Interaction Prediction on BACE-1 Inhibitors Data for Alzheimer Disease using Message Passing Neural Network
Year 2025,
Volume: 4 Issue: 1, 72 - 84, 18.02.2025
Suat Toraman
,
Bihter Daş
Abstract
The medical condition that develops as memory loss, dementia, and a general decrease in cognitive functions due to the death of brain cells over time is called Alzheimer's disease. This disease can lead to a gradual decline in cognitive functions and eventually severe memory losses that affect a person's daily life. Although the exact mechanism that causes Alzheimer's disease is not fully understood, it has been associated with certain structural changes in the brain, such as plaques and neurofibrillary bundles. This study investigates the use of geometric deep learning methods for the discovery of BACE-1 inhibitors that are promising in addressing Alzheimer's disease. Our study builds on these advancements by integrating GDL with pharmacological criteria, such as the QED criterion and Lipinski's rule, to predict BACE-1 inhibitors with enhanced accuracy and drug-like properties. Our model, which combines message-passing neural networks (MPNNs) and fully connected network (FCN) architectures, achieved a success rate of 87.7%. This performance not only surpasses that of previous studies but also ensures the practical applicability of our findings in drug discovery for Alzheimer's disease. The dual focus on prediction accuracy and drug likeness sets our work apart, providing a more comprehensive approach to identifying effective therapeutic agents.
Ethical Statement
There is no need for an ethics committee approval in the prepared paper. There is no conflict of interest with any person/institution in the prepared paper.
Supporting Institution
TUBITAK
References
- L. Baldini, E. Lenci, C. Faggi, and A. Trabocchi, "Identification of BACE-1 inhibitors through directed C(sp3)–H activation on 5-oxo-pyrrolidine-3-carboxylic acid derivatives," Org. Biomol. Chem., vol. 22, no. 14, pp. 2754–2763, Apr. 2024.
- Y. Nomura, M. Kaneko, R. Saito, Y. Okuma, Y. Kitamura, K. Takata, A. Nish, "A novel therapeutic target against Alzheimer’s disease: HRD1 as endoplasmic reticulum stress-related ubiquitin ligase," Neurobiol. Aging, vol. 35, p. S17, Mar. 2014.
- Z. Wang, J. Zhou, B. Zhang, Z. Xu, H. Wang, Q. Sun, N. Wang, "Inhibitory effects of β-asarone on lncRNA BACE1-mediated induction of autophagy in a model of Alzheimer’s disease," Behav. Brain Res., vol. 463, p. 114896, Apr. 2024.
- Z. Chang, B. Zhu, J. Liu, H. Dong, Y. Hao, Y. Zhou, J. Travas-Sejdic, and M. Xu, "‘Signal-on’ electrochemical detection of BACE1 for early detection of Alzheimer’s disease," Cell Rep. Phys. Sci., p. 101632, Oct. 2023.
- P. Gehlot, S. Kumar, V. Kumar Vyas, B. Singh Choudhary, M. Sharma, and R. Malik, "Guanidine-based β amyloid precursor protein cleavage enzyme 1 (BACE-1) inhibitors for the Alzheimer’s disease (AD): A review," Bioorg. Med. Chem., vol. 74, p. 117047, Nov. 2022.
- S. M. Roy, B. R. Mehta, S. Trivedi, B. K. Sharma, and D. R. Roy, "Biological activity of some thiazolyl‐thiadiazines as BACE‐1 inhibitors for Alzheimer's disease in the light of density functional theory based quantum descriptors," J. Phys. Org. Chem., 2022.
- C. Shen, J. Luo, and K. Xia, "Molecular geometric deep learning," Cell Rep. Methods, vol. 3, no. 11, p. 100621, Nov. 2023.
- J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, "Neural message passing for quantum chemistry," in Proc. 34th Int. Conf. Mach. Learn., vol. 70, pp. 1263–1272, 2017.
- P. W. Battaglia et al., "Relational inductive biases, deep learning, and graph networks," arXiv Preprint, arXiv:1806.01261, 2018.
- H. Wua, J. Liua, R. Zhanga, Y. Lua, G. Cui, Z. Cui, Y. Ding, "A review of deep learning methods for ligand-based drug virtual screening," Fundam. Res., Mar. 2024.
