
  • Hue, D. T., Petrovski, K., Chen, T., Williams, J. L., & Bottema, C. D. K. (2023). Analysis of immune-related microRNAs in cows and newborn calves. Journal of Dairy Science, 106(4), 2866-2878.
  • Jebessa, E., Bello, S. F., Guo, L., Tuli, M. D., Hanotte, O., & Nie, Q. (2023). MicroRNA expression profile of chicken jejunum at different time points of Eimeria maxima infection. Frontiers in Immunology, 14, 1331532.
  • Jin, W., Ibeagha-Awemu, E. M., Liang, G., Beaudoin, F., Zhao, X., & Guan, L. L. (2014). Transcriptome microRNA profiling of bovine mammary epithelial cells challenged with Escherichia coli or Staphylococcus aureus bacteria reveals pathogen directed microRNA expression profiles. BMC Genomics, 15, 181.
  • Jonas, S., & Izaurralde, E. (2015). Towards a molecular understanding of microRNA-mediated gene silencing. Nature reviews. Genetics, 16(7), 421-433.
  • Keogh, K., McGee, M., & Kenny, D. A. (2024). Effect of breed and dietary composition on the miRNA profile of beef steers divergent for feed efficiency. Scientific Reports, 14(1), 20046.
  • Lee Y., Kim, M., Han, J., Yeom, K. H., Lee, S., Baek, S.H., & Kim, V. N. (2003). MicroRNA genes are transcribed by RNA polymerase II. EMBO Journal, 23, 4051-4060.
  • Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5), 843-854.
  • Liao, L., Yao, Z., Kong, J., Zhang, X., Li, H., Chen, W., & Xie, Q. (2023). Exploring the role of miRNAs in early chicken embryonic development and their significance. Poultry Science, 102(12), 103105.
  • Lim, H. J., Kim, H. J., Lee, J. H., Lim, D. H., Son, J. K., Kim, E.-T., Jang, G., & Kim, D.-H. (2021). Identification of plasma miRNA biomarkers for pregnancy detection in dairy cattle. Journal of Animal Reproduction and Biotechnology, 36(1), 35-44.
  • Lima, R. T., Busacca, S., Almeida, G. M., Gaudino, G., Fennell, D. A., & Vasconcelos, M. H. (2011). MicroRNA regulation of core apoptosis pathways in cancer. European Journal of Cancer, 47(2), 163-174.
  • Lin, X., Luo, J., Zhang, L., & Zhu, J. (2013). MicroRNAs synergistically regulate milk fat synthesis in mammary gland epithelial cells of dairy goats. Gene Expression, 16(1), 1-13.
  • Liu, B., Shyr, Y., Cai, J., & Liu, Q. (2019). Interplay between miRNAs and host genes and their role in cancer. Briefings in Functional Genomics, 18(4), 255-266.
  • Liu, Z., Liu, Y., Xing, T., Li, J., Zhang, L., Zhao, L., Jiang, Y., & Gao, F. (2024). Chronic heat stress inhibits glycogen synthesis through gga-miR-212-5p/GYS1 axis in the breast muscle of broilers. Poultry Science, 103(3), 103455.
  • Liu, Z., Ke, S., & Wan, Y. (2025). miR-126: a bridge between cancer and exercise. Cancer Cell International, 25(1), 145.
  • Luo, J., Sun, T., Jiang, S., Yang, Z., Xiao, C., Deng, J., Zhou, B., & Yang, X. (2025). Comprehensive analysis of non-coding RNAs in the ovaries of high and low egg production hens. Animal Reproduction Science, 276, 107836.
  • Lv, W., An, R., Li, X., Zhang, Z., Geri, W., Xiong, X., ... & Xiong, Y. (2024). Multi-omics approaches uncovered critical mRNA–miRNA–lncRNA networks regulating multiple birth traits in goat ovaries. International Journal of Molecular Sciences, 25(22), 12466.
  • Macedo, L. M., Nunes, F. M., Freitas, F. C., Pires, C. V., Tanaka, E. D., Martins, J. R., Piulachs, M. D., Cristino, A. S., Pinheiro, D. G., & Simões, Z. L. (2016). MicroRNA signatures characterizing caste-independent ovarian activity in queen and worker honeybees (Apis mellifera L.). Insect Molecular Biology, 25(3), 216-226.
