BibTex RIS Cite

Döviz Kurları Arasındaki Oynaklık Etkileşiminin Analizi: CCC-t-MSV Modeli ile Tahmin

Year 2018, Issue: 639, 109 - 132, 01.05.2018

Abstract

Küreselleşme ve dünya piyasaları arasında entegrasyon artışı finansal piyasalardaki karşılıklı bağımlılığı ve etkileşimi arttırmıştır. Bu nedenle son yıllarda ekonomik ve finansal zaman serilerinde oynaklığın analizi önem kazanmıştır. Bu doğrultuda çalışmanın temel amacı, Türkiye’nin ithalatında önemli paya sahip ülkelerin para birimlerine ait oynaklığın analiz edilmesidir. Bu amaçla Ruble, Çin Yuanı, Türk Lirası, Avro ve İngiliz Sterlini getiri serileri arasındaki ikili oynaklık etkileşimleri 01.11.2010-20.11.2015 dönemi için iki değişkenli CCC-t-MSV modeli tahmin edilmiştir. Modellerin tahmininde Bayesyen analize dayalı MCMC yöntemi kullanılmıştır. Elde edilen bulgulara göre, döviz kuru getiri serileri büyük oranda kendi piyasalarında meydana gelen şoklardan etkilenmektedir. Yalnızca Avro ve Sterlin piyasaları arasında iki yönlü karşılıklı oynaklık yayılımı bulunmaktadır. Yuan serisi en yüksek oynaklık değişkenliğine sahip seridir. Yuan serisinin ardından yükselen ekonomilerden Rusya ve Türkiye’nin para birimleri olan Ruble ve Liranın, Avro ve Sterline kıyasla daha fazla oynaklık kararsızlığına sahip olduğu sonucuna ulaşılmıştır