- M. Liu, C. Li, R. Chen, D. Cao, and X. Zeng, "Geometric deep learning for drug discovery," Expert Syst. Appl., vol. 240, p. 122498, Apr. 2024.
- C. Isert, K. Atz, and G. Schneider, "Structure-based drug design with geometric deep learning," Curr. Opin. Struct. Biol., vol. 79, p. 102548, Apr. 2023.
- J. I. B. Janairo, "Chapter 6 - Support vector machine in drug design," in Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development, K. Roy, Ed., Acad. Press, pp. 161–179, 2023.
- S. Kearnes, K. McCloskey, M. Berndl, V. Pande, and P. Riley, "Molecular graph convolutions: moving beyond fingerprints," J. Comput. Aided Mol. Des., vol. 30, no. 8, pp. 595–608, Aug. 2016.
- E. Shim, J. Kammeraad, Z. Xu, A. Tewari, T. Cernak, and P. M. Zimmerman, "Predicting reaction conditions from limited data through active transfer learning," Chem. Sci., vol. 13, no. 22, pp. 6655–6668, 2022.
- W. Hu et al., "Deep learning methods for small molecule drug discovery: A survey," IEEE Trans. Artif. Intell., vol. 5, no. 2, pp. 459–479, Feb. 2024.
- A. F. Nugroho, R. Rendian Septiawan, and I. Kurniawan, "Prediction of human β-secretase 1 (BACE-1) inhibitors for Alzheimer therapeutic agent by using fingerprint-based neural network optimized by bat algorithm," in Proc. Int. Conf. Comput. Sci. Inf. Technol. Eng. (ICCoSITE), Jakarta, Indonesia, pp. 257–261, 2023.
- E. N. Feinberg et al., "PotentialNet for molecular property prediction," ACS Cent. Sci., vol. 4, no. 11, pp. 1520–1530, Nov. 2018.
- M. Ragoza et al., "Protein–ligand scoring with convolutional neural networks," J. Chem. Inf. Model., vol. 57, no. 4, pp. 942–957, 2017.
- Z. Wu, B. Ramsundar, E. N. Feinberg, J. Gomes, C. Geniesse, A. S. Pappu, K. Leswing, and V. Pande, "MoleculeNet: A benchmark for molecular machine learning," arXiv Preprint, arXiv:1703.00564, 2017.
- X. P. Zhou and K. Feng, "MPNN-based graph networks as learnable physics engines for deformation and crack propagation in solid mechanics," Int. J. Solids Struct., vol. 291, p. 112695, Apr. 2024.
- M. Tang, B. Li, and H. Chen, "Application of message passing neural networks for molecular property prediction," Curr. Opin. Struct. Biol., vol. 81, p. 102616, Aug. 2023.
- X. Han, M. Jia, Y. Chang, Y. Li, and S. Wu, "Directed message passing neural network (D-MPNN) with graph edge attention (GEA) for property prediction of biofuel-relevant species," Energy AI, vol. 10, p. 100201, Nov. 2022.
- B. Das, M. Kutsal, and R. Das, "A geometric deep learning model for display and prediction of potential drug-virus interactions against SARS-CoV-2," Chemometr. Intell. Lab. Syst., vol. 229, p. 104640, Oct. 2022.
- T. J. Ritchie and S. J. F. Macdonald, "How drug-like are ‘ugly’ drugs: do drug-likeness metrics predict ADME behaviour in humans?," Drug Discov. Today, vol. 19, no. 4, pp. 489–495, Apr. 2014.
- B. Das, M. Kutsal, and R. Das, "Effective prediction of drug–target interaction on HIV using deep graph neural networks," Chemometr. Intell. Lab. Syst., vol. 230, p. 104676, Nov. 2022.
- M. A. Abbasi et al., "Synthesis of novel N-(1,3-thiazol-2-yl)benzamide clubbed oxadiazole scaffolds: Urease inhibition, Lipinski rule and molecular docking analyses," Bioorg. Chem., vol. 83, pp. 63–75, Mar. 2019.
- R. Barret, "Lipinski’s Rule of Five," in Therapeutical Chemistry, R. Barret, Ed., Elsevier, pp. 97–100, 2018.
