Research Article
BibTex RIS Cite

Structural and magnetic properties of novel Fe1.5VGe and parent Fe2VGe alloys

Year 2025, Volume: 6 Issue: 3, 172 - 175
https://doi.org/10.51753/flsrt.1697129

Abstract

The present study explores the structural, morphological, and magnetic characteristics of the Fe1.5VGe Heusler alloy, which has not been previously reported in the literature. The sample was characterized using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and a Physical Property Measurement System (PPMS). An L2₁-type crystal structure, consistent with the existing literature, was observed through the analysis of XRD measurements. SEM images showed crack-like features and pores on the surface. Almost no coercivity was observed in the field-dependent magnetic measurements (M-H) conducted at constant temperatures of 5 K and 300 K. The 5 K (M-H) measurement showed easy saturation without requiring high fields. This result suggests that the Fe1.5VGe sample could be a promising candidate for industrial applications, especially in electronics.

Supporting Institution

Alabama State University

Thanks

This research did not receive any specific grant. I would like to express my gratitude to Alabama State University for providing laboratory facilities. I also thank Prof. Dr. Cihat Boyraz for his valuable discussions.

References

  • Ashkin, A. (1978). Trapping of atoms by resonance radiation pressure. Physical Review Letters, 40(12), 729-735.
  • Ashkin, A., Dziedzic, J. M., & Yamane, T. (1987). Optical trapping and manipulation of single cells using infrared laser beams. Nature, 330(6150), 769-780.
  • Avakyants, A. A., Esin, V. D., Kazmin, D. Y., Orlova, N. N., Timonina, A. V., Kolesnikov, N. N., & Deviatov, E. V. (2025). Spin-valve effect for spin-polarized surface states in topological semimetals. JETP Letters, 121(9), 727-734.
  • Boyraz, C., Güler, A., Aksu, P., & Arda, L. (2022). The concentration effects on structural and magnetic properties of Fe₂V₁₋ₓMnₓGe Heusler alloys. SN Applied Sciences, 4, 201.
  • Broussard, P. R., Qadri, S. B., Browning, V. M., & Cestone, V. C. (1997). X-ray photoemission spectroscopy of La₀․₆₇Ca₀․₃₃MnO₃ films. Applied Surface Science, 115(1-2), 80-86.
  • Caballero, J. A., Reilly, A. C., Hao, Y., Bass, J., Pratt, W. P., Petroff, F., & Childress, J. R. (1999). Monocrystalline half-metallic NiMnSb thin films. Journal of Magnetism and Magnetic Materials, 55(1-2), 198-199.
  • Cobos-Puc, L. E., Rodríguez-Salazar, M. D. C., Silva-Belmares, S. Y., & Aguayo-Morales, H. (2025). Nanoparticle-based strategies to enhance catecholaminergic drug delivery for neuropsychiatric disorders: Advances, challenges, and therapeutic opportunities. Future Pharmacology, 5(3), 51.
  • Cugat, O., Jérôme, D., & Gilbert, R. (2003). Magnetic micro-actuators and systems (MAGMAS). IEEE Transactions on Magnetics, 39(6), 3607-3612.
  • De Groot, R. A., Mueller, F. M., van Engen, R. J., & Buschow, K. H. J. (1983). New class of materials: Half-metallic ferromagnets. Physical Review Letters, 50(25), 2024-2027.
  • Gao, D., Ding, W., Nieto-Vesperinas, M., Ding, X., Rahman, M., Zhang, T., et al. (2017). Optical manipulation from the microscale to the nanoscale: Fundamentals, advances, and prospects. Light: Science & Applications, 6(9), e17039.
  • Ghanbarzadeh-Dagheyan, A., Jalili, N., & Ahmadian, M. T. (2021). A holistic survey on mechatronic systems in micro/nano scale with challenges and applications. J. Micro-Bio Robot., 17(1), 1-22.
  • Gössler, M., Zehner, J., Huhnstock, R., Röder, F., Ehrler, R., Hellwig, O., Ehresmann, A., & Leistner, K. (2025). Reversible magneto-ionic control of exchange bias in coupled spin-valve-like heterostructures. ACS Applied Materials & Interfaces, 17(35), 49671-49682.
