Research Article
BibTex RIS Cite

Effect of different abiotic conditions on biomass and fucoxanthin content of Amphora capitellata

Year 2022, Volume: 3 Issue: 3, 107 - 112, 30.12.2022
https://doi.org/10.51753/flsrt.1125696

Abstract

The aim of the study was to investigate the influence of physical conditions such as aeration rate (1, 3, 5 L/min) as well as chemical conditions including sodium nitrite (NaNO2), urea (CH4N2O) and ammonium chloride (NH4Cl) on the biomass productivity and fucoxanthin concentration of A. capitellata. The optimum cultures were cultivated in f/2 medium using sodium nitrate (NaNO3) in 2 L bubbling bottle photobioreactors under the light intensity of 100 µE/ m2s with aeration rate of 2 L/min. All the bottles were then incubated at 22.0±2°C, under the light intensities of 300 µE/m2s with three different airflow rates of 1, 3, 5 L/min for 16 days. And then, culture medium was prepared with three different nitrogen sources to achieve higher biomass productivity. During the production of A. capitellata, the maximum specific growth rate of 0.166 day-1, which conformed to the doubling time of 4.166 day, was achieved at the light intensity of 300 µE/m2s with an aeration rate of 1 L/min when sodium nitrate was used. Chlorophyll-a and fucoxanthin contents were also at the highest level in the same light intensity. Dry biomass amount reached the maximum level of 0.66±0.17 g/L in case of NaNO2. In this study, it was defined that the airflow rate of 1 L/min, the light intensity of 300 µE/m2s and sodium nitrate (NaNO3) were the optimum values not only for the growth of A. capitellata cells but also for the production of biomass and a higher fucoxanthin concentration.

Supporting Institution

Scientific and Technological Research Council of Turkey (TÜBİTAK)-COST Project

Project Number

Project number: 216Z167.

Thanks

This work was financial supported by Scientific and Technological Research Council of Turkey (TÜBİTAK)-COST Project number: 216Z167.

