Research Article
BibTex RIS Cite

Metisilin dirençli Staphylococcus aureus (MRSA) enfeksiyonu için hızlı uyarı sistemi

Year 2021, , 75 - 84, 30.12.2021
https://doi.org/10.51753/flsrt.990547

Abstract

Bu çalışma, farklı kontaminasyon seviyelerindeki MRSA’nın tespit süresi üzerine tasarlanmıştır ve çalışmada fırsatçı patojen hastane enfeksiyonları arasında yer alan MRSA tespitine yönelik hızlı bir tespit sistemi oluşturulmuştur. MRSA tespiti yüksek ve orta yoğunluklu üremenin olduğu sıvı besiyerlerinde sekiz saatin sonunda gerçekleştirilmiştir. Tüm yoğunluklardaki üremenin olduğu sıvı besiyerlerindeki MRSA tespiti ise on saatin sonunda gerçekleştirilmiştir. Eppendorf’lar deneyden 24 saat sonra tamamen renk değiştirmiştir. Çalışmada kalitatif ve kantitatif sonuçlara bu tespit sistemiyle ulaşılmıştır. RGB sensörü kalitatif sonuç tespitinde pozitif sonuçta yeşil yanarken negatif sonuçta ise sensörün kırmızı yandığı gözlemlenmiştir. Sonuçların kantitatif verileri Arduino Programı’nın Seriport ekranı aracılığıyla izlenmiştir. Çalışmada tasarısı yapılan sistemin MRSA tespiti hızlı, spesifik, tutarlı, düşük maliyetli, tecrübeli teknik eleman gerektirmeyen ve aynı zamanda PCR testi yapılmadan önce tarama testi olarak kullanılabilecek bir sistem olarak kabul edilmiştir.

Thanks

Bu çalışma Pamukkale Üniversitesi Fen Bilimleri Enstitüsü Biyomedikal Mühendisliği Anabilim Dalı yüksek lisans program kapsamında yazılan yüksek lisans tezinden hazırlanmıştır.