- M. Martins et al., "Towards the development of potential dual GSK-β/BACE-1 inhibitors: a strategy to fight Alzheimer’s disease," Toxicol. Lett., vol. 350, pp. S110–S111, Sep. 2021.
- A. Kumar, G. Srivastava, and A. Sharma, "A physicochemical descriptor-based method for effective and rapid screening of dual inhibitors against BACE-1 and GSK-3β as targets for Alzheimer’s disease," Comput. Biol. Chem., vol. 71, pp. 1–9, Dec. 2017.
- X. Zhang et al., "Low anticoagulant heparin oligosaccharides as inhibitors of BACE-1, the Alzheimer’s β-secretase," Carbohydr. Polym., vol. 151, pp. 51–59, Oct. 2016.
- H. Fu et al., "Promising anti-Alzheimer’s dimer bis(7)-tacrine reduces β-amyloid generation by directly inhibiting BACE-1 activity," Biochem. Biophys. Res. Commun., vol. 366, no. 3, pp. 631–636, Feb. 2008.
- I. O. Korolev, "Alzheimer’s Disease: A Clinical and Basic Science Review," Med. Student Res. J., vol. 4, pp. 24–33, 2014.
- Y. Wang, F. Yang, D. Yan, Y. Zeng, B. Wei, J. Chen, and W. He, "Identification mechanism of BACE1 on inhibitors probed by using multiple separate molecular dynamics simulations and comparative calculations of binding free energies," Molecules, vol. 28, no. 12, p. 4773, Jun. 2023.
- A. K. Ghosh and H. L. Osswald, "BACE1 (β-secretase) inhibitors for the treatment of Alzheimer's disease," Chem. Soc. Rev., vol. 43, no. 19, pp. 6765–6813, Oct. 2014.
Mesaj Aktarma Sinir Ağını Kullanarak Alzheimer Hastalığı için BACE-1 İnhibitörleri Verilerine İlişkin Etkileşim Tahmini
Year 2025,
Volume: 4 Issue: 1, 72 - 84, 18.02.2025
Suat Toraman
,
Bihter Daş
Abstract
Beyin hücrelerinin zamanla ölmesine bağlı olarak hafıza kaybı, demans ve bilişsel işlevlerde genel bir azalma şeklinde gelişen tıbbi duruma Alzheimer hastalığı denir. Bu hastalık, bilişsel işlevlerde kademeli bir düşüşe ve sonuçta kişinin günlük yaşamını etkileyen ciddi hafıza kayıplarına yol açabilmektedir. Alzheimer hastalığına neden olan mekanizma tam olarak anlaşılmamasına rağmen beyindeki plaklar ve nörofibriler demetler gibi bazı yapısal değişikliklerle ilişkilendirilmiştir. Bu çalışma, Alzheimer hastalığının tedavisinde ümit verici olan BACE-1 inhibitörlerinin keşfi için geometrik derin öğrenme yönteminin kullanımını araştırmaktadır. Eğitim sürecinde İletişim Geçiş Sinir Ağı ve Tamamen Bağlantılı Ağ kullanılarak özelleştirilmiş bir model geliştirilmiştir. Bu model, moleküler yapıların karmaşık özelliklerini yakalamak için grafik yerleştirmelerin ve tamamen bağlantılı ağların birleşimi yoluyla molekül etkileşimlerini tahmin etmektedir. Sonuçlar, geliştirilen modelin BACE-1 inhibitörlerinin etkileşimlerini başarılı bir şekilde tahmin edebildiğini göstermektedir. Modelin performans oranı %87,7 olarak belirlenmiştir. Bu çalışma, Alzheimer hastalığına yönelik yeni BACE-1 inhibitörlerinin keşfedilmesi ve geliştirilmesi için umut verici bir yol haritası sunmaktadır.
References
- L. Baldini, E. Lenci, C. Faggi, and A. Trabocchi, "Identification of BACE-1 inhibitors through directed C(sp3)–H activation on 5-oxo-pyrrolidine-3-carboxylic acid derivatives," Org. Biomol. Chem., vol. 22, no. 14, pp. 2754–2763, Apr. 2024.