  • Maigoro, A. Y., Lee, J. H., Yun, Y., Lee, S., & Kwon, H. W. (2025). In the battle of survival: Transcriptome analysis of hypopharyngeal gland of the Apis mellifera under temperature-stress. BMC Genomics, 26(1), 151.
  • Manenti, I., Ala, U., Macchi, E., Viola, I., Toschi, P., Accornero, P., ... & Martignani, E. (2024). Expression profiles of circulating miRNAs in an endangered Piedmontese sheep breed during the estrus cycle. Frontiers in Veterinary Science, 11, 1458463.
  • Mani, I. A., Yanyan, S., Yunlei, L., Yuanmei, W., Aixin, N., Jingwei, Y., Hui, M., Lei, S., Hagos, T. H., Jing, F., Panlin, W., & Jilan, C. (2022). MicroRNAs with non-additive expression in the ovary of hybrid hens target genes enriched in key reproductive pathways that may influence heterosis for egg laying traits. Frontiers in Genetics, 13, 974619.
  • Meister, G., Landthaler, M., Patkaniowska, A., Dorsett, Y., Teng, G., & Tuschl, T. (2004). Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Molecular Cell, 15(2), 185-197.
  • Ninomiya, C., Yoshino, H., Ishiguro-Oonuma, T., Iga, K., Kanazawa, T., Takahashi, T., & Kizaki, K. (2024). Potential of circulating miRNA biomarkers and exosomes for early pregnancy diagnoses in cattle. Animals, 14(11), 1592.
  • Nishi, K., Nishi, A., Nagasawa, T., & Ui-Tei, K. (2013). Human TNRC6A is an Argonaute-navigator protein for microRNA-mediated gene silencing in the nucleus. RNA, 19(1), 17-35.
  • O’Brien, J., Hayder, H., Zayed, Y., & Peng, C. (2018). Overview of microRNA biogenesis, mechanisms of actions, and circulation. Frontiers in Endocrinology, 9, 402.
  • Ocłoń, E., & Hrabia, A. (2021). miRNA expression profile in chicken ovarian follicles throughout development and miRNA-mediated MMP expression. Theriogenology, 160, 116-127.
  • Ojo, O. E., Hajek, L., Johanns, S., Pacífico, C., Sener-Aydemir, A., Ricci, S., Rivera-Chacon, R., Castillo-Lopez, E., Reisinger, N., Zebeli, Q., & Kreuzer-Redmer, S. (2023). Evaluation of circulating microRNA profiles in blood as potential candidate biomarkers in a subacute ruminal acidosis cow model - a pilot study. BMC Genomics, 24(1), 333.
  • Okamura, K., Hagen, J. W., Duan, H., Tyler, D. M., & Lai, E. C. (2007). The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell, 130(1), 89-100.
  • Pérez-Lázaro, S., Martín-Burriel, I., Cozzuto, L., Ponomarenko, J., Badiola, J. J., Bolea, R., & Toivonen, J. M. (2025). Dysregulated microRNAs in blood correlate with central nervous system neuropathology of prion disease. Veterinary Research, 56(1), 132.
  • Pitchiaya, S., Heinicke, L. A., Park, J. I., Cameron, E. L., & Walter, N. G. (2017). Resolving subcellular miRNA trafficking and turnover at single-molecule resolution. Cell Reports, 19(3), 630-642.
  • Ricci, S., Petri, R. M., Pacífico, C., Castillo-Lopez, E., Rivera-Chacon, R., Sener-Aydemir, A., Reisinger, N., Zebeli, Q., & Kreuzer-Redmer, S. (2022). Characterization of presence and activity of microRNAs in the rumen of cattle hints at possible host-microbiota cross-talk mechanism. Scientific Reports, 12(1), 13812.
  • Romao, J. M., Jin, W., He, M., McAllister, T., & Guan, L. L. (2012). Altered microRNA expression in bovine subcutaneous and visceral adipose tissues from cattle under different diet. PloS one, 7(7), e40605.
