Research Article
BibTex RIS Cite

From plant to patch: Okra-enriched wound dressings for superior tissue regeneration

Year 2025, Volume: 6 Issue: 3, 201 - 208, 31.12.2025
https://doi.org/10.51753/flsrt.1762377

Abstract

Natural polymers have gained increasing attention in wound-care research due to their biocompatibility and their capacity to support key cellular activities involved in tissue repair. Plant-derived polysaccharides have been investigated for their ability to contribute to moisture balance, cell adhesion, and matrix formation, processes essential for the early stages of healing. Okra mucilage (OM), a polysaccharide-rich extract obtained from Abelmoschus esculentus, contains structural and nutritional components that are known to influence cellular behavior and may therefore improve the initial cell–material interactions required for effective wound-dressing performance. In this study, OM was integrated into a commercially available hydrofiber wound dressing using a simple immersion method. The modified dressings were characterized by FTIR to confirm OM incorporation and were evaluated in vitro using Human Keratinocyte Cell Lines (HaCaT) through MTT-based viability assays and SEM analysis of cellular adhesion. OM-enriched dressings exhibited increased early-phase cell viability, most prominently at 24 hours, and demonstrated enhanced cell attachment compared with untreated dressings and controls. These findings suggest that OM can positively modulate early cellular responses relevant to wound repair when applied to an established hydrofiber platform.