References

  • ANDERSEN, Torben G; (2000), “Some Reflections on Analysis of High-Frequency Data”, Journal of Business and Economic Statistics, 18(2), pp. 146-153.
  • ASAI, Manabu, MCALEER Michael and YU, Jun.; (2006), “Multivariate Stochastic Volatility: A Review”, Econometric Reviews, 25(2-3), pp. 45-175.
  • BEG, Rabiul Alam and ANWAR, Sajid; (2012), “Sources of Volatility Persistence: A Case Study of The U.K. Pound/U.S. Dollar Exchange Rate Returns”, North American Journal of Economics and Finance, 23, pp. 165-184.
  • BOLLERSLEV, Tim; (1986), “Generalized Autoregressive Conditional Heteroskedasticity”, Journal of Econometrics, 31(3), pp. 307-327.
  • BOLLERSLEV, Tim; (1990), “Modelling the Coherence in Short-Run Nominal Exchange Rates: A Multivariate Generalized Arch Model”, The Review of Economics and Statistics, 72(3), pp. 498–505.
  • BOLLERSLEV, Tim., CHOU, Ray.Y. and KRONER, Kenneth F.; (1992), “ARCH Modeling in Finance”, Journal of Econometrics. 52, pp. 5-59.
  • CHIB, Siddhartha, NARDARI, Federico. and SHEPHARD, Neil; (2002), “Markov Chain Monte Carlo Methods for Stochastic Volatility Models”, Journal of Econometrics, 108, pp. 281-316.
  • CHORTAREAS, Georgios, JIANG, Ying. and NANKERVIS, John. C; (2011), “Forecasting Exchange Rate Volatility Using High-Frequency Data: Is The Euro Different?”, International Journal of Forecasting, 27, pp. 1089–1107.
  • COUDERT, Virginie, COUHARDE, Cecile. and MIGNON, Valerie; (2011), “Exchange Rate Volatility Across Financial Crises”, Journal of Banking & Finance, 35, pp. 3010-3018.
  • DIEBOLD, Francis X. and NERLOVE, Marc; (1989), “The Dynamics of Exchange Rate Volatility: A Multivariate Latent Factor ARCH Model”, Journal of Applied Econometrics, 4, pp. 1-21.
  • DING, Liang and VO, Minh; (2012), “Exchange Rates And Oil Prices: A Multivariate Stochastic Volatility Analysis”, The Quarterly Review of Economics and Finance, 52, pp. 15-37.
  • ENGLE, Robert; (1982), “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation”, Econometrica, 50 (4), pp. 987-1007.
  • GEWEKE, John; (1994), “Bayesian Comparison of Econometric Models”, Working Paper 532.
  • Research Department,Federal Reserve Bank of Minneapolis.
  • HARVEY, Andrew, RUIZ, Esther. and SHEPHARD, Neil; (1994), “Multivariate Stochastic Variance Models”, The Review of Economic Studies. 61(2), pp. 247-264.
  • HOPPER, Gregory P.; (1997), “What Determines the Exchange Rate: Economic Factors or Market Sentiment ?”, Business Review, Issue Sep, pp. 17-29.
  • HSIEH, David A.; (1988), “The Statistical Properties of Daily Foreign Exchange Rates: 1974-1983”. Journal of International Economics, 24, pp. 129-145.
  • HSIEH, David A.; (1989), “Modeling Heteroscedasticity in Daily Foreign-Exchange Rates”, Journal of Business and Economic Statistics, 7(3), pp. 307-317.
  • INAGAKI, Kazuyuki; (2007), “Testing for Volatility Spillover Between the British Pound and the Euro”, Research in International Business and Finance, 21, pp. 161-174.
  • Kalkınma Bakanlığı; “Ekonomik Modeller ve Stratejik Araştırmalar Genel Müdürlüğü”, DEG Bülteni (3): Temmuz- Eylül 2015.
  • KIM, Sangjoon, SHEPHARD, Neil and CHIB, Siddhartha; (1998), “Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models”, The Review of Economic Studies, 65(3), pp. 361-393
  • NISHIMURA, Yusaku and HIRAYAMA, Kenjiro; (2013), “Does Exchange Rate Volatility Deter Japan-China Trade? Evidence From Pre- and Post-Exchange Rate Reform in China”, Japan and the World Economy, 25–26, pp. 90–101.
  • TİM; “2015 Aralık Ülke ve Ülke Grupları Bazında Rakamlar”, http://www.tim.org.tr/tr/ihracatihracat-rakamlari-tablolar.html, 27.01.2016 TİM; 2015, Ekonomi ve Dış Ticaret Raporu 2015.
  • TİM; 2016, Aylık Ekonomi ve Dış Ticaret Bülteni.Ocak 2016. TOBB; Ekonomik Rapor 2013, Rapor No:2014/225.
  • YILDIRIM, Selim ve KILIÇ, Esin; (2014), “Döviz Kuru Volatilitesinin Türkiye’nin Euro Bölgesi İhracatına Etkisi: Kesikli Dalgacık Dönüşümü ile Panel Veri Analizi”, Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi,. 18 (1), ss. 425-440.
  • YU, Jun and MEYER, Renate; (2006), “Multivariate Stochastic Volatility Models: Bayesian Estimation and Model Comparison”, Econometric Reviews, 25(2-3), pp. 361-384.

The Analysis of the Volatility Interaction Between Foreign Exchange Rates: with CCC-t-MSV Model Estimation

Year 2018, Issue: 639, 109 - 132, 01.05.2018

Abstract

Globalization and increasing integration between world markets has increased interdependence and interaction in financial markets. For this reason, the analysis of volatility in economic and financial time series has gained importance in recent years. The main aim of this study is to analyze of the volatility of foreign currencies of Turkey’s top five trading partners. Fort this aim, the data set used in this study consists of return series of Chinese Yuan, Turkish Lira, Euro, British Sterling. The sample from 01.11.2010 to 20.11.2015 is used for volatility interaction between the return series via CCC-tMSV models. MCMC method which is based on Bayesian analysis is used for models estimation. According to the findings, the exchange rate return series are largely affected by the shocks that occur in their market. There is only bidirectional volatility interaction between Euro and Sterling markets. The Yuan has the highest variability of volatility among all the series. Following the Yuan series emerging economies Russia and Turkey's currencies, Ruble and Lira, have more variability of volatility than the Euro and Sterling.

