Research Article
BibTex RIS Cite

Development of a Production Process for Biomass-Based Activated Carbon via Hydrothermal Carbonization Method

Year 2024, , 326 - 336, 31.10.2024
https://doi.org/10.62520/fujece.1473852

Abstract

This study presents a process development including detailed characterization of hydrochars and activated carbons produced by hydrothermal carbonization and chemical activation methods using apricot kernel shells (AKS). Initially, the AKS were processed by grinding, followed by subjecting them to hydrothermal carbonization at 240ºC for 24, 36, and 48 hours, resulting in three distinct hydrochars. Subsequently, these hydrochars were mixed with KOH for 3 hours and subjected to a carbonization process at 700°C for 1 hour to obtain activated carbons. Various characterization methods such as Brunauer-Emmett-Teller (BET) surface area analysis, Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS), X-Ray Diffraction (XRD) analysis, and Fourier-Transform Infrared spectroscopy (FTIR) measurements were employed to determine the properties of the activated carbons. The results obtained indicate that the duration of the hydrothermal reaction increases the carbon content and leads to the formation of porous structures. Particularly, the chemical activation process was found to be effective in pore formation, as evident in SEM images. In conclusion, this study provides a detailed description of the characteristic properties of hydrochars, and activated carbons derived from AKS.

Supporting Institution

TÜBİTAK - FÜBAP

Project Number

122M793 - ADEP23.19

Thanks

We gratefully acknowledge the support of The Scientific and Technological Research Council of Türkiye (TÜBİTAK), which has generously funded our research under Project Number 122M793. Also, some analyzes of the study have been conducted with the support of Fırat University Scientific Research Projects Coordination Unit (FÜBAP) under the Project Number ADEP23.19.

