Review
BibTex RIS Cite

Orman amenajmanında optimizasyon için taksonomi: derleme ve değerlendirme

Year 2018, Volume: 68 Issue: 2, 122 - 135, 20.07.2018

Abstract

DOI: 10.26650/ forestist.2018.354789


Bu derlemede, orman amenajmanında
optimizasyon çalışmalarının sınıflandırılması için yeni bir taksonomi
geliştirilmiştir. Önerilen sınıflandırmada: çalışma şekli; model yapısı;
yöntem; modelleme tipi; problem amaçları, seviyesi ve tipi; plan tipi ve orman
kuruluşu dikkate alınmıştır. Orman amenajmanında optimizasyon yaklaşımlarına
kapsamlı bir genel bakış sunarak, literatürdeki 111 makaleyi sınıflandırmak
için önerilen taksonomiyi kullanılmıştır. Bu sınıflandırmaya göre, orman
amenajmanında optimizasyon literatüründeki bazı gelişmeler yeterince temsil
edilemeyebilir. Buna göre, kesim düzeni oluşturmaya ilişkin en çok çalışılan
deterministik modelleme ve en az çalışılan, risk ve belirsizlik ile ilgili
bulanık ve stokastik modelleme çalışmalarıdır.


References

  • Ager, A. A., Day, M. A., Vogler, K., 2016. Production possibility frontiers and socioecological tradeoffs for restoration of fire adapted forests. Journal of Environmental Management 176: 157-168.
  • Ager, A. A., Vaillant, N. M., Mcmahan, A., 2013. Restoration of fire in managed forests: a model to prioritize landscapes and analyze tradeoffs. Ecosphere 4(2): 1-19.
  • Alam, M. B., Shahi, C., Pulkki, R., 2014. Economic impact of enhanced forest inventory information and merchandizing yards in the forest product industry supply chain. Socio-Economic Planning Sciences 48 (3): 189-197.
  • Alvarez, P. P., Vera, J. R., 2014. Application of Robust Optimization to the Sawmill Planning Problem. Annals of Operations Research 219 (1): 457-475.
  • Ananda, J., Herath, G., 2003. The use of Analytic Hierarchy Process to incorporate stakeholder preferences into regional forest planning. Forest Policy and Economics 5(1): 13-26.
  • Ananda, J., Herath, G., 2009. A critical review of multi-criteria decision making methods with special reference to forest management and planning. Ecological Economics 68(10): 2535-2548.
  • Augustynczik, A.L.D., Arce, J.E., Yousefpour, R., Da Silva, A.C.L., 2016. Promoting harvesting stands connectivity and its economic implications in Brazilian forest plantations applying integer linear programming and simulated annealing. Forest Policy and Economics 73: 120-129.
  • Bagdon, B.A., Huang, C.H., Dewhurst, S., 2016. Managing for ecosystem services in northern Arizona ponderosa pine forests using a novel simulation-to-optimization methodology. Ecological Modelling 324: 11-27.
  • Baskent, E. Z., Celik, D. A., 2013. Forecasting forest development through modeling based on the legacy of forest structure over the past 43 years. Forest Systems 22(2): 232-240.
  • Baskent, E. Z., Keles, S., Kadiogullari, A. I., 2014. Challenges in developing and implementing a decision support systems (ETcAP) in forest management planning: a case study in Honaz and Ibradi, Turkey. Scandinavian Journal of Forest Research 29: 121-131.
  • Belavenutti, P. H., Da Silva, M., Arce, J. E., Loch, G. V., David, H. C., Fiorentin, L. D., 2016. Forest Harvest Scheduling Plan Integrated To The Road Network. Cerne 22(1): 69-75.
  • Bettinger, P., Boston, K., Siry, J. P., Grebner, D. L., 2010. Forest management and planning. Academic press. Bettinger, P., Demirci, M., Boston, K., 2015. Search reversion within s-metaheuristics: impacts illustrated with a forest planning problem. Silva Fennica 49(2): 1-20.
  • Bettinger, P., Tang, M. P., 2015. Tree-Level Harvest Optimization for Structure-Based Forest Management Based on the Species Mingling Index. Forests 6(4): 1121-1144.
  • Bilbao-Terol, A., Jimenez, M., Arenas-Parra, M., 2016. A group decision making model based on goal programming with fuzzy hierarchy: an application to regional forest planning. Annals of Operations Research 245(1-2): 137-162.
  • Bont, L., Heinimann, H. R., Church, R. L., 2014. Optimizing cable harvesting layout when using variable-length cable roads in central Europe. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 44(8): 949-960.
  • Borges, J. G., Garcia-Gonzalo, J., Bushenkov, V., Mcdill, M. E., Marques, S., Oliveira, M. M., 2014a. Addressing Multicriteria Forest Management With Pareto Frontier Methods: An Application in Portugal. Forest Science 60(1): 63-72.
  • Borges, P., Bergseng, E., Eid, T., Gobakken, T., 2015. Impact of maximum opening area constraints on profitability and biomass availability in forestry - a large, real world case. Silva Fennica 49 (5): 1-21.
  • Borges, P., Eid, T., Bergseng, E., 2014b. Applying simulated annealing using different methods for the neighborhood search in forest planning problems. European Journal of Operational Research 233(3): 700-710.
  • Borges, P., Martins, I., Bergseng, E., Eid, T., Gobakken, T., 2016. Effects of site productivity on forest harvest scheduling subject to green-up and maximum area restrictions. Scandinavian Journal of Forest Research 31(5): 507-516.
  • Bugalho, M. N., Dias, F. S., Brinas, B., Cerdeira, J. O., 2016. Using the high conservation value forest concept and Pareto optimization to identify areas maximizing biodiversity and ecosystem services in cork oak landscapes. Agroforestry Systems 90(1): 35-44. Burns, E. S., Toth, S. F., Haight, R. G., 2013. A modeling framework for life history-based conservation planning. Biological Conservation 158: 14-25.
  • Carvajal, R., Constantino, M., Goycoolea, M., Vielma, J.P., Weintraub, A., 2013. Imposing Connectivity Constraints in Forest Planning Models. Operations Research 61(4): 824-836.
  • Cerda, E., Martin-Barroso, D., 2013. Optimal control for forest management and conservation analysis in dehesa ecosystems. European Journal of Operational Research 227(3): 515-526.
  • Chen, S., Shahi, C., Chen, H. Y. H., 2016. Economic and ecological trade-off analysis of forest ecosystems: options for boreal forests. Environmental Reviews 24(3): 348-361.
  • Corrigan, E., Nieuwenhuis, M., 2016. A Linear Programming Model to Biophysically Assess Some Ecosystem Service Synergies and Trade-Offs in Two Irish Landscapes. Forests 7(7): 2-21.
  • De-Miguel, S., Bonet, J.A., Pukkala, T., De Aragon, J.M., 2014a. Impact of forest management intensity on landscape-level mushroom productivity: A regional model-based scenario analysis. Forest Ecology and Management 330: 218-227. De-Miguel, S., Pukkala, T., Yesil, A., 2014b. Integrating pine honeydew honey production into forest management optimization. European Journal of Forest Research 133(3): 423-432.