References

  • ANDERSEN, Torben G; (2000), “Some Reflections on Analysis of High-Frequency Data”, Journal of Business and Economic Statistics, 18(2), pp. 146-153.
  • ASAI, Manabu, MCALEER Michael and YU, Jun.; (2006), “Multivariate Stochastic Volatility: A Review”, Econometric Reviews, 25(2-3), pp. 45-175.
  • BEG, Rabiul Alam and ANWAR, Sajid; (2012), “Sources of Volatility Persistence: A Case Study of The U.K. Pound/U.S. Dollar Exchange Rate Returns”, North American Journal of Economics and Finance, 23, pp. 165-184.
  • BOLLERSLEV, Tim; (1986), “Generalized Autoregressive Conditional Heteroskedasticity”, Journal of Econometrics, 31(3), pp. 307-327.
  • BOLLERSLEV, Tim; (1990), “Modelling the Coherence in Short-Run Nominal Exchange Rates: A Multivariate Generalized Arch Model”, The Review of Economics and Statistics, 72(3), pp. 498–505.
  • BOLLERSLEV, Tim., CHOU, Ray.Y. and KRONER, Kenneth F.; (1992), “ARCH Modeling in Finance”, Journal of Econometrics. 52, pp. 5-59.
  • CHIB, Siddhartha, NARDARI, Federico. and SHEPHARD, Neil; (2002), “Markov Chain Monte Carlo Methods for Stochastic Volatility Models”, Journal of Econometrics, 108, pp. 281-316.
  • CHORTAREAS, Georgios, JIANG, Ying. and NANKERVIS, John. C; (2011), “Forecasting Exchange Rate Volatility Using High-Frequency Data: Is The Euro Different?”, International Journal of Forecasting, 27, pp. 1089–1107.
  • COUDERT, Virginie, COUHARDE, Cecile. and MIGNON, Valerie; (2011), “Exchange Rate Volatility Across Financial Crises”, Journal of Banking & Finance, 35, pp. 3010-3018.
  • DIEBOLD, Francis X. and NERLOVE, Marc; (1989), “The Dynamics of Exchange Rate Volatility: A Multivariate Latent Factor ARCH Model”, Journal of Applied Econometrics, 4, pp. 1-21.
  • DING, Liang and VO, Minh; (2012), “Exchange Rates And Oil Prices: A Multivariate Stochastic Volatility Analysis”, The Quarterly Review of Economics and Finance, 52, pp. 15-37.
  • ENGLE, Robert; (1982), “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation”, Econometrica, 50 (4), pp. 987-1007.
  • GEWEKE, John; (1994), “Bayesian Comparison of Econometric Models”, Working Paper 532.
  • Research Department,Federal Reserve Bank of Minneapolis.
  • HARVEY, Andrew, RUIZ, Esther. and SHEPHARD, Neil; (1994), “Multivariate Stochastic Variance Models”, The Review of Economic Studies. 61(2), pp. 247-264.
  • HOPPER, Gregory P.; (1997), “What Determines the Exchange Rate: Economic Factors or Market Sentiment ?”, Business Review, Issue Sep, pp. 17-29.
  • HSIEH, David A.; (1988), “The Statistical Properties of Daily Foreign Exchange Rates: 1974-1983”. Journal of International Economics, 24, pp. 129-145.
  • HSIEH, David A.; (1989), “Modeling Heteroscedasticity in Daily Foreign-Exchange Rates”, Journal of Business and Economic Statistics, 7(3), pp. 307-317.
  • INAGAKI, Kazuyuki; (2007), “Testing for Volatility Spillover Between the British Pound and the Euro”, Research in International Business and Finance, 21, pp. 161-174.
  • Kalkınma Bakanlığı; “Ekonomik Modeller ve Stratejik Araştırmalar Genel Müdürlüğü”, DEG Bülteni (3): Temmuz- Eylül 2015.
  • KIM, Sangjoon, SHEPHARD, Neil and CHIB, Siddhartha; (1998), “Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models”, The Review of Economic Studies, 65(3), pp. 361-393
  • NISHIMURA, Yusaku and HIRAYAMA, Kenjiro; (2013), “Does Exchange Rate Volatility Deter Japan-China Trade? Evidence From Pre- and Post-Exchange Rate Reform in China”, Japan and the World Economy, 25–26, pp. 90–101.
  • TİM; “2015 Aralık Ülke ve Ülke Grupları Bazında Rakamlar”, http://www.tim.org.tr/tr/ihracatihracat-rakamlari-tablolar.html, 27.01.2016 TİM; 2015, Ekonomi ve Dış Ticaret Raporu 2015.
  • TİM; 2016, Aylık Ekonomi ve Dış Ticaret Bülteni.Ocak 2016. TOBB; Ekonomik Rapor 2013, Rapor No:2014/225.
  • YILDIRIM, Selim ve KILIÇ, Esin; (2014), “Döviz Kuru Volatilitesinin Türkiye’nin Euro Bölgesi İhracatına Etkisi: Kesikli Dalgacık Dönüşümü ile Panel Veri Analizi”, Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi,. 18 (1), ss. 425-440.
  • YU, Jun and MEYER, Renate; (2006), “Multivariate Stochastic Volatility Models: Bayesian Estimation and Model Comparison”, Econometric Reviews, 25(2-3), pp. 361-384.
There are 26 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Verda Davasligil Atmaca This is me