References

  • Ayre, J. M., Moheimani, N. R., & Borowitzka, M. A. (2017). Growth of microalgae on undiluted anaerobic digestate of piggery effluent with high ammonium concentrations. Algal Research, 24, 218-226.
  • Bayu, A., Rachman, A., Noerdjito, D. R., Putra, M. Y., & Widayatno, W. B. (2020). High-value chemicals from marine diatoms: a biorefinery approach. IOP Conference Series: Earth and Environmental Science, West Java, Indonesia. 460(1), 012012.
  • Berg, G. M., Driscoll, S., Hayashi, K., Ross, M., & Kudela, R. (2017). Variation in growth rate, carbon assimilation, and photosynthetic efficiency in response to nitrogen source and concentration in phytoplankton isolated from upper San Francisco Bay. Journal of phycology, 53(3), 664-679.
  • Brinkmann, N., Friedl, T., Kathrin, I., & Mohr, K. I. (2011). Diatoms. In: Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology (pp. 1-956). Springer, Dordrecht.
  • Cointet, E., Wielgosz-Collin, G., Méléder, V., & Gonçalves, O. (2019). Lipids in benthic diatoms: A new suitable screening procedure. Algal Research, 39, 101425.
  • Demirel, Z. (2016). Identification and fatty acid composition of coccolithophore and diatom species isolated from Aegean Sea. Romanian Biotechnological Letters, 21(4), 11747-53.
  • Erdogan, A., Demirel, Z., Dalay, M. C., & Eroglu, A. E. (2016). Fucoxanthin content of Cylindrotheca closterium and its oxidative stress mediated enhancement. Turkish Journal of Fisheries and Aquatic Sciences, 16(3), 489-497.
  • Erdogan, A., Karatas, A. B., Demirel, Z., & Dalay, M. C. (2022). Purification of fucoxanthin from the diatom Amphora capitellata by preparative chromatography after its enhanced productivity via oxidative stress. Journal of Applied Phycology, 34(1), 301-309.
  • Fidalgo Paredes, P., Cid, Á., Abalde, J., & Herrero, C. (1995). Culture of the marine diatom Phaeodactylum tricornutum with different nitrogen sources: growth, nutrient conversion and biochemical composition. Cahiers de Biologie Marine, 36, 165-173.
  • Gómez-Loredo, A., Benavides, J., & Rito-Palomares, M. (2016). Growth kinetics and fucoxanthin production of Phaeodactylum tricornutum and Isochrysis galbana cultures at different light and agitation conditions. Journal of Applied Phycology, 28(2), 849-860.
  • Guillard, R. R., & Ryther, J. H. (1962). Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Canadian Journal of Microbiology, 8(2), 229-239.
  • Guo, B., Liu, B., Yang, B., Sun, P., Lu, X., Liu, J., & Chen, F. (2016). Screening of diatom strains and characterization of Cyclotella cryptica as a potential fucoxanthin producer. Marine Drugs, 14(7), 125-139.
  • Hervé, V., Derr, J., Douady, S., Quinet, M., Moisan, L., & Lopez, P. J. (2012). Multiparametric analyses reveal the pH-dependence of silicon biomineralization in diatoms. PloS One, 7(10), e46722.
  • Indrayani, I., Moheimani, N. R., de Boer, K., Bahri, P. A., & Borowitzka, M. A. (2020). Temperature and salinity effects on growth and fatty acid composition of a halophilic diatom, Amphora sp. MUR258 (Bacillariophyceae). Journal of Applied Phycology, 32(2), 977-987.
  • Jamali, A. A., Akbari, F., Ghorakhlu, M. M., de la Guardia, M., & Khosroushahi, A. Y. (2012). Applications of diatoms as potential microalgae in nanobiotechnology. BioImpacts: BI, 2(2), 83.
  • Kaspar, H. F., Keys, E. F., King, N., Smith, K. F., Kesarcodi-Watson, A., & Miller, M. R. (2014). Continuous production of Chaetoceros calcitrans in a system suitable for commercial hatcheries. Aquaculture, 420, 1-9.
  • Kumar, A., & Bera, S. (2020). Revisiting nitrogen utilization in algae: A review on the process of regulation and assimilation. Bioresource Technology Reports, 12, 100584.