  • Dems, A., Rousseau, L. M., Frayret, J. M., 2015. Effects of different cut-to-length harvesting structures on the economic value of a wood procurement planning problem. Annals of Operations Research 232(1): 65-86. Diaz-Balteiro, L., Romero, C., 2008. Making forestry decisions with multiple criteria: A review and an assessment. Forest Ecology and Management 255(8): 3222-3241.
  • Dong, L., Bettinger, P., Liu, Z., Qin, H., Zhao, Y., 2016. Evaluating the neighborhood, hybrid and reversion search techniques of a simulated annealing algorithm in solving forest spatial harvest scheduling problems. Silva Fennica 50(4): 1-20.
  • Dong, L. B., Bettinger, P., Liu, Z. G., Qin, H. Y., 2015. A comparison of a neighborhood search technique for forest spatial harvest scheduling problems: A case study of the simulated annealing algorithm. Forest Ecology and Management 356: 124-135.
  • Dragicevic, A., Lobianco, A., Leblois, A., 2016. Forest planning and productivity-risk trade-off through the Markowitz mean-variance model. Forest Policy and Economics 64: 25-34.
  • Eyvindson, K., Cheng, Z., 2016. Implementing the conditional value at risk approach for even-flow forest management planning. Canadian Journal of Forest Research 46(5): 637-644.
  • Eyvindson, K., Kangas, A., 2014. Stochastic goal programming in forest planning. Canadian Journal of Forest Research 44(10): 1274-1280.
  • Eyvindson, K., Kangas, A., 2016a. Evaluating the required scenario set size for stochastic programming in forest management planning: incorporating inventory and growth model uncertainty. Canadian Journal of Forest Research 46(3): 340-347.
  • Eyvindson, K., Kangas, A., 2016b. Integrating risk preferences in forest harvest scheduling. Annals of Forest Science 73(2): 321-330. Ezquerro, M., Pardos, M., Diaz-Balteiro, L., 2016. Operational Research Techniques Used for Addressing Biodiversity Objectives into Forest Management: An Overview. Forests 7(10): 229. Fao, 2017. Guidelines for forest management planning.
  • Farrell, E. P., Führer, E., Ryan, D., Andersson, F., Hüttl, R., Piussi, P., 2000. European forest ecosystems: building the future on the legacy of the past. Forest Ecology and Management 132(1): 5-20.
  • Ferreira, L., Constantino, M., Borges, J. G., Garcia-Gonzalo, J., Barreiro, S., 2016. A climate change adaptive dynamic programming approach to optimize eucalypt stand management scheduling: a Portuguese application. Canadian Journal of Forest Research 46(8): 1000-1008.
  • Ferreira, L., Constantino, M. F., Borges, J. G., Garcia-Gonzalo, J., 2015. Addressing Wildfire Risk in a Landscape-Level Scheduling Model: An Application in Portugal. Forest Science 61(2): 266-277.
  • Feuerbacher, A., Siebold, M., Chhetri, A., Lippert, C., Sander, K., 2016. Increasing forest utilization within Bhutan’s forest conservation framework: The economic benefits of charcoal production. Forest Policy and Economics 73: 99-111.
  • Fotakis, D. G., 2015. Multi-objective spatial forest planning using self-organization. Ecological Informatics 29: 1-5.
  • Garcia-Gonzalo, J., Pais, C., Bachmatiuk, J., Weintraub, A., 2016. Accounting for climate change in a forest planning stochastic optimization model. Canadian Journal of Forest Research 46(9): 1111-1121.
  • Garcia-Gonzalo, J., Pukkala, T., Borges, J. G., 2014. Integrating fire risk in stand management scheduling. An application to Maritime pine stands in Portugal. Annals of Operations Research 219(1): 379-395.
  • Garcia-Prats, A., Del Campo, A. D., Pulido-Velazquez, M., 2016. A hydroeconomic modeling framework for optimal integrated management of forest and water. Water Resources Research 52(10): 8277-8294. Gautam, S., Lebel, L., Beaudoin, D., 2015. Value-adding through silvicultural flexibility: an operational level simulation study. Forestry 88(2): 213-223.
  • Gimenez, J. C., Bertomeu, M., Diaz-Balteiro, L., Romero, C., 2013. Optimal harvest scheduling in Eucalyptus plantations under a sustainability perspective. Forest Ecology and Management 291: 367-376.
  • Gonzalez-Sanchis, M. A., Del Campo, A. D., Molina, A. J., Fernandes, T., 2015. Modeling adaptive forest management of a semi-arid Mediterranean Aleppo pine plantation. Ecological Modelling 308: 34-44.
  • Gregory, R., Keeney, R. L., 1994. Creating policy alternatives using stakeholder values. Management Science 40(8): 1035-1048. Hahn, W. A., Hatl, F., Irland, L. C., Kohler, C., Moshammer, R., Knoke, T., 2014. Financially optimized management planning under risk aversion results in even-flow sustained timber yield. Forest Policy and Economics 42: 30-41.
  • Hartl, F., Hahn, A., Knoke, T., 2013. Risk-sensitive planning support for forest enterprises: The YAFO model. Computers and Electronics in Agriculture 94: 58-70.
  • Hartl, F., Knoke, T., 2014. The influence of the oil price on timber supply. Forest Policy and Economics 39: 32-42.
  • Hartl, F. H., Barka, I., Hahn, W. A., Hlasny, T., Irauschek, F., Knoke, T., Lexer, M. J., Griess, V. C., 2016. Multifunctionality in European mountain forests - an optimization under changing climatic conditions. Canadian Journal of Forest Research 46(2): 163-171. Hernandez, M., Gomez, T., Molina, J., Leon, M. A., Caballero, R., 2014. Efficiency in forest management: A multiobjective harvest scheduling model. Journal of Forest Economics 20(3): 236-251.
  • Hujala, T., Khadka, C., Wolfslehner, B., Vacik, H., 2013. Review. Supporting problem structuring with computer-based tools in participatory forest planning. Forest Systems 22(2): 270-281.
  • Jin, X. J., Pukkala, T., Li, F. R., 2016a. Fine-tuning heuristic methods for combinatorial optimization in forest planning. European Journal of Forest Research 135(4): 765-779. J in, X. J., Pukkala, T., Li, F. R., 2016b. A management planning system for even-aged and uneven-aged forests in northeast China. Journal of Forestry Research 27(4): 837-852.
  • Kangas, A., Nurmi, M., Rasinmaki, J., 2014. From a strategic to a tactical forest management plan using a hierarchic optimization approach. Scandinavian Journal of Forest Research 29: 154-165.
  • Kaspar, J., Marusak, R., Bettinger, P., 2016. Time Efficiency of Selected Types of Adjacency Constraints in Solving Unit Restriction Models. Forests 7(5): 1-14.
