Research Article
BibTex RIS Cite

Improving the adventitious rooting ability of hard-to-root olive (Olea europaea L.) cultivar cuttings through inhibiting strigolactone biosynthesis

Year 2022, Volume: 3 Issue: 3, 134 - 137, 30.12.2022
https://doi.org/10.51753/flsrt.1186955

Abstract

Strigolactones (SLs) are synthesized in roots and control plant development. As phytohormones, SLs regulate plant architecture, including roots. Recently, the inhibiting effects of SLs on adventitious rooting have been identified. Olive (Olea europaea L.) is consumed for oil and table in Mediterranean countries and is an economically important crop. Turkey is one of the countries with the highest olive production. Olive has mostly propagated asexually via cuttings, however, the rooting capacities of some agriculturally important olive cultivars are very low. Indole Butyric Acid (IBA) is commonly used to promote the rooting of olive cuttings, however, it can be inadequate. Ayvalık is an easy-to-root cultivar and one of the most common cultivars grown for oil production and Domat is a hard-to-root cultivar in which IBA is insufficient for inducing rooting. In our study, the effects of synthetic SLs rac-GR24 and SLs biosynthesis inhibitor TIS108 on the rooting ability of olive cuttings were investigated. As a result, the adventitious rooting ability was increased when a hard-to-root cultivar was treated with TIS108, indicating a promising future for olive-cutting rooting. Therefore, our study will provide potentially new tools for propagation strategies using SLs in fruit trees.

Supporting Institution

TÜBİTAK

Project Number

215O543

Thanks

This study is based on a Ph.D. thesis entitled “Characterization of the Genes Involved in Strigolactone Biosynthesis in Olive (Olea europaea L.)” from Çanakkale Onsekiz Mart University, supported by The Scientific and Technological Research Council of Turkey (TUBITAK) with a Project Number 215O543 and COST Action (FA1206). We thank TUBITAK for their support and the doctoral scholarship (2211-A program). We also thank the Edremit Directorate of Olive Production Station (Edremit, Balıkesir) for providing the biological material.