References

  • Ahmed, I. A., & Mikail, M. A. (2024). Diet and skin health: The good and the bad. Nutrition, 119, 112350. Akhavan‐Kharazian, N., Izadi‐Vasafi, H., Tabashiri‐Isfahani, M., & Hatami‐Boldaji, H. (2025). A review on smart dressings with advanced features. Wound Repair and Regeneration, 33(3), e70014.
  • Alberts, A., Tudorache, D. I., Niculescu, A. G., & Grumezescu, A. M. (2025). Advancements in wound dressing materials: Highlighting recent progress in hydrogels, foams, and antimicrobial dressings. Gels, 11(2), 123.
  • Cong, Y., Zhang, L., Li, Y., Ren, N., Zhang, M., Shi, Z., . . . Wei, Q. (2025). Recent advances in the development of bioactive hydrogel-based dressings for enhanced wound healing. Mater. Today Adv., 28,100672.
  • Dawi, J., Tumanyan, K., Tomas, K., Misakyan, Y., Gargaloyan, A., Gonzalez, E., Venketaraman, V. (2025). Diabetic Foot Ulcers: Pathophysiology, Immune Dysregulation, and Emerging Therapeutic Strategies. Biomedicines, 13(5), 1076.
  • de Alvarenga Pinto Cotrim, M., Mottin, A. C., & Ayres, E. (2016). Preparation and characterization of okra mucilage (Abelmoschus esculentus) edible films. In Macromolecular Symposia (Vol. 367, No. 1, pp. 90-100). Macromolecular Symposia, 367(1), 90-100.
  • Demiröz, A., & Arslan, H. (2019). Factors Affecting Mortality in Rapidly Progressive Diabetic Foot Ulcer Patients. Cerrahpasa Med J, 43(1), 23-28.
  • Dong, Y., Fu, S., Yu, J., Li, X., & Ding, B. (2024). Emerging smart micro/nanofiber‐based materials for next‐generation wound dressings. Advanced Functional Materials, 34(9), 2311199.
  • Eslahi, N., Soleimani, F., Lotfi, R., Mohandes, F., Simchi, A., & Razavi, M. (2024). How biomimetic nanofibers advance the realm of cutaneous wound management: The state-of-the-art and future prospects. Progress in Materials Science, 145, 101293.
  • Falanga, V., Isseroff, R. R., Soulika, A. M., Romanelli, M., Margolis, D., Kapp, S., . . . Harding , K. (2022). Chronic wounds. Nature Reviews Disease Primers, 8(1), 50.
  • Fatima, M., Rakha, A., Altemimi, A. B., Van Bocktaele, F., Khan, A. I., Ayyub, M., & Aadil, R. M. (2024). Okra: Mucilage extraction, composition, applications, and potential health benefits. European Polymer Journal, 215, 113193.
  • Fernandes, A., Rodrigues, P. M., Pintado, M., & Tavaria, F. K. (2023). A systematic review of natural products for skin applications: Targeting inflammation, wound healing, and photo-aging. Phytomedicine, 115, 154824.
  • Ferraz, M. P. (2025). Wound dressing materials: bridging material science and clinical practice. Applied Sciences, 15(4), 1725.
  • Ghasemi Toudeshkchouei, M., Abdoos, H., Ai, J., & Nourbakhsh, M. S. (2025). Cellulose-based hydrogels enhanced with bioactive molecules for optimal chronic diabetic wound management. Journal of Microencapsulation, 42(4), 313-336.
  • Guo, S. A., & DiPietro, L. A. (2010). Factors affecting wound healing. Journal of dental research, 89(3), 219-229.
  • Ilmi, Z. N., Wulandari, P. A., Husen, S. A., Winarni, D., Alamsjah, M. A., Awang, K., . . . Pudjiastuti, P. (2020). Characterization of alginate from Sargassum duplicatum and the antioxidant effect of alginate-okra fruit extracts combination for wound healing on diabetic mice. Applied Sciences, 10(17), 6082.
  • ISO 10993-5:2009, Biological evaluation of biomedical devices-chapter 5: in- vitro cytotoxicity tests. (n.d.). ISO10993-12:2021, Biological evaluation of biomedical devices-chapter 12: sample preparation and reference materials. (n.d.).
  • Kondolot Solak, E., & Er, A. (2016). pH-sensitive interpenetrating polymer network microspheres of poly (vinyl alcohol) and carboxymethyl cellulose for controlled release of the nonsteroidal anti-inflammatory drug ketorolac tromethamine. Artificial cells, nanomedicine, and biotechnology, 44(3), 817-824.
  • Kwok, C. T., Ng, Y. F., Chan, H. T., & Chan, S. W. (2025). An overview of the current scientific evidence on the biological properties of Abelmoschus esculentus (L.) Moench (Okra). Foods, 14(2), 177.
  • Li, X., Wan, C., Tao, T., Chai, H., Huang, Q., Chai, Y., & Wu, Y. (2024). An overview of the development status and applications of cellulose-based functional materials. Cellulose, 31(1), 61-99.
  • Liu, Y., Teng, J., Huang, R., Zhao, W., Yang, D., Ma, Y., . . . Chen, J. (2024). Injectable plant-derived polysaccharide hydrogels with intrinsic antioxidant bioactivity accelerate wound healing by promoting epithelialization and angiogenesis. International Journal of Biological Macromolecules, 266, 131170.
  • Maalej, H., Maalej, A., Bayach, A., Zykwinska, A., Colliec-Jouault, S., Sinquin, C., . . . Nasri, M. (2023). A novel pectic polysaccharide-based hydrogel derived from okra (Abelmoschus esculentus L. Moench) for chronic diabetic wound healing. Eur. Polym. J., 183, 111763.