  • Legalov, A. A., & Reshetnikov, S. V. (2020). New records of weevils (Coleoptera, Curculionidae) from Western Siberia. Acta Biologica Sibirica, 6, 375.
  • Li, C. L., Witkowski, A., Ashworth, M. P., Dąbek, P., Sato, S., Zgłobicka, I., ... & Kwon, C. J. (2018). The morphology and molecular phylogenetics of some marine diatom taxa within the Fragilariaceae, including twenty undescribed species and their relationship to Nanofrustulum, Opephora and Pseudostaurosira. Phytotaxa, 355(1), 1-104.
  • Li, X., Li, W., Zhai, J., Wei, H., & Wang, Q. (2019). Effect of ammonium nitrogen on microalgal growth, biochemical composition and photosynthetic performance in mixotrophic cultivation. Bioresource Technology, 273, 368-376.
  • Maeda, H. (2013). Anti-obesity and anti-diabetic activities of algae. In: Dominguez, H. (ed) Functional Ingredients from Algae for Foods and Nutraceuticals (pp. 453-472). Woodhead Publishing, Elsevier.
  • Markou, G., & Muylaert, K. (2016). Effect of light intensity on the degree of ammonia toxicity on PSII activity of Arthrospira platensis and Chlorella vulgaris. Bioresource Technology, 216, 453-461.
  • Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews, 14(1), 217-232.
  • Mohamadnia, S., Tavakoli, O., & Faramarzi, M. A. (2022). Production of fucoxanthin from the microalga Tisochrysis lutea in the bubble column photobioreactor applying mass transfer coefficient. Journal of Biotechnology, 348, 47-54.
  • Nigam, H., Jain, R., Malik, A., & Singh, V. (2022). Comparative Life-Cycle assessment of microalgal biomass production in conventional growth media versus newly developed nanoemulsion media. Bioresource Technology, 352, 127069.
  • Ruckert, G. V., & Giani, A. (2004). Effect of nitrate and ammonium on the growth and protein concentration of Microcystis viridis Lemmermann (Cyanobacteria). Brazilian Journal of Botany, 27(2), 325-331.
  • Roychoudhury, P., Nandi, C., & Pal, R. (2016). Diatom-based biosynthesis of gold-silica nanocomposite and their DNA binding affinity. Journal of Applied Phycology, 28(5), 2857-2863.
  • Roychoudhury, P., Dąbek, P., Gloc, M., Golubeva, A., Dobrucka, R., Kurzydłowski, K., & Witkowski, A. (2021). Reducing efficiency of fucoxanthin in diatom mediated biofabrication of gold nanoparticles. Materials, 14(15), 4094.
  • Sato, S., Tamotsu, N., & Mann, D. G. (2013). Morphology and life history of Amphora commutata (Bacillariophyta) I: the vegetative cell and phylogenetic position. Phycologia, 52(3), 225-238.
  • Smith, S. R., Dupont, C. L., McCarthy, J. K., Broddrick, J. T., Oborník, M., Horák, A., ... & Allen, A. E. (2019). Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom. Nature Communications, 10(1), 1-14.
  • Sun, Z., Dai, Z., Zhang, W., Fan, S., Liu, H., Liu, R., & Zhao, T. (2018). Antiobesity, antidiabetic, antioxidative, and antihyperlipidemic activities of bioactive seaweed substances. In: Qin Y. (ed) Bioactive Seaweeds for Food Applications (pp. 239-253). Academic Press.
  • Sener, N., Demirel, Z., Imamoglu, E., & Dalay, M. (2022). Optimization of culture conditions for total carotenoid amount using response surface methodology in green microalgae/Ankistrodesmus convolutus. Aquatic Sciences and Engineering, 37(1), 29-37.
  • Wang, H., Zhang, Y., Chen, L., Cheng, W., & Liu, T. (2018a). Combined production of fucoxanthin and EPA from two diatom strains Phaeodactylum tricornutum and Cylindrotheca fusiformis cultures. Bioprocess and Biosystems Engineering, 41(7), 1061-1071.
  • Wang, S., Verma, S. K., Hakeem Said, I., Thomsen, L., Ullrich, M. S., & Kuhnert, N. (2018b). Changes in the fucoxanthin production and protein profiles in Cylindrotheca closterium in response to blue light-emitting diode light. Microbial Cell Factories, 17(1), 1-13.
Year 2022, Volume: 3 Issue: 3, 107 - 112, 30.12.2022
https://doi.org/10.51753/flsrt.1125696