  • Heusler, F., Starck, W., & Haupt, E. (1903). Über magnetische Manganlegierungen. Verh. Dtsch. Phys. Ges. 12, 219-223.
  • Kim, J. W., Jeong, H. K., Southard, K. M., Jun, Y. W., & Cheon, J. (2018). Magnetic nanotweezers for interrogating biological processes in space and time. Accounts of Chemical Research, 51(4), 839-844.
  • Kuzha, V., Radhakrishnan, K., Dinesh, A., Panneerselvam, K., Gnanasekaran, L., Mohanavel, V., & Jaganathan, S. K. (2025). Magnetic nanoparticle–polymer nanocomposites for enhanced magnetic resonance imaging (MRI) contrast agents: A review. Semiconductors, 59(1), 77-90.
  • Kübler, J., Williams, A. R., & Sommers, C. B. (1983). Formation and coupling of magnetic moments in Heusler alloys. Physical Review B, 28(4), 1745-1755.
  • Letokhov, V. S., Minogin, V. G., & Pavlik, B. D. (1976). Cooling and trapping of atoms and molecules by a resonant laser field. Optics Communications, 19(1), 72-75.
  • MacDonald, M. P., Spalding, G. C., & Dholakia, K. (2003). Microfluidic sorting in an optical lattice. Nature, 426(6965), 421-424.
  • Mahat, R., Shambhu, K. C., Wines, D., Ersan, F., Regmi, S., Karki, U., Gupta, A., & LeClair, P. (2020). Tuneable structure and magnetic properties in Fe₃−ₓVₓGe alloys. Journal of Alloys and Compounds, 830, 154403.
  • Nerella, M., Macherla, N., Suresh, M. B., Bathulapalli, S., Koutavarapu, R., & Shim, J. (2025). Exploring ferromagnetic behaviour and dielectric properties of Fe-doped SnSe for spintronic applications. Journal of Materials Science: Materials in Electronics, 36(20), 1222-1233.
  • Ohno, Y., Young, D. K., Beschoten, B., Matsukura, F., Ohno, F., & Awschalom, D. D. (1999). Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature, 402(6763), 790-792.
  • Panda, J., & Das, D. (2025). Superparamagnetic iron oxide nanoparticle-based nanosystems for cancer theranostics. Global Translational Medicine, 4(2), 31-50.
  • Prinz, G. A. (1998). Magnetoelectronics. Science, 282(5394), 1660-1663.
  • Rajbanshi, D., Brahma, B., Sarkar, S. C., Singha, K. K., & Srivastava, S. K. (2025). DC sputtered CoTb/Cu/CoTb spin valve films. Journal of Electronic Materials, 54(5), 4130-4142.
  • Rathore, R. S., Santarao, K., Botcha, A., & Dvivedi, A. (2025). Investigations on tool electrode wear during ultrasonic-assisted ECDM process. Machining Science and Technology, 29(1), 93-107.
  • Schmidt, G., Ferrand, D., Molenkamp, L. W., Filip, A. T., & van Wees, B. J. (2000). Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Physical Review B, 62(8), R4790-R4793.
  • Soulen, R. J., Byers, J. M., Osofsky, M. S., Nadgorny, B., Ambrose, T., Cheng, S. F., Broussard, P. R., Tanaka, C. T., Nowak, J., Moodera, J. S., Barry, A., & Dynes, R. C. (1998). Measuring the spin polarization of a metal with a superconducting point contact. Science, 282(5386), 85-88.
  • Wolf, S. A., Awschalom, D. D., Buhrman, R. A., Daughton, J. M., von Molnár, S., Roukes, M. L., Chtchelkanova, A. Y., & Treger, D. M. (2001). Spintronics: A spin-based electronics vision for the future. Science, 294(5546), 1488-1495.
  • Xu, X. T., Liu, Y. L., & Qu, Z. (2025). Giant self spin-valve effect in the kagome helimagnet. Nature Communications, 16(1), 2630.
  • Yao, F. R., Multian, V., Watanabe, K., Taniguchi, T., Gutiérrez-Lezama, I., & Morpurgo, A. F. (2025). Spin-valve effect in junctions with a single ferromagnet. Nano Letters, 25(9), 3549-3555.
  • Zurnansyah, J., Jayanti, P. D., Mahardhika, L. J., Kusumah, H. P., Ardiyanti, H., Wibowo, N. A., Istiqomah, N. I., Asri, N. S., Angel, J. J., & Suharyadi, E. (2024). Real-time biomolecule detection using GMR chip-based sensor with green-synthesized Fe₃O₄/rGO nanocomposites as magnetic labels. Sensors and Actuators A: Physical, 345, 115493.