  • Matini, A., & Naghib, S. M. (2025). Recent advances in self-healing hydrogel design for enhanced wound care: A comprehensive study on polysaccharides and proteins in comparison with synthetic polymers. International Journal of Biological Macromolecules, 323, 147075.
  • Millotti, G., Lagast, J., Jurman, J., Paliaga, P., & Laffleur, F. (2025). Ulvan as an underrated material for wound dressings: a review. International journal of biological macromolecules, 319(1), 145113.
  • Moradifar, F., Sepahdoost, N., Tavakoli, P., & Mirzapoor, A. (2025). Multifunctional dressings for recovery and screenable treatment of wounds: A review. Heliyon, 11(1).
  • Nandi, G. N. (2019). Poly (Methacrylic acid)-Grafted-Okra gum: Synthesis, characterization and evaluation as mucoadhesive. International Journal of Pharmaceutical Sciences and Drug Research, 11(5), 250-254.
  • Ndlovu, S. P., Alven, S., Hlalisa, K., & Aderibigbe, B. A. (2024). Cellulose acetate-based wound dressings loaded with bioactive agents: Potential scaffolds for wound dressing and skin regeneration. Current Drug Delivery, 21(9), 1226-1240.
  • Plyduang, T., Maneewattanapinyo, P., Meksawasdichai, P., Pratin, C., Monton, C., & Suksaeree, J. (2025). Turning Okra into Action: Sustainable Nicotine Transdermal Plaster Gels from Plant-Based Polymers. Sustainable Chemistry for Climate Action, 7, 100144.
  • Sakarya, D., Barlas, F. B., Sahin, Y. M., & Yucel, S. (2024). Customized bioresin formulation for stereolithography in tissue engineering. Main Group Chemistry, 23(3), 271-282.
  • Santos, F. S., Figueirêdo, R. M., de Melo Queiroz, A. J., Paiva, Y. F., Araújo, A. C., Lima, T. L., . . . Campos, A. R. (2023). Physical, chemical, and thermal properties of chia and okra mucilages. Journal of Thermal Analysis and Calorimetry, 148(14), 7463-7475.
  • Schreml, S., Szeimies, R. M., Prantl, L., Landthal, M., & Babilas, P. (2010). Wound healing in the 21st century. Journal of the American Academy of Dermatology, 63(5), 866-881.
  • Shariatzadeh, F. J., Currie, S., Logsetty, S., Spiwak, R., & Liu, S. (2025). Enhancing wound healing and minimizing scarring: A comprehensive review of nanofiber technology in wound dressings. Progress in Materials Science, 147, 101350.
  • Sipahi, H., Orak, D., Reis, R., Yalman, K., Şenol, O., Palabiyik-Yücelik, S. S., . . . Yesilada, E. (2022). A comprehensive study to evaluate the wound healing potential of okra (Abelmoschus esculentus) fruit. Journal of Ethnopharmacology, 287, 114843.
  • Sorokin, A. V., Kuznetsov, V. A., & Lavlinskaya, M. S. (2021). Synthesis of graft copolymers of carboxymethyl cellulose and N, N-dimethylaminoethyl methacrylate and their study as Paclitaxel carriers. Polymer Bulletin, 78(6), 2975-2992.
  • Wallace, H. A., Basehore, B. M., & Zito, P. M. (2017). Wound healing phases. Europe PMC plus.
  • Wang, X., Yuan, C. X., Xu , B., & Yu, Z. (2022). Diabetic foot ulcers: Classification, risk factors and management. World journal of diabetes, 13(12), 1049.
  • Wang, Z., Chai, Y., Dai, Y., Lin, X., Zhang, K., Shi, Y., & Zou, J. (2025). Recent progress in the polysaccharides from okra (Abelmoschus esculentus L.): Preparation methods, structural characterization, pharmacological properties, and applications. nternational Journal of Biological Macromolecules, 320, 145649.
  • Wani, S. M., Masoodi, F. A., Mir, S. A., & Khanday, F. A. (2023). Pullulan production by Aureobasidium pullulans MTCC 1991 from apple pomace and its characterization. Food Bioscience, 51, 102254.
  • Worsley, A. L., Lui, D. H., Ntow‐Boahene, W., Song, W., Good, L., & Tsui, J. (2023). The importance of inflammation control for the treatment of chronic diabetic wounds. International Wound Journal, 20(6), 2346-2359.
  • Xin, P., Han, S., Huang, J., Zhou, C., Zhang, J., You, X., & Wu, J. (2023). Natural okra-based hydrogel for chronic diabetic wound healing. Chinese Chemical Letters, 34(8), 108125.
  • Zhang, B., Li, Y., Wu, K., Wei, L., Chen, Y., Zhang, Y., . . . Cheng, Y. (2025). Okra juice used for rapid wound healing through its bioadhesive and antioxidant capabilities. Materials Today Bio, 31, 101495.
  • Zhang, W., Liu, L., Cheng, H., Zhu, J., Li, X., Ye, S., & Li, X. (2024). Hydrogel-based dressings designed to facilitate wound healing. Materials Advances, 5(4), 1364-1394.
  • Zhang, W., Xiang, Q., Zhao, J., Mao, G., Feng, W., Chen, Y., . . . Zhao, T. (2020). Purification, structural elucidation and physicochemical properties of a polysaccharide from Abelmoschus esculentus L (okra) flowers. International Journal of Biological Macromolecules, 155, 740-750.
  • Zhou, Z., Zhang, D., Ning, X., Jin, L., Lin, Y., Liang, C., . . . Zhang, Y. (2025). An antibacterial, antioxidant and hemostatic hydrogel accelerates infectious wound healing. Journal of Nanobiotechnology, 23(1), 49.

