Research Article
BibTex RIS Cite
Year 2022, Volume: 3 Issue: 2, 62 - 68, 30.08.2022
https://doi.org/10.51753/flsrt.1110386

Abstract

References

  • Antelmann, H., Schmid, R., Mach, H., & Hecker, M. (1997). Specific and general stress proteins in Bacillus subtilis a two-dimensional protein electrophoresis study. Microbiology, 143(3), 999-1017.
  • Beladjal, L., Gheysens, T., Clegg, J. S., Amar, M., & Mertens, J. (2018). Life from the ashes: survival of dry bacterial spores after very high temperature exposure. Extremophiles, 22(5), 751-759.
  • Berber, I., Atalan, E., & Cokmus, C. (2003). Effect of Gramoxone Herbicide on Spore Viability and Larvicidal activity of Bacillus sphaericus 2362 and 1593 strains. Fresenius Enviromental Bulletin, 12(11), 1338-1344.
  • Berber, I., Atalan, E., & Cokmus, C. (2004). The influence of pesticides on the spore viability, toxin stability and larvicidal activity of Bacillus sphaericus 2362 strain. Fresenius Envorimental Bulletin, 13(5), 424-429.
  • Browne, N., & Dowds, B. C. A. (2001). Heat and salt stress in the food pathogen Bacillus cereus. Journal of Applied Microbiology, 91(6), 1085-1094.
  • Burke Jr, W. F., McDonald, K. O., & Davidson, E. W. (1983). Effect of UV light on spore viability and mosquito larvicidal activity of Bacillus sphaericus 1593. Applied and Environmental Microbiology, 46(4), 954-956.
  • Connors, M. J., Mason, J. M., & Setlow, P. (1986). Cloning and nucleotide sequencing of genes for three small, acid-soluble proteins from Bacillus subtilis spores. Journal of Bacteriology, 166(2), 417-425.
  • Elcin, Y. M., Cokmus, C., & Sacilik, S. C. (1995). Aluminum carboxymethylcellulose encapsulation of Bacillus sphaericus 2362 for control of Culex spp. (Diptera:Culicidae) larvae. Journal of Economic Entomology, 88(4), 830-834.
  • Gomes, S. L., & Simao R. C. G. (2019). Stress responses: heat. Academic Press, 364-379.
  • Han, M. J., Yun, H., & Lee, S. Y. (2008). Microbial small heat shock proteins and their use in biotechnology. Biotechnology Advances, 26(6), 591-609.
  • Hantke, I., Schafer, H., Janczikowski, A., & Turgay, K. (2019). YocM a small heat shock protein can protect Bacillus subtilis cells during salt stress. Molecular Microbiology, 111(2), 423-440.
  • Hecker, M., Völker, U., & Heim, C. (1989). RelA-independent (p) ppGpp accumulation and heat shock protein induction after salt stress in Bacillus subtilis. FEMS Microbiology Letters, 58(2-3), 125-128.
  • Horikosi, K., & Akiba, T., (1982). Alkalophilic microbiloorganisms. (pp. 1-321). Japan Scientific Societies Pres, Tokyo, Japan.
  • Krulwich, T. A., & Guffanti, A. A. (1989). Alkalophilic bacteria. Annual Review of Microbiology, 43(1), 435-463.
  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680-685.
  • Melly, E., & Setlow, P. (2001). Heat shock proteins do not influence wet heat resistance of Bacillus subtilis spores. Journal of Bacteriology, 183(2), 779-784.
  • Melly, E., Genest, P. C., Gilmore, M. E., Little, S., Popham, D. L., Driks, A., & Setlow, P. (2002). Analysis of the properties of spores of Bacillus subtilis prepared at different temperatures. Journal of Applied Microbiology, 92(6), 1105-1115.
  • Periago, P. M., Abee, T., & Wouters, J. A. (2002). Analysis of the heat-adaptive response of psychrotrophic Bacillus weihenstephanensis. International Journal of Food Microbiology, 79(1-2), 17-26.
  • Qoronfleh, M. W., & Streips, U. N. (1987). Initial subcellular localization of heat-shock proteins in Bacillus subtilis. FEMS microbiology letters, 43(3), 373-377.
  • Richter, A., & Hecker, M. (1986). Heat-shock proteins in Bacillus subtilis: a two-dimensional gel electrophoresis study. FEMS Microbiology Letters, 36(1), 69-71.
  • Ron, E. Z., Segal, G., Sirkis, R., Robinson, M., & Graur, D. (1999). Regulation of heat-shock response in bacteria. In; Bell C. R., Brylinsky M., Johnson-Green P. (eds) Microbial Biosystems: New Frontiers. Proceedings of the 8th Int. Symp. on Microbial Ecology (pp. 1-7). Halifax, Canada.
  • Rosen, R., & Ron, E. Z. (2002). Proteome analysis in the study of the bacterial heat‐shock response. Mass Spectrometry Reviews, 21(4), 244-265.
  • Schafer, H., Heinz, A., Sudzinová, P., Voß, M., Hantke, I., Krásný, L., & Turgay, K. (2019). Spx, the central regulator of the heat and oxidative stress response in B. subtilis, can repress transcription of translation‐related genes. Molecular Microbiology, 111(2), 514-533.
  • Segal, G., & Ron, E. Z. (1998). Regulation of heat‐shock response in bacteria. Annals of the New York Academy of Sciences, 851(1), 147-151.
  • Suryadi, B. F., Yanuwiadi, B., Ardyati, T., & Suharjono, S. (2016). Evaluation of entomopathogenic Bacillus sphaericus isolated from Lombok beach area against mosquito larvae. Asian Pacific Journal of Tropical Biomedicine, 6(2), 148-154.
  • Todd, J. A., Hubbard, T. J. P., Travers, A. A., & Ellar, D. J. (1985). Heat-shock proteins during growth and sporulation of Bacillus subtilis. FEBS Letters, 188(2), 209-214.
  • Vahdani, F., Ghafouri, H., Sarikhan, S., & Khodarahmi, R. (2019). Molecular cloning, expression, and functional characterization of 70-kDa heat shock protein, DnaK, from Bacillus halodurans. International Journal of Biological Macromolecules, 137, 151-159.
  • Versteeg, S., Escher, A., Wende, A., Wiegert, T., & Schumann, W. (2003). Regulation of the Bacillus subtilis heat shock gene htpG is under positive control. Journal of Bacteriology, 185(2), 466-474.
  • Xie, J., Peng, J., Yi, Z., Zhao, X., Li, S., Zhang, T., ... & Ding, X. (2019). Role of hsp20 in the production of spores and ınsecticidal crystal proteins in Bacillus thuringiensis. Frontiers in Microbiology, 10, 2059.

