Research Article
BibTex RIS Cite

Investigating Impact of Current Pulse Waveform and Simulation Frequency on Deep Brain Stimulation

Year 2025, Volume: 4 Issue: 1, 59 - 71, 18.02.2025
https://doi.org/10.62520/fujece.1467198

Abstract

Bio-computational models have a significant impact on the design and development of medical devices. This approach allows investigation of various medical device parameter settings which would be infeasible to design by using the experimental test. Using the optimal parameters for these neuromodulator systems is crucial for the patient safety. Computational modelling is a fundamental tool in the challenge to improve targeting and stimulation parameters in deep brain stimulation (DBS). Specifically, it may be difficult to design an optimal neuromodulator for Parkinson's disease fusing DBS due to variations in many parameters including simulation waveform shape, pulse width, and amplitude as well as passive factors. This study investigates the impact of using different waveforms based on different pulse widths using such advanced bio-computational modelling systems. The volume conductor of a human head was generated based on average human head thickness including fundamental tissue layers. Then, the DBS electrode array was designed and merged with the computational model to analyse the results using different frequency ranges. Also, the fundamentals of the computational model developments were highlighted for the computational model designers. Then, the results were calculated based on electrical and current density distributions using time-based simulation. It was shown that the simulation frequency and simulation waveform shape have a significant impact on the outcome. The results suggested that the capacitive effect cannot be ignored at the higher frequency levels due to having a significant impact on the electrical potential, current density, and electric field distributions in the region of interest.

Ethical Statement

There is no conflict of interest with any person / institution in the article prepared.

References

  • N. A. Pelot, B. J. Thio, and W. M. Grill, "Modeling current sources for neural stimulation in COMSOL," Front. Comput. Neurosci., vol. 12, no. June, pp. 1–14, 2018.
  • L.-J. Ren, Y. Yu, Y.-H. Zhang, X.-D. Liu, Z.-J. Sun, W.-J. Yao, T.-Y. Zhang, C. Wang, C.-L. Li, "Three-dimensional finite element analysis on cochlear implantation electrode insertion," Biomech. Model. Mechanobiol., Apr. 2022.
  • E. Salkim, A. Shiraz, and A. Demosthenous, "Impact of neuroanatomical variations and electrode orientation on stimulus current in a device for migraine: A computational study," J. Neural Eng., vol. 17, no. 1, 2020.
  • E. Salkim, A. Shiraz, and A. Demosthenous, "Influence of cellular structures of skin on fiber activation thresholds and computation cost," Biomed. Phys. Eng. Express, vol. 5, no. 1, p. 015015, 2018.
  • A. Fellner, A. Heshmat, P. Werginz, and F. Rattay, "A finite element method framework to model extracellular neural stimulation," J. Neural Eng., vol. 19, no. 2, Apr. 2022.
  • J. Martinek, Y. Stickler, M. Reichel, W. Mayr, and F. Rattay, "A novel approach to simulate Hodgkin-Huxley-like excitation with COMSOL Multiphysics," Artif. Organs, vol. 32, no. 8, pp. 614–619, 2008.
  • F.-J. Pettersen, and J. O. Høgetveit, "From 3D tissue data to impedance using Simpleware ScanFE+IP and COMSOL Multiphysics – a tutorial," J. Electr. Bioimp., vol. 2, pp. 13–32, 2011.
  • P. Marianelli, M. Capogrosso, L. B. Luciani, A. Panarese, and S. Micera, "A computational framework for electrical stimulation of vestibular nerve," IEEE Trans. Neural Syst. Rehabil. Eng., vol. 4320, no. c, pp. 1–13, 2015.
  • L.-J. Ren, Y. Yu, Y.-H. Zhang, X.-D. Liu, Z.-J. Sun, W.-J. Yao, T.-Y. Zhang, C. Wang, C.-L. Li, "Three-dimensional finite element analysis on cochlear implantation electrode insertion," Biomech. Model. Mechanobiol., Apr. 2022.
  • E. Salkim, M. Zamani, D. Jiang, S. R. Saeed, and A. Demosthenous, "Insertion guidance based on impedance measurements of a cochlear electrode array," Front. Comput. Neurosci., vol. 16, Jun. 2022.
  • E. Salkim, A. N. Shiraz, and A. Demosthenous, "Computational study on transcutaneous frontal nerve stimulation: Simplification of human head model," in Proc. COMSOL Conf., Rotterdam, pp. 1–4, 2017.
  • M. Zelechowski, G. Valle, and S. Raspopovic, "A computational model to design neural interfaces for lower-limb sensory neuroprostheses," J. Neuroeng. Rehabil., vol. 17, no. 1, pp. 1–13, 2020.
  • Y. Ge et al., "Mediating different-diameter Aβ nerve fibers using a biomimetic 3D TENS computational model," J. Neurosci. Methods, vol. 346, Dec. 2020.
  • S. Raspopovic, S. Capogrosso, and M. Micera, "A computational model for the stimulation of rat sciatic nerve using a transverse intrafascicular multichannel electrode," IEEE Trans. Neural Syst. Rehabil. Eng., vol. 19, no. 4, pp. 333–344, 2011.
  • S. F. Cogan, "Neural stimulation and recording electrodes," Annu. Rev. Biomed. Eng., vol. 10, no. 1, pp. 275–309, 2008.
  • K. M. Prakash, "An overview of surgical therapy for movement disorders," Neurology.
  • N. Yousif, R. Bayford, and X. Liu, "The influence of reactivity of the electrode-brain interface on the crossing electric current in therapeutic deep brain stimulation," Neuroscience, vol. 156, no. 3, pp. 597–606, Oct. 2008.
  • E. Salkim, "Analysis of tissue electrical properties on bio-impedance variation of upper limps," Turk. J. Electr. Eng. Comput. Sci., vol. 30, no. 5, pp. 1839–1850, 2022.
  • E. Salkim, and Y. Wu, "Modeling of transcutaneous recording for bio-impedance analysis on the upper-arm," IEEE Access, vol. 11, pp. 107184–107193, 2023.
  • C. R. Butson, and C. C. McIntyre, "Tissue and electrode capacitance reduce neural activation volumes during deep brain stimulation," Clin. Neurophysiol., vol. 116, no. 10, pp. 2490–2500, Oct. 2005.
  • J. D. Johansson, and P. Zsigmond, "Comparison between patient-specific deep brain stimulation simulations and commercial system SureTune3," Biomed. Phys. Eng. Express, vol. 7, no. 5, Sep. 2021.
  • A. M. Frankemolle-Gilbert, B. Howell, K. L. Bower, P. H. Veltink, T. Heida, and C. C. McIntyre, "Comparison of methodologies for modeling directional deep brain stimulation electrodes," PLoS One, vol. 16, no. 12, Dec. 2021.
  • K. Butenko, C. Bahls, M. Schröder, R. Köhling, and U. Van Rienen, "OSS-DBS: Open-source simulation platform for deep brain stimulation with a comprehensive automated modeling," PLoS Comput. Biol., vol. 16, no. 7, Jul. 2020.