  • Shi, K., Li, D., Jiang, X., Du, Y., & Yu, M. (2024). Identification and characterization of the miRNA Transcriptome Controlling Green Pigmentation of Chicken Eggshells. Genes, 15(6), 811.
  • Shi, T. F., Feng, Z. Q., Li, Z., Ye, L., Jiang, X. C., Cao, H. Q., & Yu, L. S. (2025). Heat‐responsive ame‐miR‐1‐3p modulates thermotolerance in honeybees (Apis mellifera L.). Insect Molecular Biology.
  • Shukla, G. C., Singh, J., & Barik, S. (2011). MicroRNAs: processing, maturation, target recognition and regulatory functions. Molecular and Cellular Pharmacology, 3(3), 83.
  • Stuart, S. H., Ahmed, A. C. C., Kilikevicius, L., & Robinson, G. E. (2024). Effects of microRNA-305 knockdown on brain gene expression associated with division of labor in honey bee colonies (Apis mellifera). Journal of Experimental Biology, 227(8), jeb246785.
  • Sun, Y., Shen, Y., Liang, X., Zheng, H., & Zhang, Y. (2023). MicroRNAs as biomarkers and therapeutic targets for nonalcoholic fatty liver disease: A narrative review. Clinical Therapeutics, 45(3), 234-247.
  • Veshkini, A., Hammon, H. M., Lazzari, B., Vogel, L., Gnott, M., Tröscher, A., Vendramin, V., Sadri, H., Sauerwein, H., & Ceciliani, F. (2022). Investigating circulating miRNA in transition dairy cows: What miRNAomics tells about metabolic adaptation. Frontiers in Genetics, 13, 946211.
  • Wang, A., Ji, Z., Xuan, R., Zhao, X., Hou, L., Li, Q., Chu, Y., Chao, T., & Wang, J. (2021). Differentially expressed miRNAs of goat submandibular glands among three developmental stages are involved in immune functions. Frontiers in Genetics, 12, 678194.
  • Wang, H., Zheng, Y., Wang, G., & Li, H. (2013). Identification of microRNA and bioinformatics target gene analysis in beef cattle intramuscular fat and subcutaneous fat. Molecular BioSystems, 9(8), 2154-2162.
  • Wang, O., Zhou, M., Chen, Y., McAllister, T. A., Plastow, G., Stanford, K., Selinger, B., & Guan, L. L. (2021). MicroRNAomes of cattle intestinal tissues revealed possible miRNA-regulated mechanisms involved in Escherichia coli O157 fecal shedding. Frontiers in Cellular and Infection Microbiology, 11, 634505.
  • Wenguang, Z., Jianghong, W., Jinquan, L., & Yashizawa, M. (2007). A subset of skin-expressed microRNAs with possible roles in goat and sheep hair growth based on expression profiling of mammalian microRNAs. Omics: A Journal of Integrative Biology, 11(4), 385-396.
  • Xu, Z., Liu, Q., Ning, C., Yang, M., Zhu, Q., Li, D., Wang, T., & Li, F. (2024). miRNA profiling of chicken follicles during follicular development. Scientific Reports, 14(1), 2212.
  • Yang, J. S., & Lai, E. C. (2011). Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Molecular Cell, 43(6), 892-903.
  • Zhang, S., Yan, S., Zhao, J., Xiong, H., An, P., Wang, J., Zhang, H., & Zhang, L. (2019). Identification of miRNAs and their target genes in Larix olgensis and verified of differential expression miRNAs. BMC Plant Biology, 19, 247.
  • Zhao, X., Ji, Z., Xuan, R., Wang, A., Li, Q., Zhao, Y., Chao, T., & Wang, J. (2022). Characterization of the microRNA Expression Profiles in the Goat Kid Liver. Frontiers in Genetics, 12, 794157.
  • Zhu, K., Liu, M., Fu, Z., Zhou, Z., Kong, Y., Liang, H., Lin, Z., Luo, J., Zheng, H., Wan, P., Zhang, J., Zen, K., Chen, J., Hu, F., Zhang, C. Y., Ren, J., & Chen, X. (2017). Plant microRNAs in larval food regulate honeybee caste development. PLoS Genetics, 13(8), e1006946.