Determination of heat shock proteins in certain Bacillus species

Year 2022, Volume: 3 Issue: 2, 62 - 68, 30.08.2022
https://doi.org/10.51753/flsrt.1110386

Abstract

In this study, the effects of four different temperatures on the sporulation and development of 6 Bacillus species, 2 native and 4 reference were investigated. The SDS PAGE analysis emerged that two different proteins, 40 and 39 kilodalton (kDa), were produced by Bacillus sphaericus ATCC 2362 after 24 and 48, respectively hours at 48°C, by local isolate 4 after 24 and 48 hours at 42°C and by local isolate 31 after 24 and 48 hours at 48°C. Additionally Bacillus firmus (ATCC 14573) produced a 40 kDa protein after 48 hours at 52°C and Bacillus thuringiensis var. israelensis produced a 42 kDa protein after 48 hours at 42°C. At temperatures of 48 and 52°C, after 12, 24 and 48 hours incubation, vegetative and heat resistant spore counts were determined to reduce by 104-106 fold according to bacterial counts. As a result, the data revealed that at 48 and 52°C spore vitality fell by a significant degree. Additionally, SDS PAGE analysis results showed that high temperature resistance was provided by different heat shock proteins a 40 kDa protein produced by B. firmus ATCC (14573), 40-39 kDa proteins produced by B. sphaericus (ATCC 2362), and local isolates 4 and 31 and 42 kDa protein produced by B. thuringiensis var. israelensis.