Structural and magnetic properties of novel Fe1.5VGe and parent Fe2VGe alloys

Year 2025, Volume: 6 Issue: 3, 172 - 175
https://doi.org/10.51753/flsrt.1697129

Abstract

The present study explores the structural, morphological, and magnetic characteristics of the Fe1.5VGe Heusler alloy, which has not been previously reported in the literature. The sample was characterized using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and a Physical Property Measurement System (PPMS). An L2₁-type crystal structure, consistent with the existing literature, was observed through the analysis of XRD measurements. SEM images showed crack-like features and pores on the surface. Almost no coercivity was observed in the field-dependent magnetic measurements (M-H) conducted at constant temperatures of 5 K and 300 K. The 5 K (M-H) measurement showed easy saturation without requiring high fields. This result suggests that the Fe1.5VGe sample could be a promising candidate for industrial applications, especially in electronics.

Supporting Institution

Alabama State University

Thanks

This research did not receive any specific grant. I would like to express my gratitude to Alabama State University for providing laboratory facilities. I also thank Prof. Dr. Cihat Boyraz for his valuable discussions.

References

  • Ashkin, A. (1978). Trapping of atoms by resonance radiation pressure. Physical Review Letters, 40(12), 729-735.
  • Ashkin, A., Dziedzic, J. M., & Yamane, T. (1987). Optical trapping and manipulation of single cells using infrared laser beams. Nature, 330(6150), 769-780.
  • Avakyants, A. A., Esin, V. D., Kazmin, D. Y., Orlova, N. N., Timonina, A. V., Kolesnikov, N. N., & Deviatov, E. V. (2025). Spin-valve effect for spin-polarized surface states in topological semimetals. JETP Letters, 121(9), 727-734.
  • Boyraz, C., Güler, A., Aksu, P., & Arda, L. (2022). The concentration effects on structural and magnetic properties of Fe₂V₁₋ₓMnₓGe Heusler alloys. SN Applied Sciences, 4, 201.
  • Broussard, P. R., Qadri, S. B., Browning, V. M., & Cestone, V. C. (1997). X-ray photoemission spectroscopy of La₀․₆₇Ca₀․₃₃MnO₃ films. Applied Surface Science, 115(1-2), 80-86.
  • Caballero, J. A., Reilly, A. C., Hao, Y., Bass, J., Pratt, W. P., Petroff, F., & Childress, J. R. (1999). Monocrystalline half-metallic NiMnSb thin films. Journal of Magnetism and Magnetic Materials, 55(1-2), 198-199.
  • Cobos-Puc, L. E., Rodríguez-Salazar, M. D. C., Silva-Belmares, S. Y., & Aguayo-Morales, H. (2025). Nanoparticle-based strategies to enhance catecholaminergic drug delivery for neuropsychiatric disorders: Advances, challenges, and therapeutic opportunities. Future Pharmacology, 5(3), 51.
  • Cugat, O., Jérôme, D., & Gilbert, R. (2003). Magnetic micro-actuators and systems (MAGMAS). IEEE Transactions on Magnetics, 39(6), 3607-3612.
  • De Groot, R. A., Mueller, F. M., van Engen, R. J., & Buschow, K. H. J. (1983). New class of materials: Half-metallic ferromagnets. Physical Review Letters, 50(25), 2024-2027.
  • Gao, D., Ding, W., Nieto-Vesperinas, M., Ding, X., Rahman, M., Zhang, T., et al. (2017). Optical manipulation from the microscale to the nanoscale: Fundamentals, advances, and prospects. Light: Science & Applications, 6(9), e17039.
  • Ghanbarzadeh-Dagheyan, A., Jalili, N., & Ahmadian, M. T. (2021). A holistic survey on mechatronic systems in micro/nano scale with challenges and applications. J. Micro-Bio Robot., 17(1), 1-22.
  • Gössler, M., Zehner, J., Huhnstock, R., Röder, F., Ehrler, R., Hellwig, O., Ehresmann, A., & Leistner, K. (2025). Reversible magneto-ionic control of exchange bias in coupled spin-valve-like heterostructures. ACS Applied Materials & Interfaces, 17(35), 49671-49682.
  • Heusler, F., Starck, W., & Haupt, E. (1903). Über magnetische Manganlegierungen. Verh. Dtsch. Phys. Ges. 12, 219-223.
  • Kim, J. W., Jeong, H. K., Southard, K. M., Jun, Y. W., & Cheon, J. (2018). Magnetic nanotweezers for interrogating biological processes in space and time. Accounts of Chemical Research, 51(4), 839-844.