  • Kaya, A., Bettinger, P., Boston, K., Akbulut, R., Ucar, Z., Siry, J., Merry, K., Cieszewski, C., 2016. Optimisation in forest management. Current Forestry Reports 2(1): 1-17.
  • Kong, J.H., Ronnqvist, M., 2014. Coordination between strategic forest management and tactical logistic and production planning in the forestry supply chain. International Transactions in Operational Research 21(5): 703-735.
  • Konnyu, N., Toth, S.F., 2013. A cutting plane method for solving harvest scheduling models with area restrictions. European Journal of Operational Research 228(1): 236-248.
  • Konnyu, N., Toth, S.F., Mcdill, M.E., Rajasekaran, B., 2014. Temporal Connectivity of Mature Patches in Forest Planning Models. Forest Science 60(6): 1089-1099.
  • Kuhlmann, C.A., Martell, D.L., Wets, R.J.B., Woodruff, D.L., 2015. Generating Stochastic Ellipsoidal Forest and Wild land Fire Scar Scenarios for Strategic Forest Management Planning under Uncertainly. Forest Science 61(3): 494-508.
  • Lappi, J., Lempinen, R., 2014. A linear programming algorithm and software for forest-level planning problems including factories. Scandinavian Journal of Forest Research 29: 178-184.
  • Liu, W.Y., Lin, C.C., 2015. Spatial forest resource planning using a cultural algorithm with problem-specific information. Environmental Modelling & Software 71: 126-137.
  • Manso, R., Pukkala, T., Pardos, M., Miina, J., Calama, R., 2014. Modelling Pinus pinea forest management to attain natural regeneration under present and future climatic scenarios. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 44(3): 250-262.
  • Mansuy, N., Thiffault, E., Lemieux, S., Manka, F., Pare, D., Lebel, L., 2015. Sustainable biomass supply chains from salvage logging of fire-killed stands: A case study for wood pellet production in eastern Canada. Applied Energy 154: 62-73.
  • Marshalek, E.C., Ramage, B.S., Potts, M.D., 2014. Integrating harvest scheduling and reserve design to improve biodiversity conservation. Ecological Modelling 287: 27-35.
  • Martell, D.L., Gunn, E.A., Weintraub, A., 1998. Forest management challenges for operational researchers. European Journal of Operational Research 104 (1): 1-17.
  • Marusak, R., Kaspar, J., Hlavaty, R., Kotek, V., Kuzelka, K., Vopenka, P., 2015. Alternative Modelling Approach to Spatial Harvest Scheduling with Respect to Fragmentation of Forest Ecosystem. Environmental Management 56(5): 1134-1147.
  • Matthies, B.D., Valsta, L.T., 2016. Optimal forest species mixture with carbon storage and albedo effect for climate change mitigation. Ecological Economics 123: 95-105.
  • Memmah, M.M., Lescourret, F., Yao, X., Lavigne, C., 2015. Metaheuristics for agricultural land use optimization. A review. Agronomy for Sustainable Development 35(3): 975-998.
  • Monkkonen, M., Juutinen, A., Mazziotta, A., Miettinen, K., Podkopaev, D., Reunanen, P., Salminen, H., Tikkanen, O. P., 2014. Spatially dynamic forest management to sustain biodiversity and economic returns. Journal of Environmental Management 134: 80-89.
  • Moreira, J., Rodriguez, L. C. E., Caixeta, J. V., 2013. An Optimization Model to Integrate Forest Plantations and Connecting Corridors. Forest Science 59(6): 661-669.
  • Mur, R.J., Goetz, R.U., Xabadia, A., Cordoba, F., Gracia, C., 2014. Adapting the optimal selective-logging of Scots pine (Pinus sylvestris L.) stands in NE Spain to increasing CO2 concentrations. Journal of Forest Economics 20(3): 286-304.
  • Myllyviita, T., Hujala, T., Kangas, A., Eyvindson, K., Sironen, S., Leskinen, P., Kurttila, M., 2014. Mixing methods - assessment of potential benefits for natural resources planning. Scandinavian Journal of Forest Research 29: 20-29.
  • Najafi, A., Richards, E. W., 2013. Designing a Forest Road Network Using Mixed Integer Programming. Croatian Journal of Forest Engineering 34(1): 17-30.
  • Nakajima, E. T., Kanomata, H., Matsumoto, M., 2016. Visualization of optimized solution space using a simulation system for the development of local forest management planning. Annals of Forest Research 59(1): 117-128.
  • Neuner, S., Beinhofer, B., Knoke, T., 2013. The optimal tree species composition for a private forest enterprise - applying the theory of portfolio selection. Scandinavian Journal of Forest Research 28(1): 38-48.
  • Nghiem, N., 2015. Optimal forest management for timber value and carbon sequestration benefits in tropical planted forests: a case study of household foresters in Vietnam. Environment and Development Economics 20(6): 746-766.
  • Niinimaki, S., Tahvonen, O., Makela, A., Linkosalo, T., 2013. On the economics of Norway spruce stands and carbon storage. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 43(7): 637-648.
  • Nobre, S., Eriksson, L.O., Trubins, R., 2016. The use of decision support systems in forest management: analysis of forsys country reports. Forests 7(3): 72.
  • Nolet, P., Doyon, F., Messier, C., 2014. A new silvicultural approach to the management of uneven-aged Northern hardwoods: frequent low-intensity harvesting. Forestry 87(1): 39-48.
  • Ochoa, W. S., Paul, C., Castro, L. M., Valle, L., Knoke, T., 2016. Banning goats could exacerbate deforestation of the ecuadorian dry forest - how the effectiveness of conservation payments is influenced by productive use options. Erdkunde 70(1): 49-67.
  • Palma, C. D., Nelson, J. D., 2014. A Robust Model for Protecting Road-Building and Harvest-Scheduling Decisions from Timber Estimate Errors. Forest Science 60(1): 137-148.
  • Palma, C. D., Vergara, F. P., 2016. A Multiobjective Model for the Cutting Pattern Problem with Unclear Preferences. Forest Science 62(2): 220-226.
  • Palma, J. H. N., Paulo, J. A., Faias, S. P., Garcia-Gonzalo, J., Borges, J. G., Tome, M., 2015. Adaptive management and debarking schedule optimization of Quercus suber L. stands under climate change: case study in Chamusca, Portugal. Regional Environmental Change 15(8): 1569-1580.
  • Pasalodos-Tato, M., Makinen, A., Garcia-Gonzalo, J., Borges, J. G., Lamas, T., Eriksson, L. O., 2013. Review. Assessing uncertainty and risk in forest planning and decision support systems: review of classical methods and introduction of innovative approaches. Forest Systems 22(2): 282-303.