References

  • Akiyama, K., Matsuzaki, K. I., & Hayashi, H. (2005). Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 435(7043), 824-827.
  • Arite, T., Kameoka, H., & Kyozuka, J. (2012). Strigolactone positively controls crown root elongation in rice. Journal of Plant Growth Regulation, 31(2), 165-172.
  • Cook, C. E., Whichard, L. P., Turner, B., Wall, M. E., & Egley, G. H. (1966). Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science, 154(3753), 1189-1190.
  • Crawford, S., Shinohara, N., Sieberer, T., Williamson, L., George, G., Hepworth, J., ... & Leyser, O. (2010). Strigolactones enhance competition between shoot branches by dampening auxin transport. Development, 137(17), 2905-2913.
  • Cetintas Gerakakis, A., & Ozkaya, M. T. (2005). Effects of cutting size, rooting media and planting time on rooting of Domat and Ayvalik Olive (Olea europaea L.) cultivars in shaded polyethylene tunnel spt. Journal of Agricultural Sciences, 11(03), 334-338.
  • De Cuyper, C., Fromentin, J., Yocgo, R. E., De Keyser, A., Guillotin, B., Kunert, K., ... & Goormachtig, S. (2015). From lateral root density to nodule number, the strigolactone analogue GR24 shapes the root architecture of Medicago truncatula. Journal of Experimental Botany, 66(1), 137-146.
  • de Saint Germain, A., Ligerot, Y., Dun, E. A., Pillot, J. P., Ross, J. J., Beveridge, C. A., & Rameau, C. (2013). Strigolactones stimulate internode elongation independently of gibberellins. Plant Physiology, 163(2), 1012-1025.
  • Fabbri, A. G., Bartolini, G., Lambardi, M., & Kailis, S. (2004). Olive propagation manual. (pp. 1-164). Landlinks Press.
  • Gomez-Roldan, V., Fermas, S., Brewer, P. B., Puech-Pagès, V., Dun, E. A., Pillot, J. P., ... & Rochange, S. F. (2008). Strigolactone inhibition of shoot branching. Nature, 455(7210), 189-194.
  • Guan, J. C., Koch, K. E., Suzuki, M., Wu, S., Latshaw, S., Petruff, T., ... & McCarty, D. R. (2012). Diverse roles of strigolactone signaling in maize architecture and the uncoupling of a branching-specific subnetwork. Plant Physiology, 160(3), 1303-1317.
  • Ito, S., Umehara, M., Hanada, A., Yamaguchi, S., & Asami, T. (2013). Effects of strigolactone-biosynthesis inhibitor TIS108 on Arabidopsis. Plant Signaling & Behavior, 8(5), e24193.
  • Isfendiyaroglu, M., Ozeker, E., & Baser, S. (2009). Rooting of" Ayvalik" olive cuttings in different media. Spanish Journal of Agricultural Research, 7(1), 165-172.
  • Kapulnik, Y., Delaux, P. M., Resnick, N., Mayzlish-Gati, E., Wininger, S., Bhattacharya, C., ... & Koltai, H. (2011). Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta, 233(1), 209-216.
  • Kiralan, M., & Bayrak, A. (2013). Oxidative and antiradical stabilities of two important virgin olive oils from Ayvalik and Memecik olive cultivars in Turkey. International Journal of Food Properties, 16(3), 649-657.
  • Kohlen, W., Charnikhova, T., Lammers, M., Pollina, T., Tóth, P., Haider, I., ... & López‐Ráez, J. A. (2012). The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytologist, 196(2), 535-547.
  • Rasmussen, A., Depuydt, S., Goormachtig, S., & Geelen, D. (2013). Strigolactones fine-tune the root system. Planta, 238(4), 615-626.
  • Rugini, E. (1986). Olive (Olea europeae L.). Biotechnology in Agriculture and Forestry. (pp. 1-267). Springer, Heidelberg.
  • Ruyter-Spira, C., Kohlen, W., Charnikhova, T., van Zeijl, A., van Bezouwen, L., de Ruijter, N., ... & Bouwmeester, H. (2011). Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones?. Plant Physiology, 155(2), 721-734.
  • Santoro, V., Schiavon, M., Gresta, F., Ertani, A., Cardinale, F., Sturrock, C. J., ... & Schubert, A. (2020). Strigolactones control root system architecture and tip anatomy in Solanum lycopersicum L. plants under P starvation. Plants, 9(5), 612.
  • Serrano, J. M., Serrano, M. C., & Amaral, E. (2002). Effect of different hormone treatments on rooting of Olea europaea cv. Galega vulgar cuttings. Acta Horticulturae, 586, 875-877.
  • Shinohara, N., Taylor, C., & Leyser, O. (2013). Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane. PLoS Biology, 11(1), e1001474.
  • Snowden, K. C., Simkin, A. J., Janssen, B. J., Templeton, K. R., Loucas, H. M., Simons, J. L., ... & Klee, H. J. (2005). The Decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development. The Plant Cell, 17(3), 746-759.
  • Stirnberg, P., van De Sande, K., & Leyser, H. O. (2002). MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development, 129, 1131-1141.
  • Turkoglu, N., & Durmus, M. (2005). A study on root formation of four olive varieties by application of hormone. Asian Journal of Plant Sciences, 4(5), 455-457.
  • Umehara, M., Hanada, A., Yoshida, S., Akiyama, K., Arite, T., Takeda-Kamiya, N., ... & Yamaguchi, S. (2008). Inhibition of shoot branching by new terpenoid plant hormones. Nature, 455(7210), 195-200.
  • Xu, Y., Wang, J., Wang, R., Wang, L., Zhang, C., Xu, W., ... & Jiu, S. (2021). The role of strigolactones in the regulation of root system architecture in grapevine (Vitis vinifera L.) in response to root-restriction cultivation. International Journal of Molecular Sciences, 22(16), 8799.
  • Zohary, D., Hopf, M., & Weiss, E. (2012). Domestication of Plants in the Old World: The origin and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean Basin. (pp. 1-237). Oxford University Press, United States.
Year 2022, Volume: 3 Issue: 3, 134 - 137, 30.12.2022
https://doi.org/10.51753/flsrt.1186955