References

  • Appelbaum, P. C. (2006). MRSA the tip of the iceberg. Clinical Microbiology and Infection, 12, 3-10.
  • Baby, N., Faust, A. C., Smith, T., Sheperd, L. A., Knoll, L., & Goodman, E. L. (2017). Nasal MRSA PCR testing reduces duration of MRSA-targeted therapy in patients with suspected MRSA pneumonia. Antimicrobial Agents and Chemotherapy, 61(4), 1-8.
  • Becker, K., Skov, R. L., & von Eiff, C. (2015). Staphylococcus, Micrococcus, and other catalase‐positive cocci. Manual of Clinical Microbiology, 354-382.
  • Cavassini, M., Wenger, A., Jaton, K., Blanc, D. S., & Bille, J. (1999). Evaluation of MRSA-Screen, a simple anti-PBP 2a slide latex agglutination kit, for rapid detection of methicillin resistance in Staphylococcus aureus. Journal of Clinical Microbiology, 37(5), 1591-1594.
  • Boutonnier, A., Nato, F., Bouvet, A., Lebrun, L., Audurier, A., Mazie, J. C., & Fournier, J. M. (1989). Direct testing of blood culture for detection of the serotype 5 and 8 capsular polysaccharides of Staphylococcus aureus. Journal of Clinical Microbiology, 27(5), 989-993.
  • Braid, M. D., Daniels, L. M., & Kitts, C. L. (2003). Removal of PCR inhibitors from soil DNA by chemical flocculation. Journal of Microbiological Methods, 52(3), 389-393.
  • Cadena, J., Thinwa, J., Walter, E. A., & Frei, C. R. (2016). Risk factors for the development of active methicillin-resistant Staphylococcus aureus (MRSA) infection in patients colonized with MRSA at hospital admission. American Journal of Infection Control, 44(12), 1617-1621.
  • Chesney, A. M. (1922). The use of phenol red and brom-cresol purple as indicators in the bacteriological examination of stools. The Journal of Experimental Medicine, 35(2), 181.
  • Fitriyah, L. A., Indahwati, E., & Wardana, H. K. (2018). Measurement of Non-Invasive Blood Glucose Level Based Sensor Color TCS3200 and Arduino. IOP Conference Series: Materials Science and Engineering, 336(1), 1-6.
  • Fridkin, S. K., Welbel, S. F., & Weisten, R. A. (1997). Magnitude and prevention of nosocomial infection in Intensive Care Unit. Infectious Disease Clinics of North America, 11, 479-496.
  • Gold, H. S., Kirby, J. E., Qian, Q., Venkataraman, L., & Yamazumi, T. (2010). Direct detection of methicillin resistance in Staphylococcus aureus in blood culture broth by use of a penicillin binding protein 2a latex agglutination test. Journal of Clinical Microbiology, 48(4), 1420-1421.
  • Grosser, M. R., Khatri, D., Lance, T. R., Richardson, A. R., & Vitko, N. P. (2016). Expanded glucose import capability affords Staphylococcus aureus optimized glycolytic flux during infection. American Society for Microbiology, 7(3), 1-10.
  • Hicks, C. R., Eberhart, R. J., & Sischo, W. M. (1994). Comparison of microbiologic culture, an enzyme-linked immunosorbent assay, and determination of somatic cell count for diagnosing Staphylococcus aureus mastitis in dairy cows. Journal of the American Veterinary Medical Association, 204(2), 255-260.
  • Hidron, A. I., Kourbatova, E. V., Halvosa, J. S., Terrell, B. J., McDougal, L. K., Tenover, F. C., ... & King, M. D. (2005). Risk factors for colonization with methicillin-resistant Staphylococcus aureus (MRSA) in patients admitted to an urban hospital: emergence of community-associated MRSA nasal carriage. Clinical Infectious Diseases, 41(2), 159-166.
  • ISO-6888. (1999). Microbiology of food and animal feeding stuffs – horizontal method for the enumeration of coagulase-positive staphylococci (Staphylococcus aureus and other species) – part 1: technique using Baird-Parker agar (ISO 6888-1). 1sted. ISO-Microbiology. Geneva (Switzerland). pp. 1-11.
  • Kamiya, A., Oie, S. Sawa, & A. Suenaga, S. (2007). Association between isolation sites of methicillin-resistant Staphylococcus aureus (MRSA) in patients with MRSA-positive body sites and MRSA contamination in the surrounding environmental surfaces. Japanese Journal of Infectious Diseases, 60(6), 367-369.
  • Kim, H., Pernille, N., Rasmussen, O. F., & Rossen, L. (1992). Inhibition of PCR by components of food samples, microbial diagnostic assays and DNA-extraction solutions. International Journal of Food Microbiology, 17(1), 37-45.
  • Le Blay, G., Fliss, I., & Lacroix, C. (2004). Comparative detection of bacterial adhesion to Caco-2 cells with ELISA, radioactivity and plate count methods. Journal of Microbiological Methods, 59(2), 211-221.
  • Löfström, C., Knutsson, R., Axelsson, C. E., & Rådström, P. (2004). Rapid and specific detection of Salmonella spp. in animal feed samples by PCR after culture enrichment. Applied and Environmental Microbiology, 70(1), 69-75.
  • Monteiro, L., Bonnemaison, D., Vekris, A., Petry, K. G., Bonnet, J., Vidal, R., ... & Mégraud, F. (1997). Complex polysaccharides as PCR inhibitors in feces: Helicobacter pylori model. Journal of Clinical Microbiology, 35(4), 995-998.
  • Schrader, C., Schielke, A., Ellerbroek, L., & Johne, R. (2012). PCR inhibitors–occurrence, properties and removal. Journal of Applied Microbiology, 113(5), 1014-1026.
  • Sousa, C., Brandão, M., Ribeiro, O., & Cardoso, T. (2015). Community-acquired severe sepsis: a prospective cohort study. Open Journal of Internal Medicine, 5(03), 37.
  • Strasters, K. C., & Winkler, K. C. (1963). Carbohydrate metabolism of Staphylococcus aureus. The Journal of General Microbiology, 33, 213-229.
  • Suaifan, G. A., Alhogail, S., & Zourob, M. (2017). Rapid and low-cost biosensor for the detection of Staphylococcus aureus. Biosensors and Bioelectronics, 90, 230-237.
  • Velasco, D., del Mar Tomas, M., Cartelle, M., Beceiro, A., Perez, A., Molina, F., ... & Bou, G. (2005). Evaluation of different methods for detecting methicillin (oxacillin) resistance in Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 55(3), 379-382.
  • Vincent, J. L. (2003). Nosocomial infections in adult intensive-care units. The Lancet, 361(9374), 2068-2077. Warren, D. K., Liao, R. S., Merz, L. R., Eveland, M., & Dunne Jr, W. M. (2004). Detection of methicillin-resistant Staphylococcus aureus directly from nasal swab specimens by a real-time PCR assay. Journal of Clinical Microbiology, 42(12), 5578-5581.
  • Weems Jr, J. J. (2001). The many faces of Staphylococcus aureus infection: recognizing and managing its life-threatening manifestations. Postgraduate Medicine, 110(4), 24-36.
  • Yue, H., Zhou, Y., Wang, P., Wang, X., Wang, Z., Wang, L., & Fu, Z. (2016). A facile label-free electrochemiluminescence biosensor for specific detection of Staphylococcus aureus utilizing the binding between immunoglobulin G and protein A. Talanta, 153, 401-406.