  • Pasalodos-Tato, M., Pukkala, T., Calama, R., Canellas, I., Sanchez-Gonzalez, M., 2016. Optimal management of Pinus pinea stands when cone and timber production are considered. European Journal of Forest Research 135(4): 607-619.
  • Pascual, A., Pukkala, T., Rodriguez, F., De-Miguel, S., 2016. Using Spatial Optimization to Create Dynamic Harvest Blocks from LiDAR-Based Small Interpretation Units. Forests 7(10): 220.
  • Pereira, S., Prieto, A., Calama, R., Diaz-Balteiro, L., 2015. Optimal management in Pinus pinea L. stands combining silvicultural schedules for timber and cone production. Silva Fennica 49 (3): 1-16.
  • Peura, M., Trivino, M., Mazziotta, A., Podkopaev, D., Juutinen, A., Monkkonen, M., 2016. Managing boreal forests for the simultaneous production of collectable goods and timber revenues. Silva Fennica 50(5): 1-17.
  • Pukkala, T., Lahde, E., Laiho, O., 2014. Optimizing any-aged management of mixed boreal forest under residual basal area constraints. Journal of Forestry Research 25(3): 627-636.
  • Rabotyagov, S. S., Toth, S. F., Ettl, G. J., 2013. Testing the Design Variables of ECOSEL: A Market Mechanism for Forest Ecosystem Services. Forest Science 59(3): 303-321.
  • Rammer, W., Schauflinger, C., Vacik, H., Palma, J.H.N., Garcia-Gonzalo, J., Borges, J.G., Lexer, M.J., 2014. A web-based ToolBox approach to support adaptive forest management under climate change. Scandinavian Journal of Forest Research 29: 96-107.
  • Repo, A., Ahtikoski, A., Liski, J., 2015. Cost of turning forest residue bioenergy to carbon neutral. Forest Policy and Economics 57: 12-21.
  • Robinson, A. P., Mclarin, M., Moss, I., 2016. A simple way to incorporate uncertainty and risk into forest harvest scheduling. Forest Ecology and Management 359: 11-18.
  • Rode, R., Leite, H. G., Binoti, D. H. B., Ribeiro, C., Souza, A. L., Cosenza, D. N., Boechat, C. P., 2016. Applying classical forest regulation methods to smallholdings with cooperative constraints. Cerne 22(2): 197-205.
  • Roessiger, J., Ficko, A., Clasen, C., Griess, V. C., Knoke, T., 2016. Variability in growth of trees in uneven-aged stands displays the need for optimizing diversified harvest diameters. European Journal of Forest Research 135(2): 283-295.
  • Ronnqvist, M., D’amours, S., Weintraub, A., Jofre, A., Gunn, E., Haight, R. G., Martell, D., Murray, A. T., Romero, C., 2015. Operations Research challenges in forestry: 33 open problems. Annals of Operations Research 232(1): 11-40.
  • Rönnqvist, M., 2003. Optimization in forestry. Mathematical Programming 97(1): 267-284.
  • Ruppert, J. L. W., Fortin, M. J., Gunn, E. A., Martell, D. L., 2016. Conserving woodland caribou habitat while maintaining timber yield: a graph theory approach. Canadian Journal of Forest Research 46(7): 914-923.
  • Segura, M., Ray, D., Maroto, C., 2014. Decision support systems for forest management: A comparative analysis and assessment. Computers and Electronics in Agriculture 101: 55-67.
  • Shahi, S., Pulkki, R., 2015. A simulation-based optimization approach to integrated inventory management of a sawlog supply chain with demand uncertainty. Canadian Journal of Forest Research 45(10): 1313-1326.
  • St John, R., Ohman, K., Toth, S. F., Sandstrom, P., Korosuo, A., Eriksson, L. O., 2016. Combining spatiotemporal corridor design for reindeer migration with harvest scheduling in Northern Sweden. Scandinavian Journal of Forest Research 31(7): 655-663.
  • Strimbu, B. M., Paun, M., 2013. Sensitivity of forest plan value to parameters of simulated annealing. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 43(1): 28-38.
  • Tahvonen, O., Pihlainen, S., Niinimaki, S., 2013. On the economics of optimal timber production in boreal Scots pine stands. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 43(8): 719-730.
  • Tahvonen, O., Ramo, J., 2016. Optimality of continuous cover vs. clear-cut regimes in managing forest resources. Canadian Journal of Forest Research 46(7): 891-901.
  • Tang, Y., Liu, M. Y., Wu, J. H., 2016. Effects of Thinning and Water Supply Manipulation on the Productivity of Pinus sylvestris var. mongolica in Northeastern China. Plos One 11(11): e0166109.
  • Toth, S. F., Mcdill, M. E., Konnyu, N., George, S., 2013. Testing the Use of Lazy Constraints in Solving Area-Based Adjacency Formulations of Harvest Scheduling Models. Forest Science 59(2): 157-176.
  • Trivino, M., Juutinen, A., Mazziotta, A., Miettinen, K., Podkopaev, D., Reunanen, P., Monkkonen, M., 2015. Managing a boreal forest landscape for providing timber, storing and sequestering carbon. Ecosystem Services 14: 179-189.
  • Uhde, B., Hahn, W. A., Griess, V. C., Knoke, T., 2015. Hybrid MCDA Methods to Integrate Multiple Ecosystem Services in Forest Management Planning: A Critical Review. Environmental Management 56(2): 373-388.
  • Vacik, H., Lexer, M. J., 2014. Past, current and future drivers for the development of decision support systems in forest management. Scandinavian Journal of Forest Research 29: 9.
  • Vauhkonen, J., Pukkala, T., 2016. Selecting the trees to be harvested based on the relative value growth of the remaining trees. European Journal of Forest Research 135(3): 581-592.
  • Veliz, F. B., Watson, J. P., Weintraub, A., Wets, R. J. B., Woodruff, D. L., 2015. Stochastic optimization models in forest planning: a progressive hedging solution approach. Annals of Operations Research 232(1): 259-274.
  • Vopenka, P., Kaspar, J., Marusak, R., 2015. GIS tool for optimization of forest harvest-scheduling. Computers and Electronics in Agriculture 113: 254-259.
  • Wei, R., Murray, A. T., 2015. Spatial uncertainty in harvest scheduling. Annals of Operations Research 232(1): 275-289.
  • Weintraub, A., Romero, C., 2006. Operations research models and the management of agricultural and forestry resources: a review and comparison. Interfaces 36(5): 446-457.
  • Xavier, A.M.D., Freitas, M.D.C., Fragoso, R.M.D., 2015. Management of Mediterranean forests - A compromise programming approach considering different stakeholders and different objectives. Forest Policy and Economics 57: 38-46.
  • Yoshimoto, A., Konoshima, M., 2016. Spatially constrained harvest scheduling for multiple harvests by exact formulation with common matrix algebra. Journal of Forest Research 21(1): 15-22.
  • Zhou, M., 2015. Adapting sustainable forest management to climate policy uncertainty: A conceptual framework. Forest Policy and Economics 59: 66-74.