Unraveling the regulatory roles of microRNAs in livestock

Year 2025, Volume: 6 Issue: 3, 209 - 218, 31.12.2025
https://doi.org/10.51753/flsrt.1700810

Abstract

MicroRNAs (miRNAs) are small non-coding RNA molecules that play a central role in the post-transcriptional regulation of gene expression. They are essential regulators of key physiological processes in animals, including development, immunity, metabolism, and reproduction, thereby maintaining cellular homeostasis. In recent years, miRNA research in livestock has advanced rapidly, revealing that these molecules are not only fundamental biological regulators but also hold significant practical potential for applications such as monitoring reproductive performance, enhancing heat-stress tolerance, and enabling early detection of metabolic disorders. This review provides a comprehensive and comparative overview of recent miRNA studies conducted in major livestock species, including cattle, sheep, goats, chickens, and honey bees, highlighting species-specific regulatory patterns, molecular mechanisms, and emerging biotechnological applications. The reviewed evidence demonstrates that miRNA expression profiles vary across developmental stages, physiological conditions, and tissue types, offering valuable insights for the development of diagnostic biomarkers, molecular breeding strategies, and production optimization tools. However, the majority of existing studies remain focused on expression profiling, while the functional validation of miRNA-mRNA interactions is still underrepresented. As a result, many conclusions regarding miRNA function are limited to bioinformatic predictions rather than experimental verification. This review critically evaluates these methodological limitations and outlines future perspectives within the frameworks of functional genomics, systems biology, and molecular breeding. In conclusion, a deeper understanding of miRNA-mediated regulatory networks will not only advance fundamental biological knowledge but also drive practical innovations in sustainable livestock production, precision breeding, and animal health management.

