Research Article
BibTex RIS Cite

Investigation of bisphenol A (BPA) effects on germination and development of wheat and chickpea

Year 2024, Volume: 5 Issue: 2, 115 - 121, 30.08.2024
https://doi.org/10.51753/flsrt.1453571

Abstract

Bisphenol A (BPA) is a chemical compound used in the production of various plastics. Its effects on health have been the subject of publications and scientific debate. The current study was carried out to reveal the effects of bisphenol A at various concentrations on seed germination and seedling development of wheat and chickpea plants. At the first step, seeds of wheat and chickpea were planted in sterile petri dishes and imbibed with 0, 1, 5, 10, 20, 40 and 50 mg L-1 Bisphenol A concentrations. Germination percentage, vigor index, radicle length, and plumula length were calculated. In the second step, the seeds were first germinated in sterile petri dishes, and seedlings were exposed to the same BPA concentrations. In addition to seedling development measurements, chlorophyll, carotenoid contents, and phenolic and flavonoid changes were analyzed. Stomatal aperture status in wheat seedlings was also monitored. The effect of BPA concentrations varied greatly depending on the plant species. Likewise, their effects on germination and development stages are highly variable. Root and stem lengths decreased due to increasing BPA concentrations. Regarding the effects of BPA on development, 40 and 50 mg L-1 concentration applications caused an increase in chlorophyll in wheat and a significant decrease in chickpea plants. Phenolic and flavonoid values showed differences depending on the application dose. It was noticed that their amounts increased significantly at concentrations higher than 20 mg L-1. The cadmium toxicity effect varied depending on the seed species and cadmium concentration. While 1 and 5 mg L-1 applications did not cause a negative effect on germination and development, it caused inhibitory effects at high concentrations. BPA concentration in nature is increasing day by day. These findings provide invaluable information on the underlying effects and concentration limit of BPA on crop growth.