Taxonomy for the optimization in forest management: a review and assessment

Year 2018, Volume: 68 Issue: 2, 122 - 135, 20.07.2018

Abstract

DOI: 10.26650/ forestist.2018.354789

In this review, we have developed a new
taxonomic framework for the classification of forest management optimization
studies. In the proposed taxonomy, we consider: the study type; model structure;
methodology; modeling type; problem objectives, level and type; plan type; and
forest structure. We have used the proposed taxonomy to classify 111 articles
from the literature, providing a comprehensive overview of optimization
approaches in forest management. Based on this classification, we suggest that
some developments may be underrepresented in the forest management optimization
literature. Accordingly, the most studied is deterministic modelling regarding
harvest scheduling and the least studied are fuzzy and stochastic modeling
regarding risk and uncertainty.

References

  • Ager, A. A., Day, M. A., Vogler, K., 2016. Production possibility frontiers and socioecological tradeoffs for restoration of fire adapted forests. Journal of Environmental Management 176: 157-168.
  • Ager, A. A., Vaillant, N. M., Mcmahan, A., 2013. Restoration of fire in managed forests: a model to prioritize landscapes and analyze tradeoffs. Ecosphere 4(2): 1-19.
  • Alam, M. B., Shahi, C., Pulkki, R., 2014. Economic impact of enhanced forest inventory information and merchandizing yards in the forest product industry supply chain. Socio-Economic Planning Sciences 48 (3): 189-197.
  • Alvarez, P. P., Vera, J. R., 2014. Application of Robust Optimization to the Sawmill Planning Problem. Annals of Operations Research 219 (1): 457-475.
  • Ananda, J., Herath, G., 2003. The use of Analytic Hierarchy Process to incorporate stakeholder preferences into regional forest planning. Forest Policy and Economics 5(1): 13-26.
  • Ananda, J., Herath, G., 2009. A critical review of multi-criteria decision making methods with special reference to forest management and planning. Ecological Economics 68(10): 2535-2548.
  • Augustynczik, A.L.D., Arce, J.E., Yousefpour, R., Da Silva, A.C.L., 2016. Promoting harvesting stands connectivity and its economic implications in Brazilian forest plantations applying integer linear programming and simulated annealing. Forest Policy and Economics 73: 120-129.
  • Bagdon, B.A., Huang, C.H., Dewhurst, S., 2016. Managing for ecosystem services in northern Arizona ponderosa pine forests using a novel simulation-to-optimization methodology. Ecological Modelling 324: 11-27.
  • Baskent, E. Z., Celik, D. A., 2013. Forecasting forest development through modeling based on the legacy of forest structure over the past 43 years. Forest Systems 22(2): 232-240.
  • Baskent, E. Z., Keles, S., Kadiogullari, A. I., 2014. Challenges in developing and implementing a decision support systems (ETcAP) in forest management planning: a case study in Honaz and Ibradi, Turkey. Scandinavian Journal of Forest Research 29: 121-131.
  • Belavenutti, P. H., Da Silva, M., Arce, J. E., Loch, G. V., David, H. C., Fiorentin, L. D., 2016. Forest Harvest Scheduling Plan Integrated To The Road Network. Cerne 22(1): 69-75.
  • Bettinger, P., Boston, K., Siry, J. P., Grebner, D. L., 2010. Forest management and planning. Academic press. Bettinger, P., Demirci, M., Boston, K., 2015. Search reversion within s-metaheuristics: impacts illustrated with a forest planning problem. Silva Fennica 49(2): 1-20.
  • Bettinger, P., Tang, M. P., 2015. Tree-Level Harvest Optimization for Structure-Based Forest Management Based on the Species Mingling Index. Forests 6(4): 1121-1144.
  • Bilbao-Terol, A., Jimenez, M., Arenas-Parra, M., 2016. A group decision making model based on goal programming with fuzzy hierarchy: an application to regional forest planning. Annals of Operations Research 245(1-2): 137-162.
  • Bont, L., Heinimann, H. R., Church, R. L., 2014. Optimizing cable harvesting layout when using variable-length cable roads in central Europe. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 44(8): 949-960.
  • Borges, J. G., Garcia-Gonzalo, J., Bushenkov, V., Mcdill, M. E., Marques, S., Oliveira, M. M., 2014a. Addressing Multicriteria Forest Management With Pareto Frontier Methods: An Application in Portugal. Forest Science 60(1): 63-72.
  • Borges, P., Bergseng, E., Eid, T., Gobakken, T., 2015. Impact of maximum opening area constraints on profitability and biomass availability in forestry - a large, real world case. Silva Fennica 49 (5): 1-21.
  • Borges, P., Eid, T., Bergseng, E., 2014b. Applying simulated annealing using different methods for the neighborhood search in forest planning problems. European Journal of Operational Research 233(3): 700-710.
  • Borges, P., Martins, I., Bergseng, E., Eid, T., Gobakken, T., 2016. Effects of site productivity on forest harvest scheduling subject to green-up and maximum area restrictions. Scandinavian Journal of Forest Research 31(5): 507-516.
  • Bugalho, M. N., Dias, F. S., Brinas, B., Cerdeira, J. O., 2016. Using the high conservation value forest concept and Pareto optimization to identify areas maximizing biodiversity and ecosystem services in cork oak landscapes. Agroforestry Systems 90(1): 35-44. Burns, E. S., Toth, S. F., Haight, R. G., 2013. A modeling framework for life history-based conservation planning. Biological Conservation 158: 14-25.
  • Carvajal, R., Constantino, M., Goycoolea, M., Vielma, J.P., Weintraub, A., 2013. Imposing Connectivity Constraints in Forest Planning Models. Operations Research 61(4): 824-836.
  • Cerda, E., Martin-Barroso, D., 2013. Optimal control for forest management and conservation analysis in dehesa ecosystems. European Journal of Operational Research 227(3): 515-526.
  • Chen, S., Shahi, C., Chen, H. Y. H., 2016. Economic and ecological trade-off analysis of forest ecosystems: options for boreal forests. Environmental Reviews 24(3): 348-361.
  • Corrigan, E., Nieuwenhuis, M., 2016. A Linear Programming Model to Biophysically Assess Some Ecosystem Service Synergies and Trade-Offs in Two Irish Landscapes. Forests 7(7): 2-21.
  • De-Miguel, S., Bonet, J.A., Pukkala, T., De Aragon, J.M., 2014a. Impact of forest management intensity on landscape-level mushroom productivity: A regional model-based scenario analysis. Forest Ecology and Management 330: 218-227. De-Miguel, S., Pukkala, T., Yesil, A., 2014b. Integrating pine honeydew honey production into forest management optimization. European Journal of Forest Research 133(3): 423-432.
  • Dems, A., Rousseau, L. M., Frayret, J. M., 2015. Effects of different cut-to-length harvesting structures on the economic value of a wood procurement planning problem. Annals of Operations Research 232(1): 65-86. Diaz-Balteiro, L., Romero, C., 2008. Making forestry decisions with multiple criteria: A review and an assessment. Forest Ecology and Management 255(8): 3222-3241.
  • Dong, L., Bettinger, P., Liu, Z., Qin, H., Zhao, Y., 2016. Evaluating the neighborhood, hybrid and reversion search techniques of a simulated annealing algorithm in solving forest spatial harvest scheduling problems. Silva Fennica 50(4): 1-20.
  • Dong, L. B., Bettinger, P., Liu, Z. G., Qin, H. Y., 2015. A comparison of a neighborhood search technique for forest spatial harvest scheduling problems: A case study of the simulated annealing algorithm. Forest Ecology and Management 356: 124-135.
  • Dragicevic, A., Lobianco, A., Leblois, A., 2016. Forest planning and productivity-risk trade-off through the Markowitz mean-variance model. Forest Policy and Economics 64: 25-34.
  • Eyvindson, K., Cheng, Z., 2016. Implementing the conditional value at risk approach for even-flow forest management planning. Canadian Journal of Forest Research 46(5): 637-644.
  • Eyvindson, K., Kangas, A., 2014. Stochastic goal programming in forest planning. Canadian Journal of Forest Research 44(10): 1274-1280.
  • Eyvindson, K., Kangas, A., 2016a. Evaluating the required scenario set size for stochastic programming in forest management planning: incorporating inventory and growth model uncertainty. Canadian Journal of Forest Research 46(3): 340-347.
  • Eyvindson, K., Kangas, A., 2016b. Integrating risk preferences in forest harvest scheduling. Annals of Forest Science 73(2): 321-330. Ezquerro, M., Pardos, M., Diaz-Balteiro, L., 2016. Operational Research Techniques Used for Addressing Biodiversity Objectives into Forest Management: An Overview. Forests 7(10): 229. Fao, 2017. Guidelines for forest management planning.