A rapid alert system for methicillin resistant Staphylococcus aureus (MRSA) infection

Year 2021, , 75 - 84, 30.12.2021
https://doi.org/10.51753/flsrt.990547

Abstract

This study was designed on the detection time of MRSA at different contamination levels and in this study, a rapid alert system was established for the detection of MRSA, which is among the opportunistic pathogen nosocomial infections. MRSA detection was realized in broths with high and moderate growth at the end of eight hours. However, MRSA detection in broths with growth at all densities was performed after ten hours. After 24 hours of the experiment, colors of the Eppendorf’s were completely changed. In the study, qualitative and quantitative results were achieved with this detection system. It was observed that the RGB sensor was lit in green for the positive result in the qualitative result detection, while the sensor was lit red for the negative result. The quantitative data of the results were monitored through the Seriport screen of the Arduino Program. The MRSA detection of the system designed in the study was accepted as a fast, specific, consistent, cost-effective and non-experienced technical staff required system that can be used as a screening test before the PCR test is performed.

References

  • Appelbaum, P. C. (2006). MRSA the tip of the iceberg. Clinical Microbiology and Infection, 12, 3-10.
  • Baby, N., Faust, A. C., Smith, T., Sheperd, L. A., Knoll, L., & Goodman, E. L. (2017). Nasal MRSA PCR testing reduces duration of MRSA-targeted therapy in patients with suspected MRSA pneumonia. Antimicrobial Agents and Chemotherapy, 61(4), 1-8.
  • Becker, K., Skov, R. L., & von Eiff, C. (2015). Staphylococcus, Micrococcus, and other catalase‐positive cocci. Manual of Clinical Microbiology, 354-382.
  • Cavassini, M., Wenger, A., Jaton, K., Blanc, D. S., & Bille, J. (1999). Evaluation of MRSA-Screen, a simple anti-PBP 2a slide latex agglutination kit, for rapid detection of methicillin resistance in Staphylococcus aureus. Journal of Clinical Microbiology, 37(5), 1591-1594.
  • Boutonnier, A., Nato, F., Bouvet, A., Lebrun, L., Audurier, A., Mazie, J. C., & Fournier, J. M. (1989). Direct testing of blood culture for detection of the serotype 5 and 8 capsular polysaccharides of Staphylococcus aureus. Journal of Clinical Microbiology, 27(5), 989-993.
  • Braid, M. D., Daniels, L. M., & Kitts, C. L. (2003). Removal of PCR inhibitors from soil DNA by chemical flocculation. Journal of Microbiological Methods, 52(3), 389-393.
  • Cadena, J., Thinwa, J., Walter, E. A., & Frei, C. R. (2016). Risk factors for the development of active methicillin-resistant Staphylococcus aureus (MRSA) infection in patients colonized with MRSA at hospital admission. American Journal of Infection Control, 44(12), 1617-1621.
  • Chesney, A. M. (1922). The use of phenol red and brom-cresol purple as indicators in the bacteriological examination of stools. The Journal of Experimental Medicine, 35(2), 181.
  • Fitriyah, L. A., Indahwati, E., & Wardana, H. K. (2018). Measurement of Non-Invasive Blood Glucose Level Based Sensor Color TCS3200 and Arduino. IOP Conference Series: Materials Science and Engineering, 336(1), 1-6.
  • Fridkin, S. K., Welbel, S. F., & Weisten, R. A. (1997). Magnitude and prevention of nosocomial infection in Intensive Care Unit. Infectious Disease Clinics of North America, 11, 479-496.
  • Gold, H. S., Kirby, J. E., Qian, Q., Venkataraman, L., & Yamazumi, T. (2010). Direct detection of methicillin resistance in Staphylococcus aureus in blood culture broth by use of a penicillin binding protein 2a latex agglutination test. Journal of Clinical Microbiology, 48(4), 1420-1421.
  • Grosser, M. R., Khatri, D., Lance, T. R., Richardson, A. R., & Vitko, N. P. (2016). Expanded glucose import capability affords Staphylococcus aureus optimized glycolytic flux during infection. American Society for Microbiology, 7(3), 1-10.
  • Hicks, C. R., Eberhart, R. J., & Sischo, W. M. (1994). Comparison of microbiologic culture, an enzyme-linked immunosorbent assay, and determination of somatic cell count for diagnosing Staphylococcus aureus mastitis in dairy cows. Journal of the American Veterinary Medical Association, 204(2), 255-260.
