Research Article
BibTex RIS Cite

Kauçuk ağacı (Ficus elastica) yaprağı takviyeli epoksi kompozitin termofiziksel özelliklerinin belirlenmesi

Year 2023, , 1 - 11, 13.02.2023
https://doi.org/10.5505/fujece.2023.21931

Abstract

Bu çalışmada, Ficus elastika yaprakları takviye edilerek epoksi kompozit üretilmekte ve elde edilen kompozitin bazı fiziksel ve kimyasal özellikleri karakterize edilmektedir. Ficus elastika yaprakları 297 ile 149 mikron arasında öğütülmektedir. Dolgu maddesi olarak hazırlanan biyokütle (Ficus elastika) alkali aktivasyonu için % 7'lik sodyum hidroksit (NaOH) çözeltisinde 24 saat bekletilmektedir. Daha sonra distile su ile 3 kez yıkanmakta ve 75 °C sıcaklıkta etüvde 3 saat kurutulmaktadır. Kompozit üretimi, hazırlanan dolgu maddesinin epoksi reçineye kütlece belirli oranlarda takviye edilmesiyle gerçekleştirilmektedir. Ağırlıkça % 0, % 1, % 3, % 5 ve % 7 oranlarında eklenen biyokütle dolgu maddesinin yoğunluk, Shore D sertlik, ısıl iletkenlik katsayısı ve aktivasyon enerjisi üzerine etkisi epoksi kompozitte belirlenmektedir. Elde edilen sonuçlara göre karışımdaki dolgu oranı arttıkça epoksi kompozitin yoğunluğu azalmaktadır. Epoksi kompozitin Shore D sertliği, biyokütle dolgu maddesi ilavesiyle azalmaktadır. Biyokütle takviyesi ile üretilen epoksi kompozitin hem ısıl iletkenlik katsayısını hem de aktivasyon enerjisini düşürmektedir. Ayrıca elde edilen polyester kompozitin kimyasal bağ yapısı Fourier dönüşümlü kızılötesi spektrometre (FTIR) ile incelendiğinde fiziksel bir etkileşimin gerçekleştiği görülmektedir. Taramalı elektron mikroskobu (SEM) görüntülerine göre, Ficus elastika yapraklarının ağırlıkça % 5 ve % 7 takviyesi, epoksi kompozitin yüzey morfolojisini olumsuz etkilemektedir.

References

  • [1] El Sawwaf M, Nazir AK. "The effect of deep excavation-induced lateral soil movements on the behavior of strip footing supported on reinforced sand". Journal of Advanced Research, 3(4), 337-344, 2012.
  • [2] Boone SJ. "Ground-movement-related building damage". Journal of geotechnical engineering, 122(11), 886-896, 1996.
  • [3] Yoo C, Lee D. "Deep excavation-induced ground surface movement characteristics–A numerical investigation". Computers and Geotechnics, 35(2), 231-252, 2008.
  • [4] Peck RB. "Deep excavations and tunneling in soft ground". Proc. 7th ICSMFE, 1969, 225-290, 1969.
  • [5] Clough GW. "Construction induced movements of in situ walls". Design and Performance of Earth Retaining Structures, 439-470, 1990.
  • [6] Ou CY, Hsieh PG, Chiou DC. "Characteristics of ground surface settlement during excavation". Canadian Geotechnical Journal, 30(5), 758-767, 1993.
  • [7] Long M. "Database for retaining wall and ground movements due to deep excavations". Journal of Geotechnical and Geoenvironmental Engineering, 127(3), 203-224, 2001.
  • [8] Yoo C. "Behavior of braced and anchored walls in soils overlying rock". Journal of Geotechnical and Geoenvironmental Engineering, 127(3), 225-233, 2001.
  • [9] Wang ZW, Ng CW, Liu GB. "Characteristics of wall deflections and ground surface settlements in Shanghai". Canadian Geotechnical Journal, 42(5), 1243-1254, 2005.
  • [10] Liu G, Ng CW, Wang Z. "Observed performance of a deep multistrutted excavation in Shanghai soft clays". Journal of Geotechnical and Geoenvironmental Engineering, 131(8), 1004-1013, 2005.
  • [11] Leung EH, Ng CW. "Wall and ground movements associated with deep excavations supported by cast in situ wall in mixed ground conditions". Journal of Geotechnical and Geoenvironmental Engineering, 133(2), 129-143, 2007.
  • [12] Keskin İ. "An evaluation on effects of surface explosion on underground tunnel; availability of ABAQUS Finite element method". Tunnelling and Underground Space Technology, 120, 104306, 2022.
  • [13] Awlla HA, Taher NR, Mawlood YI. "Effect of fixed-base and soil structure interaction on the dynamic responses of steel structures". International Journal of Emerging Trends in Engineering Research, 8(9), 2020.
  • [14] Taher N R, Gör M, Aksoy HS, Ahmed H. "Numerical investigation of the effect of slope angle and height on the stability of a slope composed of sandy soil". Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 12(2), 664-675, 2022.
  • [15] Awlla HA, Taher NR, AKSOY HS, Qadir AJ. "Effect of SSI and fixed-base concept on the dynamic responses of Masonry Bridge structures, Dalal Bridge as a case study". Academic Journal of Nawroz University, 11(3), 89-99, 2022.
  • [16] Gör M, et al. Effect of geogrid inclusion on the slope stability. in Proceedings of the V-International European Conference on Interdisciplinary Scientific Research, Valencia, Spain. 2022.
  • [17] Houhou MN, Emeriault F, Belounar A. "Three-dimensional numerical back-analysis of a monitored deep excavation retained by strutted diaphragm walls". Tunnelling and Underground Space Technology, 83, 153-164, 2019.
  • [18] Likitlersuang S. et al. "Finite element analysis of a deep excavation: A case study from the Bangkok MRT". Soils and Foundations, 53(5), 756-773, 2013.
  • [19] Lim A, Ou CY, Hsieh PG. "A novel strut-free retaining wall system for deep excavation in soft clay: numerical study". Acta Geotechnica, 15(6), 1557-1576, 2020.
  • [20] Zhao W, et al. "A numerical study on the influence of anchorage failure for a deep excavation retained by anchored pile walls". Advances in Mechanical Engineering, 10(2), 1687814018756775, 2018.
  • [21] Cui HH, Zhang L, Zhao Gj. "Numerical simulation of deep foundation pit excavation with double-row piles". Rock and Soil Mechanics-Wuhan, 27(4), 662, 2006.
  • [22] Abeje W. Soil Stabilization using plastic wastes (Case Study on Addis Ababa). 2017.
  • [23] Brinkgreve R. et al. "PLAXIS 2016". PLAXIS bv, the Netherlands, 2016.
  • [24] Bowles JE. "Foundation Analysis and Design, The McGrawHill Companies". Inc., Singapore, 1996.