  • Farrell, E. P., Führer, E., Ryan, D., Andersson, F., Hüttl, R., Piussi, P., 2000. European forest ecosystems: building the future on the legacy of the past. Forest Ecology and Management 132(1): 5-20.
  • Ferreira, L., Constantino, M., Borges, J. G., Garcia-Gonzalo, J., Barreiro, S., 2016. A climate change adaptive dynamic programming approach to optimize eucalypt stand management scheduling: a Portuguese application. Canadian Journal of Forest Research 46(8): 1000-1008.
  • Ferreira, L., Constantino, M. F., Borges, J. G., Garcia-Gonzalo, J., 2015. Addressing Wildfire Risk in a Landscape-Level Scheduling Model: An Application in Portugal. Forest Science 61(2): 266-277.
  • Feuerbacher, A., Siebold, M., Chhetri, A., Lippert, C., Sander, K., 2016. Increasing forest utilization within Bhutan’s forest conservation framework: The economic benefits of charcoal production. Forest Policy and Economics 73: 99-111.
  • Fotakis, D. G., 2015. Multi-objective spatial forest planning using self-organization. Ecological Informatics 29: 1-5.
  • Garcia-Gonzalo, J., Pais, C., Bachmatiuk, J., Weintraub, A., 2016. Accounting for climate change in a forest planning stochastic optimization model. Canadian Journal of Forest Research 46(9): 1111-1121.
  • Garcia-Gonzalo, J., Pukkala, T., Borges, J. G., 2014. Integrating fire risk in stand management scheduling. An application to Maritime pine stands in Portugal. Annals of Operations Research 219(1): 379-395.
  • Garcia-Prats, A., Del Campo, A. D., Pulido-Velazquez, M., 2016. A hydroeconomic modeling framework for optimal integrated management of forest and water. Water Resources Research 52(10): 8277-8294. Gautam, S., Lebel, L., Beaudoin, D., 2015. Value-adding through silvicultural flexibility: an operational level simulation study. Forestry 88(2): 213-223.
  • Gimenez, J. C., Bertomeu, M., Diaz-Balteiro, L., Romero, C., 2013. Optimal harvest scheduling in Eucalyptus plantations under a sustainability perspective. Forest Ecology and Management 291: 367-376.
  • Gonzalez-Sanchis, M. A., Del Campo, A. D., Molina, A. J., Fernandes, T., 2015. Modeling adaptive forest management of a semi-arid Mediterranean Aleppo pine plantation. Ecological Modelling 308: 34-44.
  • Gregory, R., Keeney, R. L., 1994. Creating policy alternatives using stakeholder values. Management Science 40(8): 1035-1048. Hahn, W. A., Hatl, F., Irland, L. C., Kohler, C., Moshammer, R., Knoke, T., 2014. Financially optimized management planning under risk aversion results in even-flow sustained timber yield. Forest Policy and Economics 42: 30-41.
  • Hartl, F., Hahn, A., Knoke, T., 2013. Risk-sensitive planning support for forest enterprises: The YAFO model. Computers and Electronics in Agriculture 94: 58-70.
  • Hartl, F., Knoke, T., 2014. The influence of the oil price on timber supply. Forest Policy and Economics 39: 32-42.
  • Hartl, F. H., Barka, I., Hahn, W. A., Hlasny, T., Irauschek, F., Knoke, T., Lexer, M. J., Griess, V. C., 2016. Multifunctionality in European mountain forests - an optimization under changing climatic conditions. Canadian Journal of Forest Research 46(2): 163-171. Hernandez, M., Gomez, T., Molina, J., Leon, M. A., Caballero, R., 2014. Efficiency in forest management: A multiobjective harvest scheduling model. Journal of Forest Economics 20(3): 236-251.
  • Hujala, T., Khadka, C., Wolfslehner, B., Vacik, H., 2013. Review. Supporting problem structuring with computer-based tools in participatory forest planning. Forest Systems 22(2): 270-281.
  • Jin, X. J., Pukkala, T., Li, F. R., 2016a. Fine-tuning heuristic methods for combinatorial optimization in forest planning. European Journal of Forest Research 135(4): 765-779. J in, X. J., Pukkala, T., Li, F. R., 2016b. A management planning system for even-aged and uneven-aged forests in northeast China. Journal of Forestry Research 27(4): 837-852.
  • Kangas, A., Nurmi, M., Rasinmaki, J., 2014. From a strategic to a tactical forest management plan using a hierarchic optimization approach. Scandinavian Journal of Forest Research 29: 154-165.
  • Kaspar, J., Marusak, R., Bettinger, P., 2016. Time Efficiency of Selected Types of Adjacency Constraints in Solving Unit Restriction Models. Forests 7(5): 1-14.
  • Kaya, A., Bettinger, P., Boston, K., Akbulut, R., Ucar, Z., Siry, J., Merry, K., Cieszewski, C., 2016. Optimisation in forest management. Current Forestry Reports 2(1): 1-17.
  • Kong, J.H., Ronnqvist, M., 2014. Coordination between strategic forest management and tactical logistic and production planning in the forestry supply chain. International Transactions in Operational Research 21(5): 703-735.
  • Konnyu, N., Toth, S.F., 2013. A cutting plane method for solving harvest scheduling models with area restrictions. European Journal of Operational Research 228(1): 236-248.
  • Konnyu, N., Toth, S.F., Mcdill, M.E., Rajasekaran, B., 2014. Temporal Connectivity of Mature Patches in Forest Planning Models. Forest Science 60(6): 1089-1099.
  • Kuhlmann, C.A., Martell, D.L., Wets, R.J.B., Woodruff, D.L., 2015. Generating Stochastic Ellipsoidal Forest and Wild land Fire Scar Scenarios for Strategic Forest Management Planning under Uncertainly. Forest Science 61(3): 494-508.
  • Lappi, J., Lempinen, R., 2014. A linear programming algorithm and software for forest-level planning problems including factories. Scandinavian Journal of Forest Research 29: 178-184.
  • Liu, W.Y., Lin, C.C., 2015. Spatial forest resource planning using a cultural algorithm with problem-specific information. Environmental Modelling & Software 71: 126-137.
  • Manso, R., Pukkala, T., Pardos, M., Miina, J., Calama, R., 2014. Modelling Pinus pinea forest management to attain natural regeneration under present and future climatic scenarios. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 44(3): 250-262.
  • Mansuy, N., Thiffault, E., Lemieux, S., Manka, F., Pare, D., Lebel, L., 2015. Sustainable biomass supply chains from salvage logging of fire-killed stands: A case study for wood pellet production in eastern Canada. Applied Energy 154: 62-73.
  • Marshalek, E.C., Ramage, B.S., Potts, M.D., 2014. Integrating harvest scheduling and reserve design to improve biodiversity conservation. Ecological Modelling 287: 27-35.
  • Martell, D.L., Gunn, E.A., Weintraub, A., 1998. Forest management challenges for operational researchers. European Journal of Operational Research 104 (1): 1-17.
  • Marusak, R., Kaspar, J., Hlavaty, R., Kotek, V., Kuzelka, K., Vopenka, P., 2015. Alternative Modelling Approach to Spatial Harvest Scheduling with Respect to Fragmentation of Forest Ecosystem. Environmental Management 56(5): 1134-1147.
  • Matthies, B.D., Valsta, L.T., 2016. Optimal forest species mixture with carbon storage and albedo effect for climate change mitigation. Ecological Economics 123: 95-105.
  • Memmah, M.M., Lescourret, F., Yao, X., Lavigne, C., 2015. Metaheuristics for agricultural land use optimization. A review. Agronomy for Sustainable Development 35(3): 975-998.
  • Monkkonen, M., Juutinen, A., Mazziotta, A., Miettinen, K., Podkopaev, D., Reunanen, P., Salminen, H., Tikkanen, O. P., 2014. Spatially dynamic forest management to sustain biodiversity and economic returns. Journal of Environmental Management 134: 80-89.
  • Moreira, J., Rodriguez, L. C. E., Caixeta, J. V., 2013. An Optimization Model to Integrate Forest Plantations and Connecting Corridors. Forest Science 59(6): 661-669.
  • Mur, R.J., Goetz, R.U., Xabadia, A., Cordoba, F., Gracia, C., 2014. Adapting the optimal selective-logging of Scots pine (Pinus sylvestris L.) stands in NE Spain to increasing CO2 concentrations. Journal of Forest Economics 20(3): 286-304.
  • Myllyviita, T., Hujala, T., Kangas, A., Eyvindson, K., Sironen, S., Leskinen, P., Kurttila, M., 2014. Mixing methods - assessment of potential benefits for natural resources planning. Scandinavian Journal of Forest Research 29: 20-29.
  • Najafi, A., Richards, E. W., 2013. Designing a Forest Road Network Using Mixed Integer Programming. Croatian Journal of Forest Engineering 34(1): 17-30.
  • Nakajima, E. T., Kanomata, H., Matsumoto, M., 2016. Visualization of optimized solution space using a simulation system for the development of local forest management planning. Annals of Forest Research 59(1): 117-128.
  • Neuner, S., Beinhofer, B., Knoke, T., 2013. The optimal tree species composition for a private forest enterprise - applying the theory of portfolio selection. Scandinavian Journal of Forest Research 28(1): 38-48.