From plant to patch: Okra-enriched wound dressings for superior tissue regeneration

Year 2025, Volume: 6 Issue: 3, 201 - 208, 31.12.2025
https://doi.org/10.51753/flsrt.1762377

Abstract

Natural polymers have gained increasing attention in wound-care research due to their biocompatibility and their capacity to support key cellular activities involved in tissue repair. Plant-derived polysaccharides have been investigated for their ability to contribute to moisture balance, cell adhesion, and matrix formation, processes essential for the early stages of healing. Okra mucilage (OM), a polysaccharide-rich extract obtained from Abelmoschus esculentus, contains structural and nutritional components that are known to influence cellular behavior and may therefore improve the initial cell–material interactions required for effective wound-dressing performance. In this study, OM was integrated into a commercially available hydrofiber wound dressing using a simple immersion method. The modified dressings were characterized by FTIR to confirm OM incorporation and were evaluated in vitro using Human Keratinocyte Cell Lines (HaCaT) through MTT-based viability assays and SEM analysis of cellular adhesion. OM-enriched dressings exhibited increased early-phase cell viability, most prominently at 24 hours, and demonstrated enhanced cell attachment compared with untreated dressings and controls. These findings suggest that OM can positively modulate early cellular responses relevant to wound repair when applied to an established hydrofiber platform.