References

  • Ashby, R., Forêt, S., Searle, I., & Maleszka, R. (2016). MicroRNAs in Honey Bee Caste Determination. Scientific Reports, 6, 18794.
  • Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281-297.
  • Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136(2), 215-233.
  • Bilbao-Arribas, M., Guisasola-Serrano, A., Varela-Martínez, E., & Jugo, B. M. (2023). The sheep miRNAome: Characterization and distribution of miRNAs in 21 tissues. Gene, 851, 146998.
  • Cendron, F., Rosani, U., Franzoi, M., Boselli, C., Maggi, F., De Marchi, M., & Penasa, M. (2024). Analysis of miRNAs in milk of four livestock species. BMC Genomics, 25(1), 859.
  • Cheng, M., McCarl, B., & Fei, C. (2022). Climate change and livestock production: A literature review. Atmosphere, 13(1), 140.
  • Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F., & Hannon, G. J. (2004). Processing of primary microRNAs by the Microprocessor complex. Nature, 432(7014), 231-235.
  • Do, D., Li, R., & Dudemaine, P. L. (2017). MicroRNA roles in signalling during lactation: an insight from differential expression, time course and pathway analyses of deep sequence data. Scientific Reports, 7, 44605.
  • Do, D. N., Dudemaine, P. L., Mathur, M., Suravajhala, P., Zhao, X., & Ibeagha-Awemu, E. M. (2021). miRNA regulatory functions in farm animal diseases, and biomarker potentials for effective therapies. International journal of molecular sciences, 22(6), 3080.
  • Dong, J., Jiang, X., Liu, N., Li, H., Zhao, J., He, J., & Gao, X. (2023). Identification and analysis of differentially expressed microRNAs in endometrium to explore the regulation of sheep fecundity. BMC Genomics, 24(1), 600.
  • Ender, C., Krek, A., Friedländer, M. R., Beitzinger, M., Weinmann, L., Chen, W., Pfeffer, S., Rajewsky, N., & Meister, G. (2008). A human snoRNA with microRNA-like functions. Mol. Cell., 32(4), 519–528.
  • Fabian, M. R., & Sonenberg, N. (2012). The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nature Structural & Molecular Biology, 19(6), 586-593.
  • Fan, X., Zhang, W., Zhang, K., Zhang, J., Long, Q., Wu, Y., Zhang, K., Zhu, L., Chen, D., & Guo, R. (2022). In-depth investigation of microRNA-mediated cross-kingdom regulation between Asian honey bee and microsporidian. Frontiers in Microbiology, 13, 1003294.
  • Freitas, F. C., Pires, C. V., Claudianos, C., Cristino, A. S., & Simões, Z. L. (2017). MicroRNA-34 directly targets pair-rule genes and cytoskeleton component in the honey bee. Scientific Reports, 7, 40884.
  • Fu, J., Liu, J., Zou, X., Deng, M., Liu, G., Sun, B., ... & Li, Y. (2024). Transcriptome analysis of mRNA and miRNA in the development of LeiZhou goat muscles. Scientific Reports, 14, 9858.
  • Gharehdaghi, L., Bakhtiarizadeh, M. R., He, K., Harkinezhad, T., Tahmasbi, G., & Li, F. (2021). Diet-derived transmission of MicroRNAs from host plant into honey bee Midgut. BMC Genomics, 22(1), 587.
  • Ha, M., & Kim, V. N. (2014). Regulation of microRNA biogenesis. Nature Reviews Molecular Cell Biology, 15(8), 509-524.
  • Han, F., Zhou, L., Zhao, L., Wang, L., Liu, L., Li, H., ... & Liu, N. (2021). Identification of miRNA in sheep intramuscular fat and the role of miR-193a-5p in proliferation and differentiation of 3T3-L1. Frontiers in Genetics, 12, 633295.
  • Han, J., Lee, Y., Yeom, K. H., Kim, Y. K., Jin, H., & Kim, V. N. (2004). The Drosha-DGCR8 complex in primary microRNA processing. Genes & Development, 18(24), 3016-3027.
  • Hosseinzadeh, S., & Hasanpur, K. (2024). Whole genome discovery of regulatory genes responsible for the response of chicken to heat stress. Scientific Reports, 14(1), 6544.