  • Nghiem, N., 2015. Optimal forest management for timber value and carbon sequestration benefits in tropical planted forests: a case study of household foresters in Vietnam. Environment and Development Economics 20(6): 746-766.
  • Niinimaki, S., Tahvonen, O., Makela, A., Linkosalo, T., 2013. On the economics of Norway spruce stands and carbon storage. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 43(7): 637-648.
  • Nobre, S., Eriksson, L.O., Trubins, R., 2016. The use of decision support systems in forest management: analysis of forsys country reports. Forests 7(3): 72.
  • Nolet, P., Doyon, F., Messier, C., 2014. A new silvicultural approach to the management of uneven-aged Northern hardwoods: frequent low-intensity harvesting. Forestry 87(1): 39-48.
  • Ochoa, W. S., Paul, C., Castro, L. M., Valle, L., Knoke, T., 2016. Banning goats could exacerbate deforestation of the ecuadorian dry forest - how the effectiveness of conservation payments is influenced by productive use options. Erdkunde 70(1): 49-67.
  • Palma, C. D., Nelson, J. D., 2014. A Robust Model for Protecting Road-Building and Harvest-Scheduling Decisions from Timber Estimate Errors. Forest Science 60(1): 137-148.
  • Palma, C. D., Vergara, F. P., 2016. A Multiobjective Model for the Cutting Pattern Problem with Unclear Preferences. Forest Science 62(2): 220-226.
  • Palma, J. H. N., Paulo, J. A., Faias, S. P., Garcia-Gonzalo, J., Borges, J. G., Tome, M., 2015. Adaptive management and debarking schedule optimization of Quercus suber L. stands under climate change: case study in Chamusca, Portugal. Regional Environmental Change 15(8): 1569-1580.
  • Pasalodos-Tato, M., Makinen, A., Garcia-Gonzalo, J., Borges, J. G., Lamas, T., Eriksson, L. O., 2013. Review. Assessing uncertainty and risk in forest planning and decision support systems: review of classical methods and introduction of innovative approaches. Forest Systems 22(2): 282-303.
  • Pasalodos-Tato, M., Pukkala, T., Calama, R., Canellas, I., Sanchez-Gonzalez, M., 2016. Optimal management of Pinus pinea stands when cone and timber production are considered. European Journal of Forest Research 135(4): 607-619.
  • Pascual, A., Pukkala, T., Rodriguez, F., De-Miguel, S., 2016. Using Spatial Optimization to Create Dynamic Harvest Blocks from LiDAR-Based Small Interpretation Units. Forests 7(10): 220.
  • Pereira, S., Prieto, A., Calama, R., Diaz-Balteiro, L., 2015. Optimal management in Pinus pinea L. stands combining silvicultural schedules for timber and cone production. Silva Fennica 49 (3): 1-16.
  • Peura, M., Trivino, M., Mazziotta, A., Podkopaev, D., Juutinen, A., Monkkonen, M., 2016. Managing boreal forests for the simultaneous production of collectable goods and timber revenues. Silva Fennica 50(5): 1-17.
  • Pukkala, T., Lahde, E., Laiho, O., 2014. Optimizing any-aged management of mixed boreal forest under residual basal area constraints. Journal of Forestry Research 25(3): 627-636.
  • Rabotyagov, S. S., Toth, S. F., Ettl, G. J., 2013. Testing the Design Variables of ECOSEL: A Market Mechanism for Forest Ecosystem Services. Forest Science 59(3): 303-321.
  • Rammer, W., Schauflinger, C., Vacik, H., Palma, J.H.N., Garcia-Gonzalo, J., Borges, J.G., Lexer, M.J., 2014. A web-based ToolBox approach to support adaptive forest management under climate change. Scandinavian Journal of Forest Research 29: 96-107.
  • Repo, A., Ahtikoski, A., Liski, J., 2015. Cost of turning forest residue bioenergy to carbon neutral. Forest Policy and Economics 57: 12-21.
  • Robinson, A. P., Mclarin, M., Moss, I., 2016. A simple way to incorporate uncertainty and risk into forest harvest scheduling. Forest Ecology and Management 359: 11-18.
  • Rode, R., Leite, H. G., Binoti, D. H. B., Ribeiro, C., Souza, A. L., Cosenza, D. N., Boechat, C. P., 2016. Applying classical forest regulation methods to smallholdings with cooperative constraints. Cerne 22(2): 197-205.
  • Roessiger, J., Ficko, A., Clasen, C., Griess, V. C., Knoke, T., 2016. Variability in growth of trees in uneven-aged stands displays the need for optimizing diversified harvest diameters. European Journal of Forest Research 135(2): 283-295.
  • Ronnqvist, M., D’amours, S., Weintraub, A., Jofre, A., Gunn, E., Haight, R. G., Martell, D., Murray, A. T., Romero, C., 2015. Operations Research challenges in forestry: 33 open problems. Annals of Operations Research 232(1): 11-40.
  • Rönnqvist, M., 2003. Optimization in forestry. Mathematical Programming 97(1): 267-284.
  • Ruppert, J. L. W., Fortin, M. J., Gunn, E. A., Martell, D. L., 2016. Conserving woodland caribou habitat while maintaining timber yield: a graph theory approach. Canadian Journal of Forest Research 46(7): 914-923.
  • Segura, M., Ray, D., Maroto, C., 2014. Decision support systems for forest management: A comparative analysis and assessment. Computers and Electronics in Agriculture 101: 55-67.
  • Shahi, S., Pulkki, R., 2015. A simulation-based optimization approach to integrated inventory management of a sawlog supply chain with demand uncertainty. Canadian Journal of Forest Research 45(10): 1313-1326.
  • St John, R., Ohman, K., Toth, S. F., Sandstrom, P., Korosuo, A., Eriksson, L. O., 2016. Combining spatiotemporal corridor design for reindeer migration with harvest scheduling in Northern Sweden. Scandinavian Journal of Forest Research 31(7): 655-663.
  • Strimbu, B. M., Paun, M., 2013. Sensitivity of forest plan value to parameters of simulated annealing. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 43(1): 28-38.
  • Tahvonen, O., Pihlainen, S., Niinimaki, S., 2013. On the economics of optimal timber production in boreal Scots pine stands. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 43(8): 719-730.
  • Tahvonen, O., Ramo, J., 2016. Optimality of continuous cover vs. clear-cut regimes in managing forest resources. Canadian Journal of Forest Research 46(7): 891-901.
  • Tang, Y., Liu, M. Y., Wu, J. H., 2016. Effects of Thinning and Water Supply Manipulation on the Productivity of Pinus sylvestris var. mongolica in Northeastern China. Plos One 11(11): e0166109.
  • Toth, S. F., Mcdill, M. E., Konnyu, N., George, S., 2013. Testing the Use of Lazy Constraints in Solving Area-Based Adjacency Formulations of Harvest Scheduling Models. Forest Science 59(2): 157-176.
  • Trivino, M., Juutinen, A., Mazziotta, A., Miettinen, K., Podkopaev, D., Reunanen, P., Monkkonen, M., 2015. Managing a boreal forest landscape for providing timber, storing and sequestering carbon. Ecosystem Services 14: 179-189.
  • Uhde, B., Hahn, W. A., Griess, V. C., Knoke, T., 2015. Hybrid MCDA Methods to Integrate Multiple Ecosystem Services in Forest Management Planning: A Critical Review. Environmental Management 56(2): 373-388.
  • Vacik, H., Lexer, M. J., 2014. Past, current and future drivers for the development of decision support systems in forest management. Scandinavian Journal of Forest Research 29: 9.
  • Vauhkonen, J., Pukkala, T., 2016. Selecting the trees to be harvested based on the relative value growth of the remaining trees. European Journal of Forest Research 135(3): 581-592.
  • Veliz, F. B., Watson, J. P., Weintraub, A., Wets, R. J. B., Woodruff, D. L., 2015. Stochastic optimization models in forest planning: a progressive hedging solution approach. Annals of Operations Research 232(1): 259-274.
  • Vopenka, P., Kaspar, J., Marusak, R., 2015. GIS tool for optimization of forest harvest-scheduling. Computers and Electronics in Agriculture 113: 254-259.
  • Wei, R., Murray, A. T., 2015. Spatial uncertainty in harvest scheduling. Annals of Operations Research 232(1): 275-289.
  • Weintraub, A., Romero, C., 2006. Operations research models and the management of agricultural and forestry resources: a review and comparison. Interfaces 36(5): 446-457.
  • Xavier, A.M.D., Freitas, M.D.C., Fragoso, R.M.D., 2015. Management of Mediterranean forests - A compromise programming approach considering different stakeholders and different objectives. Forest Policy and Economics 57: 38-46.
  • Yoshimoto, A., Konoshima, M., 2016. Spatially constrained harvest scheduling for multiple harvests by exact formulation with common matrix algebra. Journal of Forest Research 21(1): 15-22.
  • Zhou, M., 2015. Adapting sustainable forest management to climate policy uncertainty: A conceptual framework. Forest Policy and Economics 59: 66-74.
There are 114 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