- Y. Nomura, M. Kaneko, R. Saito, Y. Okuma, Y. Kitamura, K. Takata, A. Nish, "A novel therapeutic target against Alzheimer’s disease: HRD1 as endoplasmic reticulum stress-related ubiquitin ligase," Neurobiol. Aging, vol. 35, p. S17, Mar. 2014.
- Z. Wang, J. Zhou, B. Zhang, Z. Xu, H. Wang, Q. Sun, N. Wang, "Inhibitory effects of β-asarone on lncRNA BACE1-mediated induction of autophagy in a model of Alzheimer’s disease," Behav. Brain Res., vol. 463, p. 114896, Apr. 2024.
- Z. Chang, B. Zhu, J. Liu, H. Dong, Y. Hao, Y. Zhou, J. Travas-Sejdic, and M. Xu, "‘Signal-on’ electrochemical detection of BACE1 for early detection of Alzheimer’s disease," Cell Rep. Phys. Sci., p. 101632, Oct. 2023.
- P. Gehlot, S. Kumar, V. Kumar Vyas, B. Singh Choudhary, M. Sharma, and R. Malik, "Guanidine-based β amyloid precursor protein cleavage enzyme 1 (BACE-1) inhibitors for the Alzheimer’s disease (AD): A review," Bioorg. Med. Chem., vol. 74, p. 117047, Nov. 2022.
- S. M. Roy, B. R. Mehta, S. Trivedi, B. K. Sharma, and D. R. Roy, "Biological activity of some thiazolyl‐thiadiazines as BACE‐1 inhibitors for Alzheimer's disease in the light of density functional theory based quantum descriptors," J. Phys. Org. Chem., 2022.
- C. Shen, J. Luo, and K. Xia, "Molecular geometric deep learning," Cell Rep. Methods, vol. 3, no. 11, p. 100621, Nov. 2023.
- J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, "Neural message passing for quantum chemistry," in Proc. 34th Int. Conf. Mach. Learn., vol. 70, pp. 1263–1272, 2017.
- P. W. Battaglia et al., "Relational inductive biases, deep learning, and graph networks," arXiv Preprint, arXiv:1806.01261, 2018.
- H. Wua, J. Liua, R. Zhanga, Y. Lua, G. Cui, Z. Cui, Y. Ding, "A review of deep learning methods for ligand-based drug virtual screening," Fundam. Res., Mar. 2024.
- M. Liu, C. Li, R. Chen, D. Cao, and X. Zeng, "Geometric deep learning for drug discovery," Expert Syst. Appl., vol. 240, p. 122498, Apr. 2024.
- C. Isert, K. Atz, and G. Schneider, "Structure-based drug design with geometric deep learning," Curr. Opin. Struct. Biol., vol. 79, p. 102548, Apr. 2023.
- J. I. B. Janairo, "Chapter 6 - Support vector machine in drug design," in Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development, K. Roy, Ed., Acad. Press, pp. 161–179, 2023.
- S. Kearnes, K. McCloskey, M. Berndl, V. Pande, and P. Riley, "Molecular graph convolutions: moving beyond fingerprints," J. Comput. Aided Mol. Des., vol. 30, no. 8, pp. 595–608, Aug. 2016.
- E. Shim, J. Kammeraad, Z. Xu, A. Tewari, T. Cernak, and P. M. Zimmerman, "Predicting reaction conditions from limited data through active transfer learning," Chem. Sci., vol. 13, no. 22, pp. 6655–6668, 2022.
- W. Hu et al., "Deep learning methods for small molecule drug discovery: A survey," IEEE Trans. Artif. Intell., vol. 5, no. 2, pp. 459–479, Feb. 2024.
- A. F. Nugroho, R. Rendian Septiawan, and I. Kurniawan, "Prediction of human β-secretase 1 (BACE-1) inhibitors for Alzheimer therapeutic agent by using fingerprint-based neural network optimized by bat algorithm," in Proc. Int. Conf. Comput. Sci. Inf. Technol. Eng. (ICCoSITE), Jakarta, Indonesia, pp. 257–261, 2023.