References

  • Ahmed, I. A., & Mikail, M. A. (2024). Diet and skin health: The good and the bad. Nutrition, 119, 112350. Akhavan‐Kharazian, N., Izadi‐Vasafi, H., Tabashiri‐Isfahani, M., & Hatami‐Boldaji, H. (2025). A review on smart dressings with advanced features. Wound Repair and Regeneration, 33(3), e70014.
  • Alberts, A., Tudorache, D. I., Niculescu, A. G., & Grumezescu, A. M. (2025). Advancements in wound dressing materials: Highlighting recent progress in hydrogels, foams, and antimicrobial dressings. Gels, 11(2), 123.
  • Cong, Y., Zhang, L., Li, Y., Ren, N., Zhang, M., Shi, Z., . . . Wei, Q. (2025). Recent advances in the development of bioactive hydrogel-based dressings for enhanced wound healing. Mater. Today Adv., 28,100672.
  • Dawi, J., Tumanyan, K., Tomas, K., Misakyan, Y., Gargaloyan, A., Gonzalez, E., Venketaraman, V. (2025). Diabetic Foot Ulcers: Pathophysiology, Immune Dysregulation, and Emerging Therapeutic Strategies. Biomedicines, 13(5), 1076.
  • de Alvarenga Pinto Cotrim, M., Mottin, A. C., & Ayres, E. (2016). Preparation and characterization of okra mucilage (Abelmoschus esculentus) edible films. In Macromolecular Symposia (Vol. 367, No. 1, pp. 90-100). Macromolecular Symposia, 367(1), 90-100.
  • Demiröz, A., & Arslan, H. (2019). Factors Affecting Mortality in Rapidly Progressive Diabetic Foot Ulcer Patients. Cerrahpasa Med J, 43(1), 23-28.
  • Dong, Y., Fu, S., Yu, J., Li, X., & Ding, B. (2024). Emerging smart micro/nanofiber‐based materials for next‐generation wound dressings. Advanced Functional Materials, 34(9), 2311199.
  • Eslahi, N., Soleimani, F., Lotfi, R., Mohandes, F., Simchi, A., & Razavi, M. (2024). How biomimetic nanofibers advance the realm of cutaneous wound management: The state-of-the-art and future prospects. Progress in Materials Science, 145, 101293.
  • Falanga, V., Isseroff, R. R., Soulika, A. M., Romanelli, M., Margolis, D., Kapp, S., . . . Harding , K. (2022). Chronic wounds. Nature Reviews Disease Primers, 8(1), 50.
  • Fatima, M., Rakha, A., Altemimi, A. B., Van Bocktaele, F., Khan, A. I., Ayyub, M., & Aadil, R. M. (2024). Okra: Mucilage extraction, composition, applications, and potential health benefits. European Polymer Journal, 215, 113193.
  • Fernandes, A., Rodrigues, P. M., Pintado, M., & Tavaria, F. K. (2023). A systematic review of natural products for skin applications: Targeting inflammation, wound healing, and photo-aging. Phytomedicine, 115, 154824.
  • Ferraz, M. P. (2025). Wound dressing materials: bridging material science and clinical practice. Applied Sciences, 15(4), 1725.
  • Ghasemi Toudeshkchouei, M., Abdoos, H., Ai, J., & Nourbakhsh, M. S. (2025). Cellulose-based hydrogels enhanced with bioactive molecules for optimal chronic diabetic wound management. Journal of Microencapsulation, 42(4), 313-336.
  • Guo, S. A., & DiPietro, L. A. (2010). Factors affecting wound healing. Journal of dental research, 89(3), 219-229.
  • Ilmi, Z. N., Wulandari, P. A., Husen, S. A., Winarni, D., Alamsjah, M. A., Awang, K., . . . Pudjiastuti, P. (2020). Characterization of alginate from Sargassum duplicatum and the antioxidant effect of alginate-okra fruit extracts combination for wound healing on diabetic mice. Applied Sciences, 10(17), 6082.
  • ISO 10993-5:2009, Biological evaluation of biomedical devices-chapter 5: in- vitro cytotoxicity tests. (n.d.). ISO10993-12:2021, Biological evaluation of biomedical devices-chapter 12: sample preparation and reference materials. (n.d.).
  • Kondolot Solak, E., & Er, A. (2016). pH-sensitive interpenetrating polymer network microspheres of poly (vinyl alcohol) and carboxymethyl cellulose for controlled release of the nonsteroidal anti-inflammatory drug ketorolac tromethamine. Artificial cells, nanomedicine, and biotechnology, 44(3), 817-824.
  • Kwok, C. T., Ng, Y. F., Chan, H. T., & Chan, S. W. (2025). An overview of the current scientific evidence on the biological properties of Abelmoschus esculentus (L.) Moench (Okra). Foods, 14(2), 177.
  • Li, X., Wan, C., Tao, T., Chai, H., Huang, Q., Chai, Y., & Wu, Y. (2024). An overview of the development status and applications of cellulose-based functional materials. Cellulose, 31(1), 61-99.
  • Liu, Y., Teng, J., Huang, R., Zhao, W., Yang, D., Ma, Y., . . . Chen, J. (2024). Injectable plant-derived polysaccharide hydrogels with intrinsic antioxidant bioactivity accelerate wound healing by promoting epithelialization and angiogenesis. International Journal of Biological Macromolecules, 266, 131170.
  • Maalej, H., Maalej, A., Bayach, A., Zykwinska, A., Colliec-Jouault, S., Sinquin, C., . . . Nasri, M. (2023). A novel pectic polysaccharide-based hydrogel derived from okra (Abelmoschus esculentus L. Moench) for chronic diabetic wound healing. Eur. Polym. J., 183, 111763.
  • Matini, A., & Naghib, S. M. (2025). Recent advances in self-healing hydrogel design for enhanced wound care: A comprehensive study on polysaccharides and proteins in comparison with synthetic polymers. International Journal of Biological Macromolecules, 323, 147075.
  • Millotti, G., Lagast, J., Jurman, J., Paliaga, P., & Laffleur, F. (2025). Ulvan as an underrated material for wound dressings: a review. International journal of biological macromolecules, 319(1), 145113.