  • Houseley, J., & Tollervey, D. (2009). The many pathways of RNA degradation. Cell, 136(4), 763-776.
  • Hue, D. T., Petrovski, K., Chen, T., Williams, J. L., & Bottema, C. D. K. (2023). Analysis of immune-related microRNAs in cows and newborn calves. Journal of Dairy Science, 106(4), 2866-2878.
  • Jebessa, E., Bello, S. F., Guo, L., Tuli, M. D., Hanotte, O., & Nie, Q. (2023). MicroRNA expression profile of chicken jejunum at different time points of Eimeria maxima infection. Frontiers in Immunology, 14, 1331532.
  • Jin, W., Ibeagha-Awemu, E. M., Liang, G., Beaudoin, F., Zhao, X., & Guan, L. L. (2014). Transcriptome microRNA profiling of bovine mammary epithelial cells challenged with Escherichia coli or Staphylococcus aureus bacteria reveals pathogen directed microRNA expression profiles. BMC Genomics, 15, 181.
  • Jonas, S., & Izaurralde, E. (2015). Towards a molecular understanding of microRNA-mediated gene silencing. Nature reviews. Genetics, 16(7), 421-433.
  • Keogh, K., McGee, M., & Kenny, D. A. (2024). Effect of breed and dietary composition on the miRNA profile of beef steers divergent for feed efficiency. Scientific Reports, 14(1), 20046.
  • Lee Y., Kim, M., Han, J., Yeom, K. H., Lee, S., Baek, S.H., & Kim, V. N. (2003). MicroRNA genes are transcribed by RNA polymerase II. EMBO Journal, 23, 4051-4060.
  • Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5), 843-854.
  • Liao, L., Yao, Z., Kong, J., Zhang, X., Li, H., Chen, W., & Xie, Q. (2023). Exploring the role of miRNAs in early chicken embryonic development and their significance. Poultry Science, 102(12), 103105.
  • Lim, H. J., Kim, H. J., Lee, J. H., Lim, D. H., Son, J. K., Kim, E.-T., Jang, G., & Kim, D.-H. (2021). Identification of plasma miRNA biomarkers for pregnancy detection in dairy cattle. Journal of Animal Reproduction and Biotechnology, 36(1), 35-44.
  • Lima, R. T., Busacca, S., Almeida, G. M., Gaudino, G., Fennell, D. A., & Vasconcelos, M. H. (2011). MicroRNA regulation of core apoptosis pathways in cancer. European Journal of Cancer, 47(2), 163-174.
  • Lin, X., Luo, J., Zhang, L., & Zhu, J. (2013). MicroRNAs synergistically regulate milk fat synthesis in mammary gland epithelial cells of dairy goats. Gene Expression, 16(1), 1-13.
  • Liu, B., Shyr, Y., Cai, J., & Liu, Q. (2019). Interplay between miRNAs and host genes and their role in cancer. Briefings in Functional Genomics, 18(4), 255-266.
  • Liu, Z., Liu, Y., Xing, T., Li, J., Zhang, L., Zhao, L., Jiang, Y., & Gao, F. (2024). Chronic heat stress inhibits glycogen synthesis through gga-miR-212-5p/GYS1 axis in the breast muscle of broilers. Poultry Science, 103(3), 103455.
  • Liu, Z., Ke, S., & Wan, Y. (2025). miR-126: a bridge between cancer and exercise. Cancer Cell International, 25(1), 145.
  • Luo, J., Sun, T., Jiang, S., Yang, Z., Xiao, C., Deng, J., Zhou, B., & Yang, X. (2025). Comprehensive analysis of non-coding RNAs in the ovaries of high and low egg production hens. Animal Reproduction Science, 276, 107836.
  • Lv, W., An, R., Li, X., Zhang, Z., Geri, W., Xiong, X., ... & Xiong, Y. (2024). Multi-omics approaches uncovered critical mRNA–miRNA–lncRNA networks regulating multiple birth traits in goat ovaries. International Journal of Molecular Sciences, 25(22), 12466.
  • Macedo, L. M., Nunes, F. M., Freitas, F. C., Pires, C. V., Tanaka, E. D., Martins, J. R., Piulachs, M. D., Cristino, A. S., Pinheiro, D. G., & Simões, Z. L. (2016). MicroRNA signatures characterizing caste-independent ovarian activity in queen and worker honeybees (Apis mellifera L.). Insect Molecular Biology, 25(3), 216-226.