- E. N. Feinberg et al., "PotentialNet for molecular property prediction," ACS Cent. Sci., vol. 4, no. 11, pp. 1520–1530, Nov. 2018.
- M. Ragoza et al., "Protein–ligand scoring with convolutional neural networks," J. Chem. Inf. Model., vol. 57, no. 4, pp. 942–957, 2017.
- Z. Wu, B. Ramsundar, E. N. Feinberg, J. Gomes, C. Geniesse, A. S. Pappu, K. Leswing, and V. Pande, "MoleculeNet: A benchmark for molecular machine learning," arXiv Preprint, arXiv:1703.00564, 2017.
- X. P. Zhou and K. Feng, "MPNN-based graph networks as learnable physics engines for deformation and crack propagation in solid mechanics," Int. J. Solids Struct., vol. 291, p. 112695, Apr. 2024.
- M. Tang, B. Li, and H. Chen, "Application of message passing neural networks for molecular property prediction," Curr. Opin. Struct. Biol., vol. 81, p. 102616, Aug. 2023.
- X. Han, M. Jia, Y. Chang, Y. Li, and S. Wu, "Directed message passing neural network (D-MPNN) with graph edge attention (GEA) for property prediction of biofuel-relevant species," Energy AI, vol. 10, p. 100201, Nov. 2022.
- B. Das, M. Kutsal, and R. Das, "A geometric deep learning model for display and prediction of potential drug-virus interactions against SARS-CoV-2," Chemometr. Intell. Lab. Syst., vol. 229, p. 104640, Oct. 2022.
- T. J. Ritchie and S. J. F. Macdonald, "How drug-like are ‘ugly’ drugs: do drug-likeness metrics predict ADME behaviour in humans?," Drug Discov. Today, vol. 19, no. 4, pp. 489–495, Apr. 2014.
- B. Das, M. Kutsal, and R. Das, "Effective prediction of drug–target interaction on HIV using deep graph neural networks," Chemometr. Intell. Lab. Syst., vol. 230, p. 104676, Nov. 2022.
- M. A. Abbasi et al., "Synthesis of novel N-(1,3-thiazol-2-yl)benzamide clubbed oxadiazole scaffolds: Urease inhibition, Lipinski rule and molecular docking analyses," Bioorg. Chem., vol. 83, pp. 63–75, Mar. 2019.
- R. Barret, "Lipinski’s Rule of Five," in Therapeutical Chemistry, R. Barret, Ed., Elsevier, pp. 97–100, 2018.
- M. Martins et al., "Towards the development of potential dual GSK-β/BACE-1 inhibitors: a strategy to fight Alzheimer’s disease," Toxicol. Lett., vol. 350, pp. S110–S111, Sep. 2021.
- A. Kumar, G. Srivastava, and A. Sharma, "A physicochemical descriptor-based method for effective and rapid screening of dual inhibitors against BACE-1 and GSK-3β as targets for Alzheimer’s disease," Comput. Biol. Chem., vol. 71, pp. 1–9, Dec. 2017.
- X. Zhang et al., "Low anticoagulant heparin oligosaccharides as inhibitors of BACE-1, the Alzheimer’s β-secretase," Carbohydr. Polym., vol. 151, pp. 51–59, Oct. 2016.
- H. Fu et al., "Promising anti-Alzheimer’s dimer bis(7)-tacrine reduces β-amyloid generation by directly inhibiting BACE-1 activity," Biochem. Biophys. Res. Commun., vol. 366, no. 3, pp. 631–636, Feb. 2008.
- I. O. Korolev, "Alzheimer’s Disease: A Clinical and Basic Science Review," Med. Student Res. J., vol. 4, pp. 24–33, 2014.
- Y. Wang, F. Yang, D. Yan, Y. Zeng, B. Wei, J. Chen, and W. He, "Identification mechanism of BACE1 on inhibitors probed by using multiple separate molecular dynamics simulations and comparative calculations of binding free energies," Molecules, vol. 28, no. 12, p. 4773, Jun. 2023.
- A. K. Ghosh and H. L. Osswald, "BACE1 (β-secretase) inhibitors for the treatment of Alzheimer's disease," Chem. Soc. Rev., vol. 43, no. 19, pp. 6765–6813, Oct. 2014.