References

  • Abraham, A., & Chakraborty, P. (2020). A review on sources and health impacts of bisphenol A. Reviews on Environmental Health, 35(2), 201-210.
  • Adamakis, I. D. S., Panteris, E., Cherianidou, A., & Eleftheriou, E. P. (2013). Effects of bisphenol A on the microtubule arrays in root meristematic cells of Pisum sativum L. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 750(1-2), 111-120.
  • Akbay, P., Basaran, A. A., Undeger, U., & Basaran, N. (2003). In vitro immunomodulatory activity of flavonoid glycosides from Urtica dioica L. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 17(1), 34-37.
  • Ali, I., Liu, B., Farooq, M. A., Islam, F., Azizullah, A., Yu, C., ... & Gan, Y. (2016). Toxicological effects of bisphenol A on growth and antioxidant defense system in Oryza sativa as revealed by ultrastructure analysis. Ecotoxicology and environmental Safety, 124, 277-284.
  • Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1.
  • Babu, S., Uppu, S., Claville, M. O., & Uppu, R. M. (2013). Prooxidant actions of bisphenol A (BPA) phenoxyl radicals: implications to BPA-related oxidative stress and toxicity. Toxicology Mechanisms and Methods, 23(4), 273-280.
  • Chen, D., Kannan, K., Tan, H., Zheng, Z., Feng, Y. L., Wu, Y., & Widelka, M. (2016). Bisphenol analogues other than BPA: environmental occurrence, human exposure, and toxicity-a review. Environmental Science & Technology, 50(11), 5438-5453.
  • Dalar, A., Türker, M., & Konczak, I. (2012). Antioxidant capacity and phenolic constituents of Malva neglecta Wallr. and Plantago lanceolata L. from Eastern Anatolia Region of Turkey. Journal of herbal medicine, 2(2), 42-51.
  • Dalar, A., & Konczak, I. (2013). Phenolic contents, antioxidant capacities and inhibitory activities against key metabolic syndrome relevant enzymes of herbal teas from Eastern Anatolia. Industrial Crops and Products, 44, 383-390.
  • Dianin, A. P. (1891). Condensation of ketones with phenols. Zhurnal Russkogo Fiziko-Khimicheskogo Obshchestva. Russian Physics and Chemistry Society St. Petersburg, 23(488-517), 601-611.
  • Dogan, M., Yumrutas, O., Saygideger, S., Korkunc, M., Gulnaz, O., & Sokmen, A. (2010). Effects of bisphenol A and tetrabromobisphenol A on chickpea roots in germination stage. American-Eurasian Journal of Agricultural & Environmental Sciences, 9, 186-192.
  • Eskin, B., Ozyigit, I. I., Dogan, I., Altay, V., Demir, G., & Serin, M. (2013). Germination physiology and autecology of Centaurea kilaea Boiss. from Turkey. Sains Malaysiana, 42(10), 1473-1482.
  • Ferrara, G., Loffredo, E., & Senesi, N. (2006). Phytotoxic, clastogenic and bioaccumulation effects of the environmental endocrine disruptor bisphenol A in various crops grown hydroponically. Planta, 223, 910-916.
  • Fu, W., Zheng, X., Chen, X., Wang, W., Liu, A., Ji, J., ... & Guan, C. (2023). The potential roles of carotenoids in enhancing phytoremediation of bisphenol A contaminated soil by promoting plant physiology and modulating rhizobacterial community of tobacco. Chemosphere, 316, 137807.
  • Hanumappa, M., Pratt, L. H., Cordonnier-Pratt, M. M., & Deitzer, G. F. (1999). A photoperiod-insensitive barley line contains a light-labile phytochrome B. Plant Physiology, 119(3), 1033-1040.
  • Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. vol. 347. Berkeley, CA: College of Agriculture, University of California, 32.
  • Jiao, L., Wang, L., Qiu, Z., Wang, Q., Zhou, Q., & Huang, X. (2015). Effects of bisphenol A on chlorophyll synthesis in soybean seedlings. Environmental Science and Pollution Research, 22, 5877-5886.
  • Jiao, L., Wang, L., Zhou, Q., & Huang, X. (2017). Stomatal and non-stomatal factors regulated the photosynthesis of soybean seedlings in the present of exogenous bisphenol A. Ecotoxicology and Environmental Safety, 145, 150-160.
  • Li, X., Wang, L., Wang, S., Yang, Q., Zhou, Q., & Huang, X. (2017). A preliminary analysis of the effects of bisphenol A on the plant root growth via changes in endogenous plant hormones. Ecotoxicology and Environmental Safety, 150, 152-158.