References

  • G. Hekimoğlu, A. Sarı, Y. Önal, O. Gencel, V. V. Tyagi, and E. Aslan, “Utilization of waste apricot kernel shell derived-activated carbon as carrier framework for effective shape-stabilization and thermal conductivity enhancement of organic phase change materials used for thermal energy storage,” Powder Technol., vol. 401, p. 117291, Mar. 2022.
  • T. Ekonomi and P. Geliştirme Enstitüsü, “Hazırlayan Mine Hasdemir.”
  • E. Haberleri, “Kabuk diye sakın çöpe atmayın! Bu ilimize yıllık 12 milyon kazandırıyor - Ekonomi Haberleri.” Accessed: Nov. 09, 2023. [Online]. Available: https://www.sabah.com.tr/ekonomi/2019/01/01/kabuk-diye-sakin-cope-atmayin-bu-ilimize-yillik-12-milyon-kazandiriyor
  • M. Ahtik, “Antep Fıstığı Kabuğundan Hidrotermal Karbon Üretimi ve Karakterizasyonu,” Karabük Üniv., 2022, (In Turkish).
  • L. Wang et al., “H3PO4-assisted synthesis of apricot shell lignin-based activated carbon for capacitors: Understanding the pore structure/electrochemical performance relationship,” Ener. and Fuels, vol. 35, no. 9, pp. 8303–8312, May 2021.
  • L. Wang, L. Xie, H. Wang, H. Ma, and J. Zhou, “Sustainable synthesis of apricot shell-derived hierarchical porous carbon for supercapacitors: A novel mild one-step synthesis process,” Coll. and Surf. A: Physic.and Eng. Aspects, 637, 128257, 2022.
  • T. S. Temirgaliyeva et al., “Self-supporting hybrid supercapacitor electrodes based on carbon nanotube and activated carbons,” Eur. Chem.Techn. Jour., vol. 20, no. 3, pp. 169–175, 2018.
  • H. Eom, J. Kim, I. Nam, and S. Bae, “Recycling black tea waste biomass as activated porous carbon for long life cycle supercapacitor electrodes,” Mater., vol. 14, no. 21, 2021.
  • E. Canbaz, “Findik Kabuklarindan Hidrotermal Karbonizasyon Yöntemi ile Karbon Malzemelerinin Eldesi Ve Sodyum-Iyon Bataryalar Için Kullanim Potansiyelinin Incelenmesi,” Gebze Teknik Üni., 2020, (In Turkish).
  • A. B. Fuertes et al., “Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover,” Soil Res., vol. 48, no. 7, pp. 618–626, Sep. 2010.
  • K. Aydıncak, “Hidrotermal karbonizasyon yöntemiyle gerçek ve model biyokütlelerden karbon nanoküre sentezi ve karakterizasyonu,” Ankara Üniversitesi, 2012, (In Turkish).
  • S. Román, J. M. Valente Nabais, B. Ledesma, J. F. González, C. Laginhas, and M. M. Titirici, “Production of low-cost adsorbents with tunable surface chemistry by conjunction of hydrothermal carbonization and activation processes,” Microp. and Mesop. Mater., vol. 165, pp. 127–133, Jan. 2013.
  • K. Q. Tran, A. J. Klemsdal, W. Zhang, J. Sandquist, L. Wang, and Ø. Skreiberg, “Fast Hydrothermal Liquefaction of Native and Torrefied Wood,” Ener. Proc., vol. 105, pp. 218–223, May 2017.
  • B. K. Kızılduman, “Pirinç Kabuğundan Hidrotermal Karbonizasyon Yöntemi ile Karbon Küre Üretilmesi ve Enerji ve İlaç Salimi Alaninda Kullanilabilirliğinin Araştırılması,” Balikesir Üniversitesi, 2020, (In Turkish).
  • E. Unur, S. Brutti, S. Panero, and B. Scrosati, “Nanoporous carbons from hydrothermally treated biomass as anode materials for lithium ion batteries,” Microp. and Mesop. Mater., vol. 174, pp. 25–33, Jul. 2013.
  • M. Süner, “Hidrotermal Karbonizasyon Yöntemi ile Çay Tesis Atiklari ve Badem Kabuklarindan Aktif Karbon Üretimi,” Firat Üniversitesi, 2022, (In Turkish).
  • M. I. Satayev, R. S. Alibekov, L. M. Satayeva, O. P. Baiysbay, and B. Z. Mutaliyeva, “Characteristics of activated carbons prepared from apricot kernel shells by mechanical, chemical and thermal activations,” Mod Appl Sci, vol. 9, no. 6, pp. 104–119, 2015.
  • T. Wang, Y. Zhai, Y. Zhu, C. Li, and G. Zeng, “A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties,” Renew. and Sustain. Ener. Rev., vol. 90, pp. 223–247, Jul. 2018.
  • B. Janković et al., “Physico-chemical characterization of carbonized apricot kernel shell as precursor for activated carbon preparation in clean technology utilization,” J Clean Prod, vol. 236, p. 117614, Nov. 2019.
  • K. Aljoumaa, H. Tabeikh, and M. Abboudi, “Characterization of apricot kernel shells (Prunus armeniaca) by FTIR spectroscopy, DSC and TGA,” Jour. of the Indian Acad. of Wood Sci., vol. 14, no. 2, pp. 127–132, Dec. 2017.
  • J. Krumins, M. Klavins, and V. Seglins, “Comparative Study of Peat Composition by using FT-IR Spectroscopy,” Mater. Sci. and Appl. Chem., vol. 26, p. 106, 2012.
  • Y. Lin, X. Ma, X. Peng, and Z. Yu, “A mechanism study on hydrothermal carbonization of waste textile,” Ener. and Fuels, vol. 30, no. 9, pp. 7746–7754, Sep. 2016.
  • B. K. Via, O. Fasina, and H. Pan, “Assessment of pine biomass density through mid-infrared spectroscopy and multivariate modeling,” Biores., vol. 6, no. 1, pp. 807–822, Apr. 2013.
  • J. Jayaramudu, S. C. Agwuncha, S. S. Ray, E. R. Sadiku, and A. Varada Rajulu, “Studies on the chemical resistance and mechanical properties of natural polyalthia cerasoides woven fabric/glass hybridized epoxy composites,” Adv Mater Lett, vol. 6, no. 2, pp. 114–119, Feb. 2015.
  • S. Fong Sim, M. Mohamed, N. Aida Lu Mohd Irwan Lu, N. P. Safitri Sarman, and S. Nor Sihariddh Samsudin, “Computer-assisted analysis of Fourier Transform Infrared (FTIR) spectra for characterization of various treated and untreated agriculture biomass.,” Bioresour., vol. 7, no. 4, pp. 5367–5380, 2012.
  • N. A. Nikonenko, D. K. Buslov, N. I. Sushko, R. G. Zhbankov, and B. I. Stepanov, “Investigation of stretching vibrations of glycosidic linkages in disaccharides and polysaccarides with use of IR spectra deconvolution,” Wiley Online LibraryNA Original Res. on Biomol., pp. 257–262, 2000.
  • J. Cao, G. Xiao, X. Xu, D. Shen, and B. Jin, “Study on carbonization of lignin by TG-FTIR and high-temperature carbonization reactor,” Fuel Proce. Techn. vol. 106, pp. 41–47, Feb. 2013.
  • M. A. Islam, M. J. Ahmed, W. A. Khanday, M. Asif, and B. H. Hameed, “Mesoporous activated coconut shell-derived hydrochar prepared via hydrothermal carbonization-NaOH activation for methylene blue adsorption,” J Env. Manage, vol. 203, pp. 237–244, Dec. 2017.
  • G. Sivasankarapillai and A. G. McDonald, “Synthesis and properties of lignin-highly branched poly (ester-amine) polymeric systems,” Bio. Bioen., vol. 35, no. 2, pp. 919–931, Feb. 2011.
  • B. E. Obinaju and F. L. Martin, “ATR-FTIR spectroscopy reveals polycyclic aromatic hydrocarbon contamination despite relatively pristine site characteristics: Results of a field study in the Niger Delta,” Environ Int, vol. 89–90, pp. 93–101, Apr. 2016.
  • X. Zhao et al., “Efficient solid-phase synthesis of acetylated lignin and a comparison of the properties of different modified lignins,” J Appl Polym Sci, vol. 134, no. 1, p. 44276, Jan. 2017.
  • S. Başakçılardan Kabakcı and S. S. Baran, “Hydrothermal carbonization of various lignocellulosics: Fuel characteristics of hydrochars and surface characteristics of activated hydrochars,” Waste Manag., vol. 100, pp. 259–268, Dec. 2019.
  • Z. Liu, A. Quek, S. Kent Hoekman, and R. Balasubramanian, “Production of solid biochar fuel from waste biomass by hydrothermal carbonization,” Fuel, vol. 103, pp. 943–949, Jan. 2013.