  • Maigoro, A. Y., Lee, J. H., Yun, Y., Lee, S., & Kwon, H. W. (2025). In the battle of survival: Transcriptome analysis of hypopharyngeal gland of the Apis mellifera under temperature-stress. BMC Genomics, 26(1), 151.
  • Manenti, I., Ala, U., Macchi, E., Viola, I., Toschi, P., Accornero, P., ... & Martignani, E. (2024). Expression profiles of circulating miRNAs in an endangered Piedmontese sheep breed during the estrus cycle. Frontiers in Veterinary Science, 11, 1458463.
  • Mani, I. A., Yanyan, S., Yunlei, L., Yuanmei, W., Aixin, N., Jingwei, Y., Hui, M., Lei, S., Hagos, T. H., Jing, F., Panlin, W., & Jilan, C. (2022). MicroRNAs with non-additive expression in the ovary of hybrid hens target genes enriched in key reproductive pathways that may influence heterosis for egg laying traits. Frontiers in Genetics, 13, 974619.
  • Meister, G., Landthaler, M., Patkaniowska, A., Dorsett, Y., Teng, G., & Tuschl, T. (2004). Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Molecular Cell, 15(2), 185-197.
  • Ninomiya, C., Yoshino, H., Ishiguro-Oonuma, T., Iga, K., Kanazawa, T., Takahashi, T., & Kizaki, K. (2024). Potential of circulating miRNA biomarkers and exosomes for early pregnancy diagnoses in cattle. Animals, 14(11), 1592.
  • Nishi, K., Nishi, A., Nagasawa, T., & Ui-Tei, K. (2013). Human TNRC6A is an Argonaute-navigator protein for microRNA-mediated gene silencing in the nucleus. RNA, 19(1), 17-35.
  • O’Brien, J., Hayder, H., Zayed, Y., & Peng, C. (2018). Overview of microRNA biogenesis, mechanisms of actions, and circulation. Frontiers in Endocrinology, 9, 402.
  • Ocłoń, E., & Hrabia, A. (2021). miRNA expression profile in chicken ovarian follicles throughout development and miRNA-mediated MMP expression. Theriogenology, 160, 116-127.
  • Ojo, O. E., Hajek, L., Johanns, S., Pacífico, C., Sener-Aydemir, A., Ricci, S., Rivera-Chacon, R., Castillo-Lopez, E., Reisinger, N., Zebeli, Q., & Kreuzer-Redmer, S. (2023). Evaluation of circulating microRNA profiles in blood as potential candidate biomarkers in a subacute ruminal acidosis cow model - a pilot study. BMC Genomics, 24(1), 333.
  • Okamura, K., Hagen, J. W., Duan, H., Tyler, D. M., & Lai, E. C. (2007). The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell, 130(1), 89-100.
  • Pérez-Lázaro, S., Martín-Burriel, I., Cozzuto, L., Ponomarenko, J., Badiola, J. J., Bolea, R., & Toivonen, J. M. (2025). Dysregulated microRNAs in blood correlate with central nervous system neuropathology of prion disease. Veterinary Research, 56(1), 132.
  • Pitchiaya, S., Heinicke, L. A., Park, J. I., Cameron, E. L., & Walter, N. G. (2017). Resolving subcellular miRNA trafficking and turnover at single-molecule resolution. Cell Reports, 19(3), 630-642.
  • Ricci, S., Petri, R. M., Pacífico, C., Castillo-Lopez, E., Rivera-Chacon, R., Sener-Aydemir, A., Reisinger, N., Zebeli, Q., & Kreuzer-Redmer, S. (2022). Characterization of presence and activity of microRNAs in the rumen of cattle hints at possible host-microbiota cross-talk mechanism. Scientific Reports, 12(1), 13812.
  • Romao, J. M., Jin, W., He, M., McAllister, T., & Guan, L. L. (2012). Altered microRNA expression in bovine subcutaneous and visceral adipose tissues from cattle under different diet. PloS one, 7(7), e40605.
  • Shi, K., Li, D., Jiang, X., Du, Y., & Yu, M. (2024). Identification and characterization of the miRNA Transcriptome Controlling Green Pigmentation of Chicken Eggshells. Genes, 15(6), 811.
  • Shi, T. F., Feng, Z. Q., Li, Z., Ye, L., Jiang, X. C., Cao, H. Q., & Yu, L. S. (2025). Heat‐responsive ame‐miR‐1‐3p modulates thermotolerance in honeybees (Apis mellifera L.). Insect Molecular Biology.
  • Shukla, G. C., Singh, J., & Barik, S. (2011). MicroRNAs: processing, maturation, target recognition and regulatory functions. Molecular and Cellular Pharmacology, 3(3), 83.
