Research Article
BibTex RIS Cite

Dik Düz Plakadan Geçen İki Boyutlu Akışın Sayısal Olarak İncelenmesi

Year 2025, Volume: 4 Issue: 3, 545 - 556, 20.10.2025
https://doi.org/10.62520/fujece.1639083

Abstract

Normal düz bir plakanın etrafındaki aerodinamik akış özellikleri, geçici rejimdeki simülasyonlar açısından Reynolds sayısının (Re) 100 ve 150 değerlerinde dikkate alınmıştır. Bu çalışma sayısal sonuçlar olarak basınç değerlerini, akış yönündeki ve akışa dik yöndeki hız bileşenlerini, akım çizgileriyle sunulan hız büyüklüğü değerlerini, girdap büyüklüğü değerlerini ve sürükleme katsayılarını sunmaktadır. En yüksek basınç, yukarı akış bölgesi için durgun akış nedeniyle elde edilmiştir. Normal düz plaka etrafındaki basınç düşüşü ayrılmış akış kaynaklıdır. Ancak, art izi bölgesi daha önemli bir basınç düşüşüne neden olmuştur. Birincil dönümlü akış bölgesi Re = 100'den Re = 150'ye küçülmüştür. Öte yandan, ikincil bölge daha büyük boyutta olmuştur. Normal düz plakanın art izi bölgesinde, akışa dik yöndeki hız bileşenlerinin periyodik dağılımları sağlanmıştır. Artan Reynolds sayısının bir sonucu olarak, aşağı akım bölgesi için gözlenen girdap saçıntısı nedeniyle uzamış kayma tabakaları elde edilmiştir. Kararsız girdap yapıları akış alanının çıkış bölgesine kadar uzamıştır. Bununla birlikte, en yüksek girdap değeri, yüksek viskoz difüzyon nedeniyle daha düşük Reynolds sayısı değeri için aşağı akım yönüde azalmıştır. Sürükleme katsayıları sırasıyla Re = 100 ve Re = 150'de CD = 2,42 ve CD = 2,51 olarak elde edilmiştir. Bu değerler, benzer Reynolds sayısı değerleri için önceki çalışmalarda sunulan değerlerle oldukça uyumludur.

Ethical Statement

Bu çalışma için etik kurul onayına gerek yoktur. Makalenin herhangi bir kişi/kurumla çıkar çatışması bulunmamaktadır.