Hidrotermal Karbonizasyon Yöntemiyle Biyokütle Bazlı Aktif Karbon Üretim Prosesinin Geliştirilmesi

Year 2024, , 326 - 336, 31.10.2024
https://doi.org/10.62520/fujece.1473852

Abstract

Bu çalışma, kayısı çekirdeği kabukları (KÇK) kullanılarak hidrotermal karbonizasyon ve kimyasal aktivasyon yöntemleriyle üretilen hidrokömürlerin ve aktif karbonların ayrıntılı karakterizasyonunu içeren bir süreç geliştirmeyi sunmaktadır. İlk olarak, KÇK öğütülerek işlenmiş, ardından 24, 36 ve 48 saat boyunca 240ºC’de hidrotermal karbonizasyona tabi tutularak üç farklı hidrokömür elde edilmiştir. Daha sonra, bu hidrokarbonlar 3 saat boyunca KOH ile karıştırılmış ve aktif karbonlar elde etmek için 700°C’de 1 saat boyunca karbonizasyon işlemine tabi tutulmuştur. Aktif karbonların yapısal özelliklerini belirlemek için Brunauer-Emmett-Teller (BET) yüzey alanı analizi, Taramalı Elektron Mikroskobu (SEM) ve Enerji Dağılım Spektroskopisi (EDS), X-Işını Kırınımı (XRD) analizi ve Fourier-Transform Kızılötesi spektroskopisi (FTIR) ölçümleri gibi çeşitli karakterizasyon yöntemleri kullanılmıştır. Elde edilen sonuçlar, hidrotermal reaksiyon süresinin karbon içeriğini artırdığını ve gözenekli yapıların oluşumuna yol açtığını göstermektedir. Özellikle, SEM görüntülerinden de anlaşılacağı üzere, kimyasal aktivasyon sürecinin gözenek oluşumunda etkili olduğu görülmüştür. Sonuç olarak, bu çalışma hidrokömürlerin ve KÇK’den elde edilen aktif karbonların karakteristik özelliklerinin ayrıntılı bir tanımını sunmaktadır.