  • Kuzha, V., Radhakrishnan, K., Dinesh, A., Panneerselvam, K., Gnanasekaran, L., Mohanavel, V., & Jaganathan, S. K. (2025). Magnetic nanoparticle–polymer nanocomposites for enhanced magnetic resonance imaging (MRI) contrast agents: A review. Semiconductors, 59(1), 77-90.
  • Kübler, J., Williams, A. R., & Sommers, C. B. (1983). Formation and coupling of magnetic moments in Heusler alloys. Physical Review B, 28(4), 1745-1755.
  • Letokhov, V. S., Minogin, V. G., & Pavlik, B. D. (1976). Cooling and trapping of atoms and molecules by a resonant laser field. Optics Communications, 19(1), 72-75.
  • MacDonald, M. P., Spalding, G. C., & Dholakia, K. (2003). Microfluidic sorting in an optical lattice. Nature, 426(6965), 421-424.
  • Mahat, R., Shambhu, K. C., Wines, D., Ersan, F., Regmi, S., Karki, U., Gupta, A., & LeClair, P. (2020). Tuneable structure and magnetic properties in Fe₃−ₓVₓGe alloys. Journal of Alloys and Compounds, 830, 154403.
  • Nerella, M., Macherla, N., Suresh, M. B., Bathulapalli, S., Koutavarapu, R., & Shim, J. (2025). Exploring ferromagnetic behaviour and dielectric properties of Fe-doped SnSe for spintronic applications. Journal of Materials Science: Materials in Electronics, 36(20), 1222-1233.
  • Ohno, Y., Young, D. K., Beschoten, B., Matsukura, F., Ohno, F., & Awschalom, D. D. (1999). Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature, 402(6763), 790-792.
  • Panda, J., & Das, D. (2025). Superparamagnetic iron oxide nanoparticle-based nanosystems for cancer theranostics. Global Translational Medicine, 4(2), 31-50.
  • Prinz, G. A. (1998). Magnetoelectronics. Science, 282(5394), 1660-1663.
  • Rajbanshi, D., Brahma, B., Sarkar, S. C., Singha, K. K., & Srivastava, S. K. (2025). DC sputtered CoTb/Cu/CoTb spin valve films. Journal of Electronic Materials, 54(5), 4130-4142.
  • Rathore, R. S., Santarao, K., Botcha, A., & Dvivedi, A. (2025). Investigations on tool electrode wear during ultrasonic-assisted ECDM process. Machining Science and Technology, 29(1), 93-107.
  • Schmidt, G., Ferrand, D., Molenkamp, L. W., Filip, A. T., & van Wees, B. J. (2000). Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Physical Review B, 62(8), R4790-R4793.
  • Soulen, R. J., Byers, J. M., Osofsky, M. S., Nadgorny, B., Ambrose, T., Cheng, S. F., Broussard, P. R., Tanaka, C. T., Nowak, J., Moodera, J. S., Barry, A., & Dynes, R. C. (1998). Measuring the spin polarization of a metal with a superconducting point contact. Science, 282(5386), 85-88.
  • Wolf, S. A., Awschalom, D. D., Buhrman, R. A., Daughton, J. M., von Molnár, S., Roukes, M. L., Chtchelkanova, A. Y., & Treger, D. M. (2001). Spintronics: A spin-based electronics vision for the future. Science, 294(5546), 1488-1495.
  • Xu, X. T., Liu, Y. L., & Qu, Z. (2025). Giant self spin-valve effect in the kagome helimagnet. Nature Communications, 16(1), 2630.
  • Yao, F. R., Multian, V., Watanabe, K., Taniguchi, T., Gutiérrez-Lezama, I., & Morpurgo, A. F. (2025). Spin-valve effect in junctions with a single ferromagnet. Nano Letters, 25(9), 3549-3555.
  • Zurnansyah, J., Jayanti, P. D., Mahardhika, L. J., Kusumah, H. P., Ardiyanti, H., Wibowo, N. A., Istiqomah, N. I., Asri, N. S., Angel, J. J., & Suharyadi, E. (2024). Real-time biomolecule detection using GMR chip-based sensor with green-synthesized Fe₃O₄/rGO nanocomposites as magnetic labels. Sensors and Actuators A: Physical, 345, 115493.
There are 31 citations in total.

Details

Primary Language English
Subjects Material Physics
Journal Section Research Articles
Authors

Adil Güler 0000-0002-5345-8731

Publication Date November 25, 2025
Submission Date May 11, 2025
Acceptance Date October 12, 2025
Published in Issue Year 2025 Volume: 6 Issue: 3

Cite

APA Güler, A. (n.d.). Structural and magnetic properties of novel Fe1.5VGe and parent Fe2VGe alloys. Frontiers in Life Sciences and Related Technologies, 6(3), 172-175. https://doi.org/10.51753/flsrt.1697129

Creative Commons License

Frontiers in Life Sciences and Related Technologies is licensed under a Creative Commons Attribution 4.0 International License.