Abstract

Project Number

Project number: 216Z167.

References

  • Ayre, J. M., Moheimani, N. R., & Borowitzka, M. A. (2017). Growth of microalgae on undiluted anaerobic digestate of piggery effluent with high ammonium concentrations. Algal Research, 24, 218-226.
  • Bayu, A., Rachman, A., Noerdjito, D. R., Putra, M. Y., & Widayatno, W. B. (2020). High-value chemicals from marine diatoms: a biorefinery approach. IOP Conference Series: Earth and Environmental Science, West Java, Indonesia. 460(1), 012012.
  • Berg, G. M., Driscoll, S., Hayashi, K., Ross, M., & Kudela, R. (2017). Variation in growth rate, carbon assimilation, and photosynthetic efficiency in response to nitrogen source and concentration in phytoplankton isolated from upper San Francisco Bay. Journal of phycology, 53(3), 664-679.
  • Brinkmann, N., Friedl, T., Kathrin, I., & Mohr, K. I. (2011). Diatoms. In: Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology (pp. 1-956). Springer, Dordrecht.
  • Cointet, E., Wielgosz-Collin, G., Méléder, V., & Gonçalves, O. (2019). Lipids in benthic diatoms: A new suitable screening procedure. Algal Research, 39, 101425.
  • Demirel, Z. (2016). Identification and fatty acid composition of coccolithophore and diatom species isolated from Aegean Sea. Romanian Biotechnological Letters, 21(4), 11747-53.
  • Erdogan, A., Demirel, Z., Dalay, M. C., & Eroglu, A. E. (2016). Fucoxanthin content of Cylindrotheca closterium and its oxidative stress mediated enhancement. Turkish Journal of Fisheries and Aquatic Sciences, 16(3), 489-497.
  • Erdogan, A., Karatas, A. B., Demirel, Z., & Dalay, M. C. (2022). Purification of fucoxanthin from the diatom Amphora capitellata by preparative chromatography after its enhanced productivity via oxidative stress. Journal of Applied Phycology, 34(1), 301-309.
  • Fidalgo Paredes, P., Cid, Á., Abalde, J., & Herrero, C. (1995). Culture of the marine diatom Phaeodactylum tricornutum with different nitrogen sources: growth, nutrient conversion and biochemical composition. Cahiers de Biologie Marine, 36, 165-173.
  • Gómez-Loredo, A., Benavides, J., & Rito-Palomares, M. (2016). Growth kinetics and fucoxanthin production of Phaeodactylum tricornutum and Isochrysis galbana cultures at different light and agitation conditions. Journal of Applied Phycology, 28(2), 849-860.
  • Guillard, R. R., & Ryther, J. H. (1962). Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Canadian Journal of Microbiology, 8(2), 229-239.
  • Guo, B., Liu, B., Yang, B., Sun, P., Lu, X., Liu, J., & Chen, F. (2016). Screening of diatom strains and characterization of Cyclotella cryptica as a potential fucoxanthin producer. Marine Drugs, 14(7), 125-139.
  • Hervé, V., Derr, J., Douady, S., Quinet, M., Moisan, L., & Lopez, P. J. (2012). Multiparametric analyses reveal the pH-dependence of silicon biomineralization in diatoms. PloS One, 7(10), e46722.
  • Indrayani, I., Moheimani, N. R., de Boer, K., Bahri, P. A., & Borowitzka, M. A. (2020). Temperature and salinity effects on growth and fatty acid composition of a halophilic diatom, Amphora sp. MUR258 (Bacillariophyceae). Journal of Applied Phycology, 32(2), 977-987.
  • Jamali, A. A., Akbari, F., Ghorakhlu, M. M., de la Guardia, M., & Khosroushahi, A. Y. (2012). Applications of diatoms as potential microalgae in nanobiotechnology. BioImpacts: BI, 2(2), 83.
  • Kaspar, H. F., Keys, E. F., King, N., Smith, K. F., Kesarcodi-Watson, A., & Miller, M. R. (2014). Continuous production of Chaetoceros calcitrans in a system suitable for commercial hatcheries. Aquaculture, 420, 1-9.
  • Kumar, A., & Bera, S. (2020). Revisiting nitrogen utilization in algae: A review on the process of regulation and assimilation. Bioresource Technology Reports, 12, 100584.
  • Legalov, A. A., & Reshetnikov, S. V. (2020). New records of weevils (Coleoptera, Curculionidae) from Western Siberia. Acta Biologica Sibirica, 6, 375.
  • Li, C. L., Witkowski, A., Ashworth, M. P., Dąbek, P., Sato, S., Zgłobicka, I., ... & Kwon, C. J. (2018). The morphology and molecular phylogenetics of some marine diatom taxa within the Fragilariaceae, including twenty undescribed species and their relationship to Nanofrustulum, Opephora and Pseudostaurosira. Phytotaxa, 355(1), 1-104.