Project Number

122M793 - ADEP23.19

References

  • G. Hekimoğlu, A. Sarı, Y. Önal, O. Gencel, V. V. Tyagi, and E. Aslan, “Utilization of waste apricot kernel shell derived-activated carbon as carrier framework for effective shape-stabilization and thermal conductivity enhancement of organic phase change materials used for thermal energy storage,” Powder Technol., vol. 401, p. 117291, Mar. 2022.
  • T. Ekonomi and P. Geliştirme Enstitüsü, “Hazırlayan Mine Hasdemir.”
  • E. Haberleri, “Kabuk diye sakın çöpe atmayın! Bu ilimize yıllık 12 milyon kazandırıyor - Ekonomi Haberleri.” Accessed: Nov. 09, 2023. [Online]. Available: https://www.sabah.com.tr/ekonomi/2019/01/01/kabuk-diye-sakin-cope-atmayin-bu-ilimize-yillik-12-milyon-kazandiriyor
  • M. Ahtik, “Antep Fıstığı Kabuğundan Hidrotermal Karbon Üretimi ve Karakterizasyonu,” Karabük Üniv., 2022, (In Turkish).
  • L. Wang et al., “H3PO4-assisted synthesis of apricot shell lignin-based activated carbon for capacitors: Understanding the pore structure/electrochemical performance relationship,” Ener. and Fuels, vol. 35, no. 9, pp. 8303–8312, May 2021.
  • L. Wang, L. Xie, H. Wang, H. Ma, and J. Zhou, “Sustainable synthesis of apricot shell-derived hierarchical porous carbon for supercapacitors: A novel mild one-step synthesis process,” Coll. and Surf. A: Physic.and Eng. Aspects, 637, 128257, 2022.
  • T. S. Temirgaliyeva et al., “Self-supporting hybrid supercapacitor electrodes based on carbon nanotube and activated carbons,” Eur. Chem.Techn. Jour., vol. 20, no. 3, pp. 169–175, 2018.
  • H. Eom, J. Kim, I. Nam, and S. Bae, “Recycling black tea waste biomass as activated porous carbon for long life cycle supercapacitor electrodes,” Mater., vol. 14, no. 21, 2021.
  • E. Canbaz, “Findik Kabuklarindan Hidrotermal Karbonizasyon Yöntemi ile Karbon Malzemelerinin Eldesi Ve Sodyum-Iyon Bataryalar Için Kullanim Potansiyelinin Incelenmesi,” Gebze Teknik Üni., 2020, (In Turkish).
  • A. B. Fuertes et al., “Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover,” Soil Res., vol. 48, no. 7, pp. 618–626, Sep. 2010.
  • K. Aydıncak, “Hidrotermal karbonizasyon yöntemiyle gerçek ve model biyokütlelerden karbon nanoküre sentezi ve karakterizasyonu,” Ankara Üniversitesi, 2012, (In Turkish).
  • S. Román, J. M. Valente Nabais, B. Ledesma, J. F. González, C. Laginhas, and M. M. Titirici, “Production of low-cost adsorbents with tunable surface chemistry by conjunction of hydrothermal carbonization and activation processes,” Microp. and Mesop. Mater., vol. 165, pp. 127–133, Jan. 2013.
  • K. Q. Tran, A. J. Klemsdal, W. Zhang, J. Sandquist, L. Wang, and Ø. Skreiberg, “Fast Hydrothermal Liquefaction of Native and Torrefied Wood,” Ener. Proc., vol. 105, pp. 218–223, May 2017.
  • B. K. Kızılduman, “Pirinç Kabuğundan Hidrotermal Karbonizasyon Yöntemi ile Karbon Küre Üretilmesi ve Enerji ve İlaç Salimi Alaninda Kullanilabilirliğinin Araştırılması,” Balikesir Üniversitesi, 2020, (In Turkish).
  • E. Unur, S. Brutti, S. Panero, and B. Scrosati, “Nanoporous carbons from hydrothermally treated biomass as anode materials for lithium ion batteries,” Microp. and Mesop. Mater., vol. 174, pp. 25–33, Jul. 2013.
  • M. Süner, “Hidrotermal Karbonizasyon Yöntemi ile Çay Tesis Atiklari ve Badem Kabuklarindan Aktif Karbon Üretimi,” Firat Üniversitesi, 2022, (In Turkish).
  • M. I. Satayev, R. S. Alibekov, L. M. Satayeva, O. P. Baiysbay, and B. Z. Mutaliyeva, “Characteristics of activated carbons prepared from apricot kernel shells by mechanical, chemical and thermal activations,” Mod Appl Sci, vol. 9, no. 6, pp. 104–119, 2015.