Behaviour of a strip footing adjacent to the existing supported excavation

Year 2023, , 1 - 11, 13.02.2023
https://doi.org/10.5505/fujece.2023.21931

Abstract

This study investigates the results of the numerical analysis on effect of existing supported excavation on ultimate bearing capacity
(qult) of strip footing adjacent to supported excavation in sandy soil. The influence of distance (L) between the foundation and the
supported excavation was studied as well as the effect of the excavation depth (He). For this purpose, on a full-scale model, a series of
numerical calculations were carried out to determine how (L) and (He) affected the behavior of strip foundation. Based on finite element
approach, the computer software Plaxis 2D code was utilized. Non-linear hardening soil model, a sophisticated elastoplastic stressstrain
constitutive soil model, was used to characterize sandy soil. Based on Mindlin's beam theory, the strip footing and sheet pile wall
were identified as elastic beam components with significant flexural rigidity (EI) and axial stiffness (EA). The sheet pile was installed
at three different distances (L) away from the face of the strip foundation 1B, 1.5B and 2B, where B is the width of foundation. For
each distance, three different excavations (He) were used with dimensions 1B, 1.5B and 2B. The numerical outcomes show that the
ultimate bearing capacity (qult) of shallow foundation is decreased when distance between strip foundation and supported excavation is
decreased, and vice versa. Additionally, (qult) is reduced as the depth of excavation behind sheet pile wall is increased, and vice versa.