Elektriksel Akım Dalgasının and Frekansının Derin Beyin Stimülasyonu Üzerindeki Etkisinin Araştırılması

Year 2025, Volume: 4 Issue: 1, 59 - 71, 18.02.2025
https://doi.org/10.62520/fujece.1467198

Abstract

Biyo-hesaplamalı modellerin tıbbi cihazların tasarımı ve geliştirilmesi üzerinde önemli bir etkisi vardır. Bu yaklaşım, deneysel test kullanılarak tasarlanması mümkün olmayan çeşitli tıbbi cihaz parametre ayarlarının araştırılmasına olanak tanır. Bu nöromodülatör sistemler için en uygun parametrelerin kullanılması hasta güvenliği açısından çok önemlidir. Hesaplamalı modelleme, derin beyin stimülasyonunda (DBS) hedefleme ve stimülasyon parametrelerini iyileştirme mücadelesinde temel bir araçtır. Spesifik olarak, simülasyon dalga biçimi şekli, darbe genişliği ve amplitüdünün yanı sıra pasif faktörler de dahil olmak üzere birçok parametredeki farklılıklar nedeniyle DBS'yi birleştiren Parkinson hastalığı için optimal bir nöromodülatörün tasarlanması zor olabilir. Bu çalışma, bu tür gelişmiş biyo-hesaplamalı modelleme sistemlerini kullanarak farklı darbe genişliklerine dayalı farklı dalga formlarının kullanılmasının etkisini araştırmaktadır. Bir insan kafasının hacim iletkeni, temel doku katmanları da dahil olmak üzere ortalama insan kafası kalınlığına dayanılarak oluşturulmuştur. Daha sonra, farklı frekans aralıklarını kullanarak sonuçları analiz etmek için DBS elektrot dizisi tasarlandı ve hesaplamalı modelle birleştirildi. Ayrıca hesaplamalı model tasarımcıları için hesaplamalı model geliştirmenin temelleri vurgulandı. Daha sonra sonuçlar, zamana dayalı simülasyon kullanılarak elektrik ve akım yoğunluğu dağılımlarına göre hesaplandı. Simülasyon frekansının ve simülasyon dalga biçimi şeklinin sonuç üzerinde önemli bir etkiye sahip olduğu gösterilmiştir. Sonuçlar, ilgilenilen bölgedeki elektrik potansiyeli, akım yoğunluğu ve elektrik alan dağılımları üzerinde önemli bir etkiye sahip olması nedeniyle kapasitif etkinin daha yüksek frekans seviyelerinde göz ardı edilemeyeceğini göstermiştir.