References

  • Antelmann, H., Schmid, R., Mach, H., & Hecker, M. (1997). Specific and general stress proteins in Bacillus subtilis a two-dimensional protein electrophoresis study. Microbiology, 143(3), 999-1017.
  • Beladjal, L., Gheysens, T., Clegg, J. S., Amar, M., & Mertens, J. (2018). Life from the ashes: survival of dry bacterial spores after very high temperature exposure. Extremophiles, 22(5), 751-759.
  • Berber, I., Atalan, E., & Cokmus, C. (2003). Effect of Gramoxone Herbicide on Spore Viability and Larvicidal activity of Bacillus sphaericus 2362 and 1593 strains. Fresenius Enviromental Bulletin, 12(11), 1338-1344.
  • Berber, I., Atalan, E., & Cokmus, C. (2004). The influence of pesticides on the spore viability, toxin stability and larvicidal activity of Bacillus sphaericus 2362 strain. Fresenius Envorimental Bulletin, 13(5), 424-429.
  • Browne, N., & Dowds, B. C. A. (2001). Heat and salt stress in the food pathogen Bacillus cereus. Journal of Applied Microbiology, 91(6), 1085-1094.
  • Burke Jr, W. F., McDonald, K. O., & Davidson, E. W. (1983). Effect of UV light on spore viability and mosquito larvicidal activity of Bacillus sphaericus 1593. Applied and Environmental Microbiology, 46(4), 954-956.
  • Connors, M. J., Mason, J. M., & Setlow, P. (1986). Cloning and nucleotide sequencing of genes for three small, acid-soluble proteins from Bacillus subtilis spores. Journal of Bacteriology, 166(2), 417-425.
  • Elcin, Y. M., Cokmus, C., & Sacilik, S. C. (1995). Aluminum carboxymethylcellulose encapsulation of Bacillus sphaericus 2362 for control of Culex spp. (Diptera:Culicidae) larvae. Journal of Economic Entomology, 88(4), 830-834.
  • Gomes, S. L., & Simao R. C. G. (2019). Stress responses: heat. Academic Press, 364-379.
  • Han, M. J., Yun, H., & Lee, S. Y. (2008). Microbial small heat shock proteins and their use in biotechnology. Biotechnology Advances, 26(6), 591-609.
  • Hantke, I., Schafer, H., Janczikowski, A., & Turgay, K. (2019). YocM a small heat shock protein can protect Bacillus subtilis cells during salt stress. Molecular Microbiology, 111(2), 423-440.
  • Hecker, M., Völker, U., & Heim, C. (1989). RelA-independent (p) ppGpp accumulation and heat shock protein induction after salt stress in Bacillus subtilis. FEMS Microbiology Letters, 58(2-3), 125-128.
  • Horikosi, K., & Akiba, T., (1982). Alkalophilic microbiloorganisms. (pp. 1-321). Japan Scientific Societies Pres, Tokyo, Japan.
  • Krulwich, T. A., & Guffanti, A. A. (1989). Alkalophilic bacteria. Annual Review of Microbiology, 43(1), 435-463.
  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680-685.
  • Melly, E., & Setlow, P. (2001). Heat shock proteins do not influence wet heat resistance of Bacillus subtilis spores. Journal of Bacteriology, 183(2), 779-784.
  • Melly, E., Genest, P. C., Gilmore, M. E., Little, S., Popham, D. L., Driks, A., & Setlow, P. (2002). Analysis of the properties of spores of Bacillus subtilis prepared at different temperatures. Journal of Applied Microbiology, 92(6), 1105-1115.
  • Periago, P. M., Abee, T., & Wouters, J. A. (2002). Analysis of the heat-adaptive response of psychrotrophic Bacillus weihenstephanensis. International Journal of Food Microbiology, 79(1-2), 17-26.
  • Qoronfleh, M. W., & Streips, U. N. (1987). Initial subcellular localization of heat-shock proteins in Bacillus subtilis. FEMS microbiology letters, 43(3), 373-377.
  • Richter, A., & Hecker, M. (1986). Heat-shock proteins in Bacillus subtilis: a two-dimensional gel electrophoresis study. FEMS Microbiology Letters, 36(1), 69-71.
  • Ron, E. Z., Segal, G., Sirkis, R., Robinson, M., & Graur, D. (1999). Regulation of heat-shock response in bacteria. In; Bell C. R., Brylinsky M., Johnson-Green P. (eds) Microbial Biosystems: New Frontiers. Proceedings of the 8th Int. Symp. on Microbial Ecology (pp. 1-7). Halifax, Canada.
  • Rosen, R., & Ron, E. Z. (2002). Proteome analysis in the study of the bacterial heat‐shock response. Mass Spectrometry Reviews, 21(4), 244-265.
  • Schafer, H., Heinz, A., Sudzinová, P., Voß, M., Hantke, I., Krásný, L., & Turgay, K. (2019). Spx, the central regulator of the heat and oxidative stress response in B. subtilis, can repress transcription of translation‐related genes. Molecular Microbiology, 111(2), 514-533.
  • Segal, G., & Ron, E. Z. (1998). Regulation of heat‐shock response in bacteria. Annals of the New York Academy of Sciences, 851(1), 147-151.
  • Suryadi, B. F., Yanuwiadi, B., Ardyati, T., & Suharjono, S. (2016). Evaluation of entomopathogenic Bacillus sphaericus isolated from Lombok beach area against mosquito larvae. Asian Pacific Journal of Tropical Biomedicine, 6(2), 148-154.
  • Todd, J. A., Hubbard, T. J. P., Travers, A. A., & Ellar, D. J. (1985). Heat-shock proteins during growth and sporulation of Bacillus subtilis. FEBS Letters, 188(2), 209-214.
  • Vahdani, F., Ghafouri, H., Sarikhan, S., & Khodarahmi, R. (2019). Molecular cloning, expression, and functional characterization of 70-kDa heat shock protein, DnaK, from Bacillus halodurans. International Journal of Biological Macromolecules, 137, 151-159.
  • Versteeg, S., Escher, A., Wende, A., Wiegert, T., & Schumann, W. (2003). Regulation of the Bacillus subtilis heat shock gene htpG is under positive control. Journal of Bacteriology, 185(2), 466-474.
  • Xie, J., Peng, J., Yi, Z., Zhao, X., Li, S., Zhang, T., ... & Ding, X. (2019). Role of hsp20 in the production of spores and ınsecticidal crystal proteins in Bacillus thuringiensis. Frontiers in Microbiology, 10, 2059.
There are 29 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Research Articles
Authors

Elçin Yenidünya Konuk 0000-0001-9927-2185

Publication Date August 30, 2022
Submission Date April 28, 2022
Published in Issue Year 2022 Volume: 3 Issue: 2

Cite

APA Yenidünya Konuk, E. (2022). Determination of heat shock proteins in certain Bacillus species. Frontiers in Life Sciences and Related Technologies, 3(2), 62-68. https://doi.org/10.51753/flsrt.1110386

Creative Commons License

Frontiers in Life Sciences and Related Technologies is licensed under a Creative Commons Attribution 4.0 International License.