İnci Çağlayan

Ahmet Yeşil This is me

Didem Çınar This is me

Chris Cieszewski This is me

Publication Date July 20, 2018
Published in Issue Year 2018 Volume: 68 Issue: 2

Cite

APA Çağlayan, İ., Yeşil, A., Çınar, D., Cieszewski, C. (2018). Taxonomy for the optimization in forest management: a review and assessment. Forestist, 68(2), 122-135.
AMA Çağlayan İ, Yeşil A, Çınar D, Cieszewski C. Taxonomy for the optimization in forest management: a review and assessment. FORESTIST. July 2018;68(2):122-135.
Chicago Çağlayan, İnci, Ahmet Yeşil, Didem Çınar, and Chris Cieszewski. “Taxonomy for the Optimization in Forest Management: A Review and Assessment”. Forestist 68, no. 2 (July 2018): 122-35.
EndNote Çağlayan İ, Yeşil A, Çınar D, Cieszewski C (July 1, 2018) Taxonomy for the optimization in forest management: a review and assessment. Forestist 68 2 122–135.
IEEE İ. Çağlayan, A. Yeşil, D. Çınar, and C. Cieszewski, “Taxonomy for the optimization in forest management: a review and assessment”, FORESTIST, vol. 68, no. 2, pp. 122–135, 2018.
ISNAD Çağlayan, İnci et al. “Taxonomy for the Optimization in Forest Management: A Review and Assessment”. Forestist 68/2 (July 2018), 122-135.
JAMA Çağlayan İ, Yeşil A, Çınar D, Cieszewski C. Taxonomy for the optimization in forest management: a review and assessment. FORESTIST. 2018;68:122–135.
MLA Çağlayan, İnci et al. “Taxonomy for the Optimization in Forest Management: A Review and Assessment”. Forestist, vol. 68, no. 2, 2018, pp. 122-35.
Vancouver Çağlayan İ, Yeşil A, Çınar D, Cieszewski C. Taxonomy for the optimization in forest management: a review and assessment. FORESTIST. 2018;68(2):122-35.