  • Li, Y. T., Liang, Y., Li, Y. N., Che, X. K., Zhao, S. J., Zhang, Z. S., & Gao, H. Y. (2018). Mechanisms by which Bisphenol A affect the photosynthetic apparatus in cucumber (Cucumis sativus L.) leaves. Scientific Reports, 8(1), 4253.
  • Melcer, H., & Klečka, G. (2011). Treatment of wastewaters containing bisphenol A: state of the science review. Water Environment Research, 83(7), 650-666.
  • Nie, L., Wang, L., Wang, Q., Wang, S., Zhou, Q., & Huang, X. (2015). Effects of bisphenol A on key enzymes in cellular respiration of soybean seedling roots. Environmental Toxicology and Chemistry, 34(10), 2363-2369.
  • Noureddin, M. I., Furumoto, T., Ishida, Y., & Fukui, H. (2004). Absorption and metabolism of bisphenol A, a possible endocrine disruptor, in the aquatic edible plant, water convolvulus (Ipomoea aquatica). Bioscience, Biotechnology, and Biochemistry, 68(6), 1398-1402.
  • Pan, W. J., Xiong, C., Wu, Q. P., Liu, J. X., Liao, H. M., Chen, W., ... & Zheng, L. (2013). Effect of BPA on the germination, root development, seedling growth and leaf differentiation under different light conditions in Arabidopsis thaliana. Chemosphere, 93(10), 2585-2592.
  • Qiu, Z., Wang, L., & Zhou, Q. (2013). Effects of bisphenol A on growth, photosynthesis and chlorophyll fluorescence in above-ground organs of soybean seedlings. Chemosphere, 90(3), 1274-1280.
  • Saraswat, A., Ram, S., Sharma, S., Chawla, R., Khardia, N., Chauhan, D., ... & Behera, B. (2024). EDCs exposure-induced alteration in the germination, growth, and physiological trait of the plant. In: Kumari A., Rajput V. D., Mandzhieva S. S., Minkina T., van Hullebusch E. (eds) Emerging Contaminants (pp. 159-177). Woodhead Publishing.
  • Siddqiui, S., Alkahtani, M. A., Al Ghamdy, H. A., Alqahtani, W. S. S., & Alquyr, S. M. (2022). Phytotoxic effects of bisphenol a on growth indicants and chlorophyll content of Pisum Sativum L. Bangladesh Journal of Botany, 51(2), 237-245.
  • Terouchi, N., Takano, K., Nakamura, Y., Enomoto, K., Hosoya, N., & Nishinari, N. (2004). Bisphenol A stimulates growth and shoot differentiation in plants. plant Biotechnology, 21(4), 307-308.
  • Tian, Y. S., Jin, X. F., Fu, X. Y., Zhao, W., Han, H. J., Zhu, B., & Yao, Q. H. (2014). Microarray analysis of differentially expressed gene responses to bisphenol A in Arabidopsis. The Journal of Toxicological Sciences, 39(4), 671-679.
  • Tsai, W. T. (2006). Human health risk on environmental exposure to Bisphenol-A: a review. Journal of Environmental Science and Health Part C, 24(2), 225-255.
  • Wang, L., Xue, J., & Kannan, K. (2015). Widespread occurrence and accumulation of bisphenol A diglycidyl ether (BADGE), bisphenol F diglycidyl ether (BFDGE) and their derivatives in human blood and adipose fat. Environmental science & technology, 49(5), 3150-3157.
  • Xiao, C., Wang, L., Hu, D., Zhou, Q., & Huang, X. (2019). Effects of exogenous bisphenol A on the function of mitochondria in root cells of soybean (Glycine max L.) seedlings. Chemosphere, 222, 619-627.
  • Xiao, C., Wang, L., Zhou, Q., & Huang, X. (2020). Hazards of bisphenol A (BPA) exposure: a systematic review of plant toxicology studies. Journal of Hazardous Materials, 384, 121488.
  • Vujčić Bok, V., Gerić, M., Gajski, G., Gagić, S., & Domijan, A. M. (2023). Phytotoxicity of bisphenol a to allium cepa root cells is mediated through growth hormone gibberellic acid and reactive oxygen species. Molecules, 28(5), 2046.
  • Zaborowska, M., Wyszkowska, J., Borowik, A., & Kucharski, J. (2023). Bisphenols—a threat to the natural environment. Materials, 16(19), 6500.
  • Zhang, J., Wang, L., Li, M., Jiao, L., Zhou, Q., & Huang, X. (2015). Effects of bisphenol A on chlorophyll fluorescence in five plants. Environmental Science and Pollution Research, 22, 17724-17732.
  • Zhang, T., Xue, J., Gao, C. Z., Qiu, R. L., Li, Y. X., Li, X., ... & Kannan, K. (2016). Urinary concentrations of bisphenols and their association with biomarkers of oxidative stress in people living near e-waste recycling facilities in China. Environmental science & technology, 50(7), 4045-4053.
Year 2024, Volume: 5 Issue: 2, 115 - 121, 30.08.2024
https://doi.org/10.51753/flsrt.1453571