  • Moradifar, F., Sepahdoost, N., Tavakoli, P., & Mirzapoor, A. (2025). Multifunctional dressings for recovery and screenable treatment of wounds: A review. Heliyon, 11(1).
  • Nandi, G. N. (2019). Poly (Methacrylic acid)-Grafted-Okra gum: Synthesis, characterization and evaluation as mucoadhesive. International Journal of Pharmaceutical Sciences and Drug Research, 11(5), 250-254.
  • Ndlovu, S. P., Alven, S., Hlalisa, K., & Aderibigbe, B. A. (2024). Cellulose acetate-based wound dressings loaded with bioactive agents: Potential scaffolds for wound dressing and skin regeneration. Current Drug Delivery, 21(9), 1226-1240.
  • Plyduang, T., Maneewattanapinyo, P., Meksawasdichai, P., Pratin, C., Monton, C., & Suksaeree, J. (2025). Turning Okra into Action: Sustainable Nicotine Transdermal Plaster Gels from Plant-Based Polymers. Sustainable Chemistry for Climate Action, 7, 100144.
  • Sakarya, D., Barlas, F. B., Sahin, Y. M., & Yucel, S. (2024). Customized bioresin formulation for stereolithography in tissue engineering. Main Group Chemistry, 23(3), 271-282.
  • Santos, F. S., Figueirêdo, R. M., de Melo Queiroz, A. J., Paiva, Y. F., Araújo, A. C., Lima, T. L., . . . Campos, A. R. (2023). Physical, chemical, and thermal properties of chia and okra mucilages. Journal of Thermal Analysis and Calorimetry, 148(14), 7463-7475.
  • Schreml, S., Szeimies, R. M., Prantl, L., Landthal, M., & Babilas, P. (2010). Wound healing in the 21st century. Journal of the American Academy of Dermatology, 63(5), 866-881.
  • Shariatzadeh, F. J., Currie, S., Logsetty, S., Spiwak, R., & Liu, S. (2025). Enhancing wound healing and minimizing scarring: A comprehensive review of nanofiber technology in wound dressings. Progress in Materials Science, 147, 101350.
  • Sipahi, H., Orak, D., Reis, R., Yalman, K., Şenol, O., Palabiyik-Yücelik, S. S., . . . Yesilada, E. (2022). A comprehensive study to evaluate the wound healing potential of okra (Abelmoschus esculentus) fruit. Journal of Ethnopharmacology, 287, 114843.
  • Sorokin, A. V., Kuznetsov, V. A., & Lavlinskaya, M. S. (2021). Synthesis of graft copolymers of carboxymethyl cellulose and N, N-dimethylaminoethyl methacrylate and their study as Paclitaxel carriers. Polymer Bulletin, 78(6), 2975-2992.
  • Wallace, H. A., Basehore, B. M., & Zito, P. M. (2017). Wound healing phases. Europe PMC plus.
  • Wang, X., Yuan, C. X., Xu , B., & Yu, Z. (2022). Diabetic foot ulcers: Classification, risk factors and management. World journal of diabetes, 13(12), 1049.
  • Wang, Z., Chai, Y., Dai, Y., Lin, X., Zhang, K., Shi, Y., & Zou, J. (2025). Recent progress in the polysaccharides from okra (Abelmoschus esculentus L.): Preparation methods, structural characterization, pharmacological properties, and applications. nternational Journal of Biological Macromolecules, 320, 145649.
  • Wani, S. M., Masoodi, F. A., Mir, S. A., & Khanday, F. A. (2023). Pullulan production by Aureobasidium pullulans MTCC 1991 from apple pomace and its characterization. Food Bioscience, 51, 102254.
  • Worsley, A. L., Lui, D. H., Ntow‐Boahene, W., Song, W., Good, L., & Tsui, J. (2023). The importance of inflammation control for the treatment of chronic diabetic wounds. International Wound Journal, 20(6), 2346-2359.
  • Xin, P., Han, S., Huang, J., Zhou, C., Zhang, J., You, X., & Wu, J. (2023). Natural okra-based hydrogel for chronic diabetic wound healing. Chinese Chemical Letters, 34(8), 108125.
  • Zhang, B., Li, Y., Wu, K., Wei, L., Chen, Y., Zhang, Y., . . . Cheng, Y. (2025). Okra juice used for rapid wound healing through its bioadhesive and antioxidant capabilities. Materials Today Bio, 31, 101495.
  • Zhang, W., Liu, L., Cheng, H., Zhu, J., Li, X., Ye, S., & Li, X. (2024). Hydrogel-based dressings designed to facilitate wound healing. Materials Advances, 5(4), 1364-1394.
  • Zhang, W., Xiang, Q., Zhao, J., Mao, G., Feng, W., Chen, Y., . . . Zhao, T. (2020). Purification, structural elucidation and physicochemical properties of a polysaccharide from Abelmoschus esculentus L (okra) flowers. International Journal of Biological Macromolecules, 155, 740-750.
  • Zhou, Z., Zhang, D., Ning, X., Jin, L., Lin, Y., Liang, C., . . . Zhang, Y. (2025). An antibacterial, antioxidant and hemostatic hydrogel accelerates infectious wound healing. Journal of Nanobiotechnology, 23(1), 49.
There are 43 citations in total.

Details

Primary Language English
Subjects Cell Development, Proliferation and Death, Macromolecular Materials, Tissue Engineering, Biomaterial , Bioengineering (Other)
Journal Section Research Article
Authors

Deniz Sakarya 0000-0003-0717-7637

Submission Date August 11, 2025
Acceptance Date December 13, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Volume: 6 Issue: 3

Cite

APA Sakarya, D. (2025). From plant to patch: Okra-enriched wound dressings for superior tissue regeneration. Frontiers in Life Sciences and Related Technologies, 6(3), 201-208. https://doi.org/10.51753/flsrt.1762377

Creative Commons License

Frontiers in Life Sciences and Related Technologies is licensed under a Creative Commons Attribution 4.0 International License.