  • T. Wang, Y. Zhai, Y. Zhu, C. Li, and G. Zeng, “A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties,” Renew. and Sustain. Ener. Rev., vol. 90, pp. 223–247, Jul. 2018.
  • B. Janković et al., “Physico-chemical characterization of carbonized apricot kernel shell as precursor for activated carbon preparation in clean technology utilization,” J Clean Prod, vol. 236, p. 117614, Nov. 2019.
  • K. Aljoumaa, H. Tabeikh, and M. Abboudi, “Characterization of apricot kernel shells (Prunus armeniaca) by FTIR spectroscopy, DSC and TGA,” Jour. of the Indian Acad. of Wood Sci., vol. 14, no. 2, pp. 127–132, Dec. 2017.
  • J. Krumins, M. Klavins, and V. Seglins, “Comparative Study of Peat Composition by using FT-IR Spectroscopy,” Mater. Sci. and Appl. Chem., vol. 26, p. 106, 2012.
  • Y. Lin, X. Ma, X. Peng, and Z. Yu, “A mechanism study on hydrothermal carbonization of waste textile,” Ener. and Fuels, vol. 30, no. 9, pp. 7746–7754, Sep. 2016.
  • B. K. Via, O. Fasina, and H. Pan, “Assessment of pine biomass density through mid-infrared spectroscopy and multivariate modeling,” Biores., vol. 6, no. 1, pp. 807–822, Apr. 2013.
  • J. Jayaramudu, S. C. Agwuncha, S. S. Ray, E. R. Sadiku, and A. Varada Rajulu, “Studies on the chemical resistance and mechanical properties of natural polyalthia cerasoides woven fabric/glass hybridized epoxy composites,” Adv Mater Lett, vol. 6, no. 2, pp. 114–119, Feb. 2015.
  • S. Fong Sim, M. Mohamed, N. Aida Lu Mohd Irwan Lu, N. P. Safitri Sarman, and S. Nor Sihariddh Samsudin, “Computer-assisted analysis of Fourier Transform Infrared (FTIR) spectra for characterization of various treated and untreated agriculture biomass.,” Bioresour., vol. 7, no. 4, pp. 5367–5380, 2012.
  • N. A. Nikonenko, D. K. Buslov, N. I. Sushko, R. G. Zhbankov, and B. I. Stepanov, “Investigation of stretching vibrations of glycosidic linkages in disaccharides and polysaccarides with use of IR spectra deconvolution,” Wiley Online LibraryNA Original Res. on Biomol., pp. 257–262, 2000.
  • J. Cao, G. Xiao, X. Xu, D. Shen, and B. Jin, “Study on carbonization of lignin by TG-FTIR and high-temperature carbonization reactor,” Fuel Proce. Techn. vol. 106, pp. 41–47, Feb. 2013.
  • M. A. Islam, M. J. Ahmed, W. A. Khanday, M. Asif, and B. H. Hameed, “Mesoporous activated coconut shell-derived hydrochar prepared via hydrothermal carbonization-NaOH activation for methylene blue adsorption,” J Env. Manage, vol. 203, pp. 237–244, Dec. 2017.
  • G. Sivasankarapillai and A. G. McDonald, “Synthesis and properties of lignin-highly branched poly (ester-amine) polymeric systems,” Bio. Bioen., vol. 35, no. 2, pp. 919–931, Feb. 2011.
  • B. E. Obinaju and F. L. Martin, “ATR-FTIR spectroscopy reveals polycyclic aromatic hydrocarbon contamination despite relatively pristine site characteristics: Results of a field study in the Niger Delta,” Environ Int, vol. 89–90, pp. 93–101, Apr. 2016.
  • X. Zhao et al., “Efficient solid-phase synthesis of acetylated lignin and a comparison of the properties of different modified lignins,” J Appl Polym Sci, vol. 134, no. 1, p. 44276, Jan. 2017.
  • S. Başakçılardan Kabakcı and S. S. Baran, “Hydrothermal carbonization of various lignocellulosics: Fuel characteristics of hydrochars and surface characteristics of activated hydrochars,” Waste Manag., vol. 100, pp. 259–268, Dec. 2019.
  • Z. Liu, A. Quek, S. Kent Hoekman, and R. Balasubramanian, “Production of solid biochar fuel from waste biomass by hydrothermal carbonization,” Fuel, vol. 103, pp. 943–949, Jan. 2013.
There are 33 citations in total.