Abstract

References

  • Abraham, A., & Chakraborty, P. (2020). A review on sources and health impacts of bisphenol A. Reviews on Environmental Health, 35(2), 201-210.
  • Adamakis, I. D. S., Panteris, E., Cherianidou, A., & Eleftheriou, E. P. (2013). Effects of bisphenol A on the microtubule arrays in root meristematic cells of Pisum sativum L. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 750(1-2), 111-120.
  • Akbay, P., Basaran, A. A., Undeger, U., & Basaran, N. (2003). In vitro immunomodulatory activity of flavonoid glycosides from Urtica dioica L. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 17(1), 34-37.
  • Ali, I., Liu, B., Farooq, M. A., Islam, F., Azizullah, A., Yu, C., ... & Gan, Y. (2016). Toxicological effects of bisphenol A on growth and antioxidant defense system in Oryza sativa as revealed by ultrastructure analysis. Ecotoxicology and environmental Safety, 124, 277-284.
  • Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1.
  • Babu, S., Uppu, S., Claville, M. O., & Uppu, R. M. (2013). Prooxidant actions of bisphenol A (BPA) phenoxyl radicals: implications to BPA-related oxidative stress and toxicity. Toxicology Mechanisms and Methods, 23(4), 273-280.
  • Chen, D., Kannan, K., Tan, H., Zheng, Z., Feng, Y. L., Wu, Y., & Widelka, M. (2016). Bisphenol analogues other than BPA: environmental occurrence, human exposure, and toxicity-a review. Environmental Science & Technology, 50(11), 5438-5453.
  • Dalar, A., Türker, M., & Konczak, I. (2012). Antioxidant capacity and phenolic constituents of Malva neglecta Wallr. and Plantago lanceolata L. from Eastern Anatolia Region of Turkey. Journal of herbal medicine, 2(2), 42-51.
  • Dalar, A., & Konczak, I. (2013). Phenolic contents, antioxidant capacities and inhibitory activities against key metabolic syndrome relevant enzymes of herbal teas from Eastern Anatolia. Industrial Crops and Products, 44, 383-390.
  • Dianin, A. P. (1891). Condensation of ketones with phenols. Zhurnal Russkogo Fiziko-Khimicheskogo Obshchestva. Russian Physics and Chemistry Society St. Petersburg, 23(488-517), 601-611.
  • Dogan, M., Yumrutas, O., Saygideger, S., Korkunc, M., Gulnaz, O., & Sokmen, A. (2010). Effects of bisphenol A and tetrabromobisphenol A on chickpea roots in germination stage. American-Eurasian Journal of Agricultural & Environmental Sciences, 9, 186-192.
  • Eskin, B., Ozyigit, I. I., Dogan, I., Altay, V., Demir, G., & Serin, M. (2013). Germination physiology and autecology of Centaurea kilaea Boiss. from Turkey. Sains Malaysiana, 42(10), 1473-1482.
  • Ferrara, G., Loffredo, E., & Senesi, N. (2006). Phytotoxic, clastogenic and bioaccumulation effects of the environmental endocrine disruptor bisphenol A in various crops grown hydroponically. Planta, 223, 910-916.
  • Fu, W., Zheng, X., Chen, X., Wang, W., Liu, A., Ji, J., ... & Guan, C. (2023). The potential roles of carotenoids in enhancing phytoremediation of bisphenol A contaminated soil by promoting plant physiology and modulating rhizobacterial community of tobacco. Chemosphere, 316, 137807.
  • Hanumappa, M., Pratt, L. H., Cordonnier-Pratt, M. M., & Deitzer, G. F. (1999). A photoperiod-insensitive barley line contains a light-labile phytochrome B. Plant Physiology, 119(3), 1033-1040.
  • Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. vol. 347. Berkeley, CA: College of Agriculture, University of California, 32.
  • Jiao, L., Wang, L., Qiu, Z., Wang, Q., Zhou, Q., & Huang, X. (2015). Effects of bisphenol A on chlorophyll synthesis in soybean seedlings. Environmental Science and Pollution Research, 22, 5877-5886.
  • Jiao, L., Wang, L., Zhou, Q., & Huang, X. (2017). Stomatal and non-stomatal factors regulated the photosynthesis of soybean seedlings in the present of exogenous bisphenol A. Ecotoxicology and Environmental Safety, 145, 150-160.
  • Li, X., Wang, L., Wang, S., Yang, Q., Zhou, Q., & Huang, X. (2017). A preliminary analysis of the effects of bisphenol A on the plant root growth via changes in endogenous plant hormones. Ecotoxicology and Environmental Safety, 150, 152-158.
  • Li, Y. T., Liang, Y., Li, Y. N., Che, X. K., Zhao, S. J., Zhang, Z. S., & Gao, H. Y. (2018). Mechanisms by which Bisphenol A affect the photosynthetic apparatus in cucumber (Cucumis sativus L.) leaves. Scientific Reports, 8(1), 4253.
  • Melcer, H., & Klečka, G. (2011). Treatment of wastewaters containing bisphenol A: state of the science review. Water Environment Research, 83(7), 650-666.