Publication Date May 1, 2018
Published in Issue Year 2018 Issue: 639

Cite

APA Atmaca, V. D. (2018). Döviz Kurları Arasındaki Oynaklık Etkileşiminin Analizi: CCC-t-MSV Modeli ile Tahmin. Finans Politik Ve Ekonomik Yorumlar(639), 109-132.
AMA Atmaca VD. Döviz Kurları Arasındaki Oynaklık Etkileşiminin Analizi: CCC-t-MSV Modeli ile Tahmin. FPEYD. May 2018;(639):109-132.
Chicago Atmaca, Verda Davasligil. “Döviz Kurları Arasındaki Oynaklık Etkileşiminin Analizi: CCC-T-MSV Modeli Ile Tahmin”. Finans Politik Ve Ekonomik Yorumlar, no. 639 (May 2018): 109-32.
EndNote Atmaca VD (May 1, 2018) Döviz Kurları Arasındaki Oynaklık Etkileşiminin Analizi: CCC-t-MSV Modeli ile Tahmin. Finans Politik ve Ekonomik Yorumlar 639 109–132.
IEEE V. D. Atmaca, “Döviz Kurları Arasındaki Oynaklık Etkileşiminin Analizi: CCC-t-MSV Modeli ile Tahmin”, FPEYD, no. 639, pp. 109–132, May 2018.
ISNAD Atmaca, Verda Davasligil. “Döviz Kurları Arasındaki Oynaklık Etkileşiminin Analizi: CCC-T-MSV Modeli Ile Tahmin”. Finans Politik ve Ekonomik Yorumlar 639 (May 2018), 109-132.
JAMA Atmaca VD. Döviz Kurları Arasındaki Oynaklık Etkileşiminin Analizi: CCC-t-MSV Modeli ile Tahmin. FPEYD. 2018;:109–132.
MLA Atmaca, Verda Davasligil. “Döviz Kurları Arasındaki Oynaklık Etkileşiminin Analizi: CCC-T-MSV Modeli Ile Tahmin”. Finans Politik Ve Ekonomik Yorumlar, no. 639, 2018, pp. 109-32.
Vancouver Atmaca VD. Döviz Kurları Arasındaki Oynaklık Etkileşiminin Analizi: CCC-t-MSV Modeli ile Tahmin. FPEYD. 2018(639):109-32.