  • Stuart, S. H., Ahmed, A. C. C., Kilikevicius, L., & Robinson, G. E. (2024). Effects of microRNA-305 knockdown on brain gene expression associated with division of labor in honey bee colonies (Apis mellifera). Journal of Experimental Biology, 227(8), jeb246785.
  • Sun, Y., Shen, Y., Liang, X., Zheng, H., & Zhang, Y. (2023). MicroRNAs as biomarkers and therapeutic targets for nonalcoholic fatty liver disease: A narrative review. Clinical Therapeutics, 45(3), 234-247.
  • Veshkini, A., Hammon, H. M., Lazzari, B., Vogel, L., Gnott, M., Tröscher, A., Vendramin, V., Sadri, H., Sauerwein, H., & Ceciliani, F. (2022). Investigating circulating miRNA in transition dairy cows: What miRNAomics tells about metabolic adaptation. Frontiers in Genetics, 13, 946211.
  • Wang, A., Ji, Z., Xuan, R., Zhao, X., Hou, L., Li, Q., Chu, Y., Chao, T., & Wang, J. (2021). Differentially expressed miRNAs of goat submandibular glands among three developmental stages are involved in immune functions. Frontiers in Genetics, 12, 678194.
  • Wang, H., Zheng, Y., Wang, G., & Li, H. (2013). Identification of microRNA and bioinformatics target gene analysis in beef cattle intramuscular fat and subcutaneous fat. Molecular BioSystems, 9(8), 2154-2162.
  • Wang, O., Zhou, M., Chen, Y., McAllister, T. A., Plastow, G., Stanford, K., Selinger, B., & Guan, L. L. (2021). MicroRNAomes of cattle intestinal tissues revealed possible miRNA-regulated mechanisms involved in Escherichia coli O157 fecal shedding. Frontiers in Cellular and Infection Microbiology, 11, 634505.
  • Wenguang, Z., Jianghong, W., Jinquan, L., & Yashizawa, M. (2007). A subset of skin-expressed microRNAs with possible roles in goat and sheep hair growth based on expression profiling of mammalian microRNAs. Omics: A Journal of Integrative Biology, 11(4), 385-396.
  • Xu, Z., Liu, Q., Ning, C., Yang, M., Zhu, Q., Li, D., Wang, T., & Li, F. (2024). miRNA profiling of chicken follicles during follicular development. Scientific Reports, 14(1), 2212.
  • Yang, J. S., & Lai, E. C. (2011). Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Molecular Cell, 43(6), 892-903.
  • Zhang, S., Yan, S., Zhao, J., Xiong, H., An, P., Wang, J., Zhang, H., & Zhang, L. (2019). Identification of miRNAs and their target genes in Larix olgensis and verified of differential expression miRNAs. BMC Plant Biology, 19, 247.
  • Zhao, X., Ji, Z., Xuan, R., Wang, A., Li, Q., Zhao, Y., Chao, T., & Wang, J. (2022). Characterization of the microRNA Expression Profiles in the Goat Kid Liver. Frontiers in Genetics, 12, 794157.
  • Zhu, K., Liu, M., Fu, Z., Zhou, Z., Kong, Y., Liang, H., Lin, Z., Luo, J., Zheng, H., Wan, P., Zhang, J., Zen, K., Chen, J., Hu, F., Zhang, C. Y., Ren, J., & Chen, X. (2017). Plant microRNAs in larval food regulate honeybee caste development. PLoS Genetics, 13(8), e1006946.
There are 67 citations in total.

Details

Primary Language English
Subjects Genomics and Transcriptomics, Gene Expression, Genetics (Other)
Journal Section Review
Authors

Berkant İsmail Yıldız 0000-0001-8965-6361

Kemal Karabağ 0000-0002-4516-6480

Submission Date May 16, 2025
Acceptance Date December 9, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Volume: 6 Issue: 3

Cite

APA Yıldız, B. İ., & Karabağ, K. (2025). Unraveling the regulatory roles of microRNAs in livestock. Frontiers in Life Sciences and Related Technologies, 6(3), 209-218. https://doi.org/10.51753/flsrt.1700810

Creative Commons License

Frontiers in Life Sciences and Related Technologies is licensed under a Creative Commons Attribution 4.0 International License.