  • Hidron, A. I., Kourbatova, E. V., Halvosa, J. S., Terrell, B. J., McDougal, L. K., Tenover, F. C., ... & King, M. D. (2005). Risk factors for colonization with methicillin-resistant Staphylococcus aureus (MRSA) in patients admitted to an urban hospital: emergence of community-associated MRSA nasal carriage. Clinical Infectious Diseases, 41(2), 159-166.
  • ISO-6888. (1999). Microbiology of food and animal feeding stuffs – horizontal method for the enumeration of coagulase-positive staphylococci (Staphylococcus aureus and other species) – part 1: technique using Baird-Parker agar (ISO 6888-1). 1sted. ISO-Microbiology. Geneva (Switzerland). pp. 1-11.
  • Kamiya, A., Oie, S. Sawa, & A. Suenaga, S. (2007). Association between isolation sites of methicillin-resistant Staphylococcus aureus (MRSA) in patients with MRSA-positive body sites and MRSA contamination in the surrounding environmental surfaces. Japanese Journal of Infectious Diseases, 60(6), 367-369.
  • Kim, H., Pernille, N., Rasmussen, O. F., & Rossen, L. (1992). Inhibition of PCR by components of food samples, microbial diagnostic assays and DNA-extraction solutions. International Journal of Food Microbiology, 17(1), 37-45.
  • Le Blay, G., Fliss, I., & Lacroix, C. (2004). Comparative detection of bacterial adhesion to Caco-2 cells with ELISA, radioactivity and plate count methods. Journal of Microbiological Methods, 59(2), 211-221.
  • Löfström, C., Knutsson, R., Axelsson, C. E., & Rådström, P. (2004). Rapid and specific detection of Salmonella spp. in animal feed samples by PCR after culture enrichment. Applied and Environmental Microbiology, 70(1), 69-75.
  • Monteiro, L., Bonnemaison, D., Vekris, A., Petry, K. G., Bonnet, J., Vidal, R., ... & Mégraud, F. (1997). Complex polysaccharides as PCR inhibitors in feces: Helicobacter pylori model. Journal of Clinical Microbiology, 35(4), 995-998.
  • Schrader, C., Schielke, A., Ellerbroek, L., & Johne, R. (2012). PCR inhibitors–occurrence, properties and removal. Journal of Applied Microbiology, 113(5), 1014-1026.
  • Sousa, C., Brandão, M., Ribeiro, O., & Cardoso, T. (2015). Community-acquired severe sepsis: a prospective cohort study. Open Journal of Internal Medicine, 5(03), 37.
  • Strasters, K. C., & Winkler, K. C. (1963). Carbohydrate metabolism of Staphylococcus aureus. The Journal of General Microbiology, 33, 213-229.
  • Suaifan, G. A., Alhogail, S., & Zourob, M. (2017). Rapid and low-cost biosensor for the detection of Staphylococcus aureus. Biosensors and Bioelectronics, 90, 230-237.
  • Velasco, D., del Mar Tomas, M., Cartelle, M., Beceiro, A., Perez, A., Molina, F., ... & Bou, G. (2005). Evaluation of different methods for detecting methicillin (oxacillin) resistance in Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 55(3), 379-382.
  • Vincent, J. L. (2003). Nosocomial infections in adult intensive-care units. The Lancet, 361(9374), 2068-2077. Warren, D. K., Liao, R. S., Merz, L. R., Eveland, M., & Dunne Jr, W. M. (2004). Detection of methicillin-resistant Staphylococcus aureus directly from nasal swab specimens by a real-time PCR assay. Journal of Clinical Microbiology, 42(12), 5578-5581.
  • Weems Jr, J. J. (2001). The many faces of Staphylococcus aureus infection: recognizing and managing its life-threatening manifestations. Postgraduate Medicine, 110(4), 24-36.
  • Yue, H., Zhou, Y., Wang, P., Wang, X., Wang, Z., Wang, L., & Fu, Z. (2016). A facile label-free electrochemiluminescence biosensor for specific detection of Staphylococcus aureus utilizing the binding between immunoglobulin G and protein A. Talanta, 153, 401-406.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Ayfer Çetin 0000-0001-8665-7780

Ahmet Koluman 0000-0001-5308-8884

Publication Date December 30, 2021
Submission Date September 3, 2021
Published in Issue Year 2021

Cite

APA Çetin, A., & Koluman, A. (2021). Metisilin dirençli Staphylococcus aureus (MRSA) enfeksiyonu için hızlı uyarı sistemi. Frontiers in Life Sciences and Related Technologies, 2(3), 75-84. https://doi.org/10.51753/flsrt.990547

Creative Commons License

Frontiers in Life Sciences and Related Technologies is licensed under a Creative Commons Attribution 4.0 International License.