Abstract

Project Number

215O543

References

  • Akiyama, K., Matsuzaki, K. I., & Hayashi, H. (2005). Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 435(7043), 824-827.
  • Arite, T., Kameoka, H., & Kyozuka, J. (2012). Strigolactone positively controls crown root elongation in rice. Journal of Plant Growth Regulation, 31(2), 165-172.
  • Cook, C. E., Whichard, L. P., Turner, B., Wall, M. E., & Egley, G. H. (1966). Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science, 154(3753), 1189-1190.
  • Crawford, S., Shinohara, N., Sieberer, T., Williamson, L., George, G., Hepworth, J., ... & Leyser, O. (2010). Strigolactones enhance competition between shoot branches by dampening auxin transport. Development, 137(17), 2905-2913.
  • Cetintas Gerakakis, A., & Ozkaya, M. T. (2005). Effects of cutting size, rooting media and planting time on rooting of Domat and Ayvalik Olive (Olea europaea L.) cultivars in shaded polyethylene tunnel spt. Journal of Agricultural Sciences, 11(03), 334-338.
  • De Cuyper, C., Fromentin, J., Yocgo, R. E., De Keyser, A., Guillotin, B., Kunert, K., ... & Goormachtig, S. (2015). From lateral root density to nodule number, the strigolactone analogue GR24 shapes the root architecture of Medicago truncatula. Journal of Experimental Botany, 66(1), 137-146.
  • de Saint Germain, A., Ligerot, Y., Dun, E. A., Pillot, J. P., Ross, J. J., Beveridge, C. A., & Rameau, C. (2013). Strigolactones stimulate internode elongation independently of gibberellins. Plant Physiology, 163(2), 1012-1025.
  • Fabbri, A. G., Bartolini, G., Lambardi, M., & Kailis, S. (2004). Olive propagation manual. (pp. 1-164). Landlinks Press.
  • Gomez-Roldan, V., Fermas, S., Brewer, P. B., Puech-Pagès, V., Dun, E. A., Pillot, J. P., ... & Rochange, S. F. (2008). Strigolactone inhibition of shoot branching. Nature, 455(7210), 189-194.
  • Guan, J. C., Koch, K. E., Suzuki, M., Wu, S., Latshaw, S., Petruff, T., ... & McCarty, D. R. (2012). Diverse roles of strigolactone signaling in maize architecture and the uncoupling of a branching-specific subnetwork. Plant Physiology, 160(3), 1303-1317.
  • Ito, S., Umehara, M., Hanada, A., Yamaguchi, S., & Asami, T. (2013). Effects of strigolactone-biosynthesis inhibitor TIS108 on Arabidopsis. Plant Signaling & Behavior, 8(5), e24193.
  • Isfendiyaroglu, M., Ozeker, E., & Baser, S. (2009). Rooting of" Ayvalik" olive cuttings in different media. Spanish Journal of Agricultural Research, 7(1), 165-172.
  • Kapulnik, Y., Delaux, P. M., Resnick, N., Mayzlish-Gati, E., Wininger, S., Bhattacharya, C., ... & Koltai, H. (2011). Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta, 233(1), 209-216.
  • Kiralan, M., & Bayrak, A. (2013). Oxidative and antiradical stabilities of two important virgin olive oils from Ayvalik and Memecik olive cultivars in Turkey. International Journal of Food Properties, 16(3), 649-657.
  • Kohlen, W., Charnikhova, T., Lammers, M., Pollina, T., Tóth, P., Haider, I., ... & López‐Ráez, J. A. (2012). The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytologist, 196(2), 535-547.
  • Rasmussen, A., Depuydt, S., Goormachtig, S., & Geelen, D. (2013). Strigolactones fine-tune the root system. Planta, 238(4), 615-626.
  • Rugini, E. (1986). Olive (Olea europeae L.). Biotechnology in Agriculture and Forestry. (pp. 1-267). Springer, Heidelberg.
  • Ruyter-Spira, C., Kohlen, W., Charnikhova, T., van Zeijl, A., van Bezouwen, L., de Ruijter, N., ... & Bouwmeester, H. (2011). Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones?. Plant Physiology, 155(2), 721-734.
  • Santoro, V., Schiavon, M., Gresta, F., Ertani, A., Cardinale, F., Sturrock, C. J., ... & Schubert, A. (2020). Strigolactones control root system architecture and tip anatomy in Solanum lycopersicum L. plants under P starvation. Plants, 9(5), 612.
  • Serrano, J. M., Serrano, M. C., & Amaral, E. (2002). Effect of different hormone treatments on rooting of Olea europaea cv. Galega vulgar cuttings. Acta Horticulturae, 586, 875-877.
  • Shinohara, N., Taylor, C., & Leyser, O. (2013). Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane. PLoS Biology, 11(1), e1001474.
  • Snowden, K. C., Simkin, A. J., Janssen, B. J., Templeton, K. R., Loucas, H. M., Simons, J. L., ... & Klee, H. J. (2005). The Decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development. The Plant Cell, 17(3), 746-759.
  • Stirnberg, P., van De Sande, K., & Leyser, H. O. (2002). MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development, 129, 1131-1141.
  • Turkoglu, N., & Durmus, M. (2005). A study on root formation of four olive varieties by application of hormone. Asian Journal of Plant Sciences, 4(5), 455-457.
  • Umehara, M., Hanada, A., Yoshida, S., Akiyama, K., Arite, T., Takeda-Kamiya, N., ... & Yamaguchi, S. (2008). Inhibition of shoot branching by new terpenoid plant hormones. Nature, 455(7210), 195-200.
  • Xu, Y., Wang, J., Wang, R., Wang, L., Zhang, C., Xu, W., ... & Jiu, S. (2021). The role of strigolactones in the regulation of root system architecture in grapevine (Vitis vinifera L.) in response to root-restriction cultivation. International Journal of Molecular Sciences, 22(16), 8799.
  • Zohary, D., Hopf, M., & Weiss, E. (2012). Domestication of Plants in the Old World: The origin and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean Basin. (pp. 1-237). Oxford University Press, United States.
There are 27 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Research Articles
Authors

Aslıhan Özbilen 0000-0002-2034-4682

Fatih Sezer 0000-0002-9436-0191

Kmtaskin@comu.edu.tr Kmtaskin@comu.edu.tr 0000-0002-3746-0508

Project Number 215O543
Publication Date December 30, 2022
Submission Date October 10, 2022
Published in Issue Year 2022 Volume: 3 Issue: 3

Cite

APA Özbilen, A., Sezer, F., & Kmtaskin@comu.edu.tr, K. (2022). Improving the adventitious rooting ability of hard-to-root olive (Olea europaea L.) cultivar cuttings through inhibiting strigolactone biosynthesis. Frontiers in Life Sciences and Related Technologies, 3(3), 134-137. https://doi.org/10.51753/flsrt.1186955

Creative Commons License

Frontiers in Life Sciences and Related Technologies is licensed under a Creative Commons Attribution 4.0 International License.