Details

Primary Language English
Subjects Material Characterization, Material Production Technologies
Journal Section Research Articles
Authors

Nida Katı 0000-0001-7953-1258

Ferhat Uçar 0000-0001-9366-6124

Project Number 122M793 - ADEP23.19
Publication Date October 31, 2024
Submission Date April 26, 2024
Acceptance Date June 7, 2024
Published in Issue Year 2024

Cite

APA Katı, N., & Uçar, F. (2024). Development of a Production Process for Biomass-Based Activated Carbon via Hydrothermal Carbonization Method. Firat University Journal of Experimental and Computational Engineering, 3(3), 326-336. https://doi.org/10.62520/fujece.1473852
AMA Katı N, Uçar F. Development of a Production Process for Biomass-Based Activated Carbon via Hydrothermal Carbonization Method. FUJECE. October 2024;3(3):326-336. doi:10.62520/fujece.1473852
Chicago Katı, Nida, and Ferhat Uçar. “Development of a Production Process for Biomass-Based Activated Carbon via Hydrothermal Carbonization Method”. Firat University Journal of Experimental and Computational Engineering 3, no. 3 (October 2024): 326-36. https://doi.org/10.62520/fujece.1473852.
EndNote Katı N, Uçar F (October 1, 2024) Development of a Production Process for Biomass-Based Activated Carbon via Hydrothermal Carbonization Method. Firat University Journal of Experimental and Computational Engineering 3 3 326–336.
IEEE N. Katı and F. Uçar, “Development of a Production Process for Biomass-Based Activated Carbon via Hydrothermal Carbonization Method”, FUJECE, vol. 3, no. 3, pp. 326–336, 2024, doi: 10.62520/fujece.1473852.
ISNAD Katı, Nida - Uçar, Ferhat. “Development of a Production Process for Biomass-Based Activated Carbon via Hydrothermal Carbonization Method”. Firat University Journal of Experimental and Computational Engineering 3/3 (October 2024), 326-336. https://doi.org/10.62520/fujece.1473852.
JAMA Katı N, Uçar F. Development of a Production Process for Biomass-Based Activated Carbon via Hydrothermal Carbonization Method. FUJECE. 2024;3:326–336.
MLA Katı, Nida and Ferhat Uçar. “Development of a Production Process for Biomass-Based Activated Carbon via Hydrothermal Carbonization Method”. Firat University Journal of Experimental and Computational Engineering, vol. 3, no. 3, 2024, pp. 326-3, doi:10.62520/fujece.1473852.
Vancouver Katı N, Uçar F. Development of a Production Process for Biomass-Based Activated Carbon via Hydrothermal Carbonization Method. FUJECE. 2024;3(3):326-3.