References

  • N. A. Pelot, B. J. Thio, and W. M. Grill, "Modeling current sources for neural stimulation in COMSOL," Front. Comput. Neurosci., vol. 12, no. June, pp. 1–14, 2018.
  • L.-J. Ren, Y. Yu, Y.-H. Zhang, X.-D. Liu, Z.-J. Sun, W.-J. Yao, T.-Y. Zhang, C. Wang, C.-L. Li, "Three-dimensional finite element analysis on cochlear implantation electrode insertion," Biomech. Model. Mechanobiol., Apr. 2022.
  • E. Salkim, A. Shiraz, and A. Demosthenous, "Impact of neuroanatomical variations and electrode orientation on stimulus current in a device for migraine: A computational study," J. Neural Eng., vol. 17, no. 1, 2020.
  • E. Salkim, A. Shiraz, and A. Demosthenous, "Influence of cellular structures of skin on fiber activation thresholds and computation cost," Biomed. Phys. Eng. Express, vol. 5, no. 1, p. 015015, 2018.
  • A. Fellner, A. Heshmat, P. Werginz, and F. Rattay, "A finite element method framework to model extracellular neural stimulation," J. Neural Eng., vol. 19, no. 2, Apr. 2022.
  • J. Martinek, Y. Stickler, M. Reichel, W. Mayr, and F. Rattay, "A novel approach to simulate Hodgkin-Huxley-like excitation with COMSOL Multiphysics," Artif. Organs, vol. 32, no. 8, pp. 614–619, 2008.
  • F.-J. Pettersen, and J. O. Høgetveit, "From 3D tissue data to impedance using Simpleware ScanFE+IP and COMSOL Multiphysics – a tutorial," J. Electr. Bioimp., vol. 2, pp. 13–32, 2011.
  • P. Marianelli, M. Capogrosso, L. B. Luciani, A. Panarese, and S. Micera, "A computational framework for electrical stimulation of vestibular nerve," IEEE Trans. Neural Syst. Rehabil. Eng., vol. 4320, no. c, pp. 1–13, 2015.
  • L.-J. Ren, Y. Yu, Y.-H. Zhang, X.-D. Liu, Z.-J. Sun, W.-J. Yao, T.-Y. Zhang, C. Wang, C.-L. Li, "Three-dimensional finite element analysis on cochlear implantation electrode insertion," Biomech. Model. Mechanobiol., Apr. 2022.
  • E. Salkim, M. Zamani, D. Jiang, S. R. Saeed, and A. Demosthenous, "Insertion guidance based on impedance measurements of a cochlear electrode array," Front. Comput. Neurosci., vol. 16, Jun. 2022.
  • E. Salkim, A. N. Shiraz, and A. Demosthenous, "Computational study on transcutaneous frontal nerve stimulation: Simplification of human head model," in Proc. COMSOL Conf., Rotterdam, pp. 1–4, 2017.
  • M. Zelechowski, G. Valle, and S. Raspopovic, "A computational model to design neural interfaces for lower-limb sensory neuroprostheses," J. Neuroeng. Rehabil., vol. 17, no. 1, pp. 1–13, 2020.
  • Y. Ge et al., "Mediating different-diameter Aβ nerve fibers using a biomimetic 3D TENS computational model," J. Neurosci. Methods, vol. 346, Dec. 2020.
  • S. Raspopovic, S. Capogrosso, and M. Micera, "A computational model for the stimulation of rat sciatic nerve using a transverse intrafascicular multichannel electrode," IEEE Trans. Neural Syst. Rehabil. Eng., vol. 19, no. 4, pp. 333–344, 2011.
  • S. F. Cogan, "Neural stimulation and recording electrodes," Annu. Rev. Biomed. Eng., vol. 10, no. 1, pp. 275–309, 2008.
  • K. M. Prakash, "An overview of surgical therapy for movement disorders," Neurology.
  • N. Yousif, R. Bayford, and X. Liu, "The influence of reactivity of the electrode-brain interface on the crossing electric current in therapeutic deep brain stimulation," Neuroscience, vol. 156, no. 3, pp. 597–606, Oct. 2008.
  • E. Salkim, "Analysis of tissue electrical properties on bio-impedance variation of upper limps," Turk. J. Electr. Eng. Comput. Sci., vol. 30, no. 5, pp. 1839–1850, 2022.
  • E. Salkim, and Y. Wu, "Modeling of transcutaneous recording for bio-impedance analysis on the upper-arm," IEEE Access, vol. 11, pp. 107184–107193, 2023.
  • C. R. Butson, and C. C. McIntyre, "Tissue and electrode capacitance reduce neural activation volumes during deep brain stimulation," Clin. Neurophysiol., vol. 116, no. 10, pp. 2490–2500, Oct. 2005.
  • J. D. Johansson, and P. Zsigmond, "Comparison between patient-specific deep brain stimulation simulations and commercial system SureTune3," Biomed. Phys. Eng. Express, vol. 7, no. 5, Sep. 2021.
  • A. M. Frankemolle-Gilbert, B. Howell, K. L. Bower, P. H. Veltink, T. Heida, and C. C. McIntyre, "Comparison of methodologies for modeling directional deep brain stimulation electrodes," PLoS One, vol. 16, no. 12, Dec. 2021.
  • K. Butenko, C. Bahls, M. Schröder, R. Köhling, and U. Van Rienen, "OSS-DBS: Open-source simulation platform for deep brain stimulation with a comprehensive automated modeling," PLoS Comput. Biol., vol. 16, no. 7, Jul. 2020.
There are 23 citations in total.