References

  • [1] El Sawwaf M, Nazir AK. "The effect of deep excavation-induced lateral soil movements on the behavior of strip footing supported on reinforced sand". Journal of Advanced Research, 3(4), 337-344, 2012.
  • [2] Boone SJ. "Ground-movement-related building damage". Journal of geotechnical engineering, 122(11), 886-896, 1996.
  • [3] Yoo C, Lee D. "Deep excavation-induced ground surface movement characteristics–A numerical investigation". Computers and Geotechnics, 35(2), 231-252, 2008.
  • [4] Peck RB. "Deep excavations and tunneling in soft ground". Proc. 7th ICSMFE, 1969, 225-290, 1969.
  • [5] Clough GW. "Construction induced movements of in situ walls". Design and Performance of Earth Retaining Structures, 439-470, 1990.
  • [6] Ou CY, Hsieh PG, Chiou DC. "Characteristics of ground surface settlement during excavation". Canadian Geotechnical Journal, 30(5), 758-767, 1993.
  • [7] Long M. "Database for retaining wall and ground movements due to deep excavations". Journal of Geotechnical and Geoenvironmental Engineering, 127(3), 203-224, 2001.
  • [8] Yoo C. "Behavior of braced and anchored walls in soils overlying rock". Journal of Geotechnical and Geoenvironmental Engineering, 127(3), 225-233, 2001.
  • [9] Wang ZW, Ng CW, Liu GB. "Characteristics of wall deflections and ground surface settlements in Shanghai". Canadian Geotechnical Journal, 42(5), 1243-1254, 2005.
  • [10] Liu G, Ng CW, Wang Z. "Observed performance of a deep multistrutted excavation in Shanghai soft clays". Journal of Geotechnical and Geoenvironmental Engineering, 131(8), 1004-1013, 2005.
  • [11] Leung EH, Ng CW. "Wall and ground movements associated with deep excavations supported by cast in situ wall in mixed ground conditions". Journal of Geotechnical and Geoenvironmental Engineering, 133(2), 129-143, 2007.
  • [12] Keskin İ. "An evaluation on effects of surface explosion on underground tunnel; availability of ABAQUS Finite element method". Tunnelling and Underground Space Technology, 120, 104306, 2022.
  • [13] Awlla HA, Taher NR, Mawlood YI. "Effect of fixed-base and soil structure interaction on the dynamic responses of steel structures". International Journal of Emerging Trends in Engineering Research, 8(9), 2020.
  • [14] Taher N R, Gör M, Aksoy HS, Ahmed H. "Numerical investigation of the effect of slope angle and height on the stability of a slope composed of sandy soil". Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 12(2), 664-675, 2022.
  • [15] Awlla HA, Taher NR, AKSOY HS, Qadir AJ. "Effect of SSI and fixed-base concept on the dynamic responses of Masonry Bridge structures, Dalal Bridge as a case study". Academic Journal of Nawroz University, 11(3), 89-99, 2022.
  • [16] Gör M, et al. Effect of geogrid inclusion on the slope stability. in Proceedings of the V-International European Conference on Interdisciplinary Scientific Research, Valencia, Spain. 2022.
  • [17] Houhou MN, Emeriault F, Belounar A. "Three-dimensional numerical back-analysis of a monitored deep excavation retained by strutted diaphragm walls". Tunnelling and Underground Space Technology, 83, 153-164, 2019.
  • [18] Likitlersuang S. et al. "Finite element analysis of a deep excavation: A case study from the Bangkok MRT". Soils and Foundations, 53(5), 756-773, 2013.
  • [19] Lim A, Ou CY, Hsieh PG. "A novel strut-free retaining wall system for deep excavation in soft clay: numerical study". Acta Geotechnica, 15(6), 1557-1576, 2020.
  • [20] Zhao W, et al. "A numerical study on the influence of anchorage failure for a deep excavation retained by anchored pile walls". Advances in Mechanical Engineering, 10(2), 1687814018756775, 2018.
  • [21] Cui HH, Zhang L, Zhao Gj. "Numerical simulation of deep foundation pit excavation with double-row piles". Rock and Soil Mechanics-Wuhan, 27(4), 662, 2006.
  • [22] Abeje W. Soil Stabilization using plastic wastes (Case Study on Addis Ababa). 2017.
  • [23] Brinkgreve R. et al. "PLAXIS 2016". PLAXIS bv, the Netherlands, 2016.
  • [24] Bowles JE. "Foundation Analysis and Design, The McGrawHill Companies". Inc., Singapore, 1996.
There are 24 citations in total.

Details

Primary Language English
Subjects Civil Engineering
Journal Section Research Articles
Authors

Mesut Gör 0000-0002-5463-9278

Nichirvan Ramadhan Taher This is me 0000-0002-1295-080X

Hüseyin Suha Aksoy This is me 0000-0003-0564-457X

Publication Date February 13, 2023
Published in Issue Year 2023

Cite

APA Gör, M., Taher, N. R., & Aksoy, H. S. (2023). Behaviour of a strip footing adjacent to the existing supported excavation. Firat University Journal of Experimental and Computational Engineering, 2(1), 1-11. https://doi.org/10.5505/fujece.2023.21931
AMA Gör M, Taher NR, Aksoy HS. Behaviour of a strip footing adjacent to the existing supported excavation. FUJECE. February 2023;2(1):1-11. doi:10.5505/fujece.2023.21931
Chicago Gör, Mesut, Nichirvan Ramadhan Taher, and Hüseyin Suha Aksoy. “Behaviour of a Strip Footing Adjacent to the Existing Supported Excavation”. Firat University Journal of Experimental and Computational Engineering 2, no. 1 (February 2023): 1-11. https://doi.org/10.5505/fujece.2023.21931.
EndNote Gör M, Taher NR, Aksoy HS (February 1, 2023) Behaviour of a strip footing adjacent to the existing supported excavation. Firat University Journal of Experimental and Computational Engineering 2 1 1–11.
IEEE M. Gör, N. R. Taher, and H. S. Aksoy, “Behaviour of a strip footing adjacent to the existing supported excavation”, FUJECE, vol. 2, no. 1, pp. 1–11, 2023, doi: 10.5505/fujece.2023.21931.
ISNAD Gör, Mesut et al. “Behaviour of a Strip Footing Adjacent to the Existing Supported Excavation”. Firat University Journal of Experimental and Computational Engineering 2/1 (February 2023), 1-11. https://doi.org/10.5505/fujece.2023.21931.
JAMA Gör M, Taher NR, Aksoy HS. Behaviour of a strip footing adjacent to the existing supported excavation. FUJECE. 2023;2:1–11.
MLA Gör, Mesut et al. “Behaviour of a Strip Footing Adjacent to the Existing Supported Excavation”. Firat University Journal of Experimental and Computational Engineering, vol. 2, no. 1, 2023, pp. 1-11, doi:10.5505/fujece.2023.21931.
Vancouver Gör M, Taher NR, Aksoy HS. Behaviour of a strip footing adjacent to the existing supported excavation. FUJECE. 2023;2(1):1-11.