  • Li, X., Li, W., Zhai, J., Wei, H., & Wang, Q. (2019). Effect of ammonium nitrogen on microalgal growth, biochemical composition and photosynthetic performance in mixotrophic cultivation. Bioresource Technology, 273, 368-376.
  • Maeda, H. (2013). Anti-obesity and anti-diabetic activities of algae. In: Dominguez, H. (ed) Functional Ingredients from Algae for Foods and Nutraceuticals (pp. 453-472). Woodhead Publishing, Elsevier.
  • Markou, G., & Muylaert, K. (2016). Effect of light intensity on the degree of ammonia toxicity on PSII activity of Arthrospira platensis and Chlorella vulgaris. Bioresource Technology, 216, 453-461.
  • Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews, 14(1), 217-232.
  • Mohamadnia, S., Tavakoli, O., & Faramarzi, M. A. (2022). Production of fucoxanthin from the microalga Tisochrysis lutea in the bubble column photobioreactor applying mass transfer coefficient. Journal of Biotechnology, 348, 47-54.
  • Nigam, H., Jain, R., Malik, A., & Singh, V. (2022). Comparative Life-Cycle assessment of microalgal biomass production in conventional growth media versus newly developed nanoemulsion media. Bioresource Technology, 352, 127069.
  • Ruckert, G. V., & Giani, A. (2004). Effect of nitrate and ammonium on the growth and protein concentration of Microcystis viridis Lemmermann (Cyanobacteria). Brazilian Journal of Botany, 27(2), 325-331.
  • Roychoudhury, P., Nandi, C., & Pal, R. (2016). Diatom-based biosynthesis of gold-silica nanocomposite and their DNA binding affinity. Journal of Applied Phycology, 28(5), 2857-2863.
  • Roychoudhury, P., Dąbek, P., Gloc, M., Golubeva, A., Dobrucka, R., Kurzydłowski, K., & Witkowski, A. (2021). Reducing efficiency of fucoxanthin in diatom mediated biofabrication of gold nanoparticles. Materials, 14(15), 4094.
  • Sato, S., Tamotsu, N., & Mann, D. G. (2013). Morphology and life history of Amphora commutata (Bacillariophyta) I: the vegetative cell and phylogenetic position. Phycologia, 52(3), 225-238.
  • Smith, S. R., Dupont, C. L., McCarthy, J. K., Broddrick, J. T., Oborník, M., Horák, A., ... & Allen, A. E. (2019). Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom. Nature Communications, 10(1), 1-14.
  • Sun, Z., Dai, Z., Zhang, W., Fan, S., Liu, H., Liu, R., & Zhao, T. (2018). Antiobesity, antidiabetic, antioxidative, and antihyperlipidemic activities of bioactive seaweed substances. In: Qin Y. (ed) Bioactive Seaweeds for Food Applications (pp. 239-253). Academic Press.
  • Sener, N., Demirel, Z., Imamoglu, E., & Dalay, M. (2022). Optimization of culture conditions for total carotenoid amount using response surface methodology in green microalgae/Ankistrodesmus convolutus. Aquatic Sciences and Engineering, 37(1), 29-37.
  • Wang, H., Zhang, Y., Chen, L., Cheng, W., & Liu, T. (2018a). Combined production of fucoxanthin and EPA from two diatom strains Phaeodactylum tricornutum and Cylindrotheca fusiformis cultures. Bioprocess and Biosystems Engineering, 41(7), 1061-1071.
  • Wang, S., Verma, S. K., Hakeem Said, I., Thomsen, L., Ullrich, M. S., & Kuhnert, N. (2018b). Changes in the fucoxanthin production and protein profiles in Cylindrotheca closterium in response to blue light-emitting diode light. Microbial Cell Factories, 17(1), 1-13.
There are 34 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Zeliha Demirel 0000-0003-3675-7315

Ayşegül Erdoğan 0000-0002-3174-7970

Ayça Büşra Karataş 0000-0001-7039-5579

Meltem Dalay 0000-0002-1718-7292

Project Number Project number: 216Z167.
Publication Date December 30, 2022
Submission Date June 3, 2022
Published in Issue Year 2022 Volume: 3 Issue: 3

Cite

APA Demirel, Z., Erdoğan, A., Karataş, A. B., Dalay, M. (2022). Effect of different abiotic conditions on biomass and fucoxanthin content of Amphora capitellata. Frontiers in Life Sciences and Related Technologies, 3(3), 107-112. https://doi.org/10.51753/flsrt.1125696

Creative Commons License

Frontiers in Life Sciences and Related Technologies is licensed under a Creative Commons Attribution 4.0 International License.