Details

Primary Language English
Subjects Biomedical Instrumentation, Computational Physiology, Medical Devices
Journal Section Research Articles
Authors

Enver Salkım 0000-0002-7342-8126

Publication Date February 18, 2025
Submission Date April 9, 2024
Acceptance Date June 12, 2024
Published in Issue Year 2025 Volume: 4 Issue: 1

Cite

APA Salkım, E. (2025). Investigating Impact of Current Pulse Waveform and Simulation Frequency on Deep Brain Stimulation. Firat University Journal of Experimental and Computational Engineering, 4(1), 59-71. https://doi.org/10.62520/fujece.1467198
AMA Salkım E. Investigating Impact of Current Pulse Waveform and Simulation Frequency on Deep Brain Stimulation. FUJECE. February 2025;4(1):59-71. doi:10.62520/fujece.1467198
Chicago Salkım, Enver. “Investigating Impact of Current Pulse Waveform and Simulation Frequency on Deep Brain Stimulation”. Firat University Journal of Experimental and Computational Engineering 4, no. 1 (February 2025): 59-71. https://doi.org/10.62520/fujece.1467198.
EndNote Salkım E (February 1, 2025) Investigating Impact of Current Pulse Waveform and Simulation Frequency on Deep Brain Stimulation. Firat University Journal of Experimental and Computational Engineering 4 1 59–71.
IEEE E. Salkım, “Investigating Impact of Current Pulse Waveform and Simulation Frequency on Deep Brain Stimulation”, FUJECE, vol. 4, no. 1, pp. 59–71, 2025, doi: 10.62520/fujece.1467198.
ISNAD Salkım, Enver. “Investigating Impact of Current Pulse Waveform and Simulation Frequency on Deep Brain Stimulation”. Firat University Journal of Experimental and Computational Engineering 4/1 (February 2025), 59-71. https://doi.org/10.62520/fujece.1467198.
JAMA Salkım E. Investigating Impact of Current Pulse Waveform and Simulation Frequency on Deep Brain Stimulation. FUJECE. 2025;4:59–71.
MLA Salkım, Enver. “Investigating Impact of Current Pulse Waveform and Simulation Frequency on Deep Brain Stimulation”. Firat University Journal of Experimental and Computational Engineering, vol. 4, no. 1, 2025, pp. 59-71, doi:10.62520/fujece.1467198.
Vancouver Salkım E. Investigating Impact of Current Pulse Waveform and Simulation Frequency on Deep Brain Stimulation. FUJECE. 2025;4(1):59-71.