  • Nie, L., Wang, L., Wang, Q., Wang, S., Zhou, Q., & Huang, X. (2015). Effects of bisphenol A on key enzymes in cellular respiration of soybean seedling roots. Environmental Toxicology and Chemistry, 34(10), 2363-2369.
  • Noureddin, M. I., Furumoto, T., Ishida, Y., & Fukui, H. (2004). Absorption and metabolism of bisphenol A, a possible endocrine disruptor, in the aquatic edible plant, water convolvulus (Ipomoea aquatica). Bioscience, Biotechnology, and Biochemistry, 68(6), 1398-1402.
  • Pan, W. J., Xiong, C., Wu, Q. P., Liu, J. X., Liao, H. M., Chen, W., ... & Zheng, L. (2013). Effect of BPA on the germination, root development, seedling growth and leaf differentiation under different light conditions in Arabidopsis thaliana. Chemosphere, 93(10), 2585-2592.
  • Qiu, Z., Wang, L., & Zhou, Q. (2013). Effects of bisphenol A on growth, photosynthesis and chlorophyll fluorescence in above-ground organs of soybean seedlings. Chemosphere, 90(3), 1274-1280.
  • Saraswat, A., Ram, S., Sharma, S., Chawla, R., Khardia, N., Chauhan, D., ... & Behera, B. (2024). EDCs exposure-induced alteration in the germination, growth, and physiological trait of the plant. In: Kumari A., Rajput V. D., Mandzhieva S. S., Minkina T., van Hullebusch E. (eds) Emerging Contaminants (pp. 159-177). Woodhead Publishing.
  • Siddqiui, S., Alkahtani, M. A., Al Ghamdy, H. A., Alqahtani, W. S. S., & Alquyr, S. M. (2022). Phytotoxic effects of bisphenol a on growth indicants and chlorophyll content of Pisum Sativum L. Bangladesh Journal of Botany, 51(2), 237-245.
  • Terouchi, N., Takano, K., Nakamura, Y., Enomoto, K., Hosoya, N., & Nishinari, N. (2004). Bisphenol A stimulates growth and shoot differentiation in plants. plant Biotechnology, 21(4), 307-308.
  • Tian, Y. S., Jin, X. F., Fu, X. Y., Zhao, W., Han, H. J., Zhu, B., & Yao, Q. H. (2014). Microarray analysis of differentially expressed gene responses to bisphenol A in Arabidopsis. The Journal of Toxicological Sciences, 39(4), 671-679.
  • Tsai, W. T. (2006). Human health risk on environmental exposure to Bisphenol-A: a review. Journal of Environmental Science and Health Part C, 24(2), 225-255.
  • Wang, L., Xue, J., & Kannan, K. (2015). Widespread occurrence and accumulation of bisphenol A diglycidyl ether (BADGE), bisphenol F diglycidyl ether (BFDGE) and their derivatives in human blood and adipose fat. Environmental science & technology, 49(5), 3150-3157.
  • Xiao, C., Wang, L., Hu, D., Zhou, Q., & Huang, X. (2019). Effects of exogenous bisphenol A on the function of mitochondria in root cells of soybean (Glycine max L.) seedlings. Chemosphere, 222, 619-627.
  • Xiao, C., Wang, L., Zhou, Q., & Huang, X. (2020). Hazards of bisphenol A (BPA) exposure: a systematic review of plant toxicology studies. Journal of Hazardous Materials, 384, 121488.
  • Vujčić Bok, V., Gerić, M., Gajski, G., Gagić, S., & Domijan, A. M. (2023). Phytotoxicity of bisphenol a to allium cepa root cells is mediated through growth hormone gibberellic acid and reactive oxygen species. Molecules, 28(5), 2046.
  • Zaborowska, M., Wyszkowska, J., Borowik, A., & Kucharski, J. (2023). Bisphenols—a threat to the natural environment. Materials, 16(19), 6500.
  • Zhang, J., Wang, L., Li, M., Jiao, L., Zhou, Q., & Huang, X. (2015). Effects of bisphenol A on chlorophyll fluorescence in five plants. Environmental Science and Pollution Research, 22, 17724-17732.
  • Zhang, T., Xue, J., Gao, C. Z., Qiu, R. L., Li, Y. X., Li, X., ... & Kannan, K. (2016). Urinary concentrations of bisphenols and their association with biomarkers of oxidative stress in people living near e-waste recycling facilities in China. Environmental science & technology, 50(7), 4045-4053.
There are 37 citations in total.

Details

Primary Language English
Subjects Plant Physiology
Journal Section Research Articles
Authors

Kurtulus Adıgüzel 0009-0007-6136-7008

Mehmet Emre Erez 0000-0002-4944-365X

Early Pub Date August 30, 2024
Publication Date August 30, 2024
Submission Date March 18, 2024
Acceptance Date July 14, 2024
Published in Issue Year 2024 Volume: 5 Issue: 2

Cite

APA Adıgüzel, K., & Erez, M. E. (2024). Investigation of bisphenol A (BPA) effects on germination and development of wheat and chickpea. Frontiers in Life Sciences and Related Technologies, 5(2), 115-121. https://doi.org/10.51753/flsrt.1453571

Creative Commons License

Frontiers in Life Sciences and Related Technologies is licensed under a Creative Commons Attribution 4.0 International License.