References

  • F. M. Najjar, and S. P. Vanka, “Simulations of the unsteady separated flow past a normal flat plate,” Int. J. Numer. Methods Fluids, vol. 21, no. 7, pp. 525–547, 1995.
  • H. A. Khaledi, V. D. Narasimhamurthy, and H. I. Andersson, “Cellular vortex shedding in the wake of a tapered plate at low Reynolds number,” Phys. Fluids, vol. 21, no. 1, p. 013603, 2009.
  • F. M. Najjar, and S. Balachandar, “Low-frequency unsteadiness in the wake of a normal flat plate,” J. Fluid Mech., vol. 370, pp. 101–147, 1998.
  • M. R. Rastan, M. M. Alam, H. Zhu, and C. Ji, “Onset of vortex shedding from a bluff body modified from square cylinder to normal flat plate,” Ocean Eng., vol. 244, p. 110393, 2022.
  • V. D. Narasimhamurthy, and H. I. Andersson, “Numerical simulation of the turbulent wake behind a normal flat plate,” Int. J. Heat Fluid Flow, vol. 30, no. 6, pp. 1037–1043, 2009.
  • X. Tian, M. C. Ong, J. Yang, and D. Myrhaug, “Large-eddy simulation of the flow normal to a flat plate including corner effects at a high Reynolds number,” J. Fluids Struct., vol. 49, pp. 149–169, 2014.
  • C. Mazharoglu,, and H. Hacisevki, “Coherent and incoherent flow structures behind a normal flat plate,” Exp. Therm. Fluid Sci., vol. 19, no. 3, pp. 160–167, 1999.
  • W. C. Lasher, “Computation of two-dimensional blocked flow normal to a flat plate,” J. Wind Eng. Ind. Aerodyn., vol. 89, no. 6, pp. 493–513, 2001.
  • S. J. Wu, J. J. Miau, C. C. Hu, and J. H. Chou, “On low-frequency modulations and three-dimensionality in vortex shedding behind a normal plate,” J. Fluid Mech., vol. 526, pp. 117–146, 2005.
  • A. K. Saha, “Far-wake characteristics of two-dimensional flow past a normal flat plate,” Phys. Fluids, vol. 19, no. 12, p. 128110, 2007.
  • X. Amandolese, S. Michelin, and M. Choquel, “Low speed flutter and limit cycle oscillations of a two-degree-of-freedom flat plate in a wind tunnel,” J. Fluids Struct., vol. 43, pp. 244–255, 2013.
  • A. K. Saha, “Direct numerical simulation of two-dimensional flow past a normal flat plate,” J. Eng. Mech., vol. 139, no. 12, pp. 1894–1901, 2013.
  • D. M. Hargreaves, B. Kakimpa, and J. S. Owen, “The computational fluid dynamics modelling of the autorotation of square, flat plates,” J. Fluids Struct., vol. 46, pp. 111–133, 2014.
  • L. Huang, Y. L. Xu, and H. Liao, “Nonlinear aerodynamic forces on thin flat plate: Numerical study,” J. Fluids Struct., vol. 44, pp. 182–194, 2014.
  • M. C. Thompson, A. Radi, A. Rao, J. Sheridan, and K. Hourigan, “Low-Reynolds-number wakes of elliptical cylinders: from the circular cylinder to the normal flat plate,” J. Fluid Mech., vol. 751, pp. 570–600, 2014.
  • A. Hemmati, D. H. Wood, and R. J. Martinuzzi, “Characteristics of distinct flow regimes in the wake of an infinite span normal thin flat plate,” Int. J. Heat Fluid Flow, vol. 62, pp. 423–436, 2016.
  • A. Teimourian, S. G. Yazdi, and H. Hacisevki, “Vortex shedding: a review on flat plate,” Fluid Dyn., vol. 53, pp. 212–221, 2018.
  • E. Braun, K. Agrey, and R. J. Martinuzzi, “End effects of nominally two-dimensional thin flat plates,” Int. J. Heat Fluid Flow, vol. 86, p. 108719, 2020.
  • N. Mahir, and Z. Altac, “Numerical investigation of convective heat transfer in unsteady flow past two cylinders in tandem arrangements,” Int. J. Heat Fluid Flow, vol. 29, no. 5, pp. 1309–1318, 2008.
  • I. Goktepeli, “Drag reduction by the effect of rounded corners for a square cylinder,” Phys. Fluids, vol. 36, no. 9, p. 094108, 2024.
  • I. Goktepeli, “Examination of wake characteristics for tandem circular cylinders via Computational Fluid Dynamics,” J. Adv. Res. Nat. Appl. Sci., vol. 11, no. 1, pp. 1–11, 2025.

Numerical Investigation of Two-Dimensional Flow past a Normal Flat Plate

Year 2025, Volume: 4 Issue: 3, 545 - 556, 20.10.2025
https://doi.org/10.62520/fujece.1639083

Abstract

Aerodynamic flow characteristics around a normal flat plate have been considered at Reynolds numbers (Re) of 100 and 150 in terms of transient runs. This study presents pressure values, streamwise and cross-stream velocity components, velocity magnitude values with streamlines, vorticity magnitude values and drag coefficients as numerical results. The highest pressure has been attained owing to the stagnated flow for upstream region. Pressure drop around the normal flat plate is due to the separated flow. However, the wake region caused a more significant pressure drop. The primary recirculation zone shrank from Re = 100 to Re = 150. On the other hand, the secondary one became larger. In the wake region of the normal flat plate, periodical distributions of cross-stream velocity components have been provided. As a result of the increasing Reynolds number, elongated shear layers have been obtained owing to vortex shedding observed for the downstream region. Unsteady vortex structures extended to the outlet region of the flow domain. Nevertheless, the peak vorticity value decayed through the downstream due to higher viscous diffusion at lower Reynolds number. Drag coefficients have been obtained as CD = 2.42 and CD = 2.51 at Re = 100 and Re = 150, respectively. These values are in good agreement with those presented in the previous studies for the similar Reynolds number values.

Ethical Statement

There is no need for ethics committee approval for the present study. There is not any conflict of interest with any person/institution for the current article.

References

  • F. M. Najjar, and S. P. Vanka, “Simulations of the unsteady separated flow past a normal flat plate,” Int. J. Numer. Methods Fluids, vol. 21, no. 7, pp. 525–547, 1995.
  • H. A. Khaledi, V. D. Narasimhamurthy, and H. I. Andersson, “Cellular vortex shedding in the wake of a tapered plate at low Reynolds number,” Phys. Fluids, vol. 21, no. 1, p. 013603, 2009.
  • F. M. Najjar, and S. Balachandar, “Low-frequency unsteadiness in the wake of a normal flat plate,” J. Fluid Mech., vol. 370, pp. 101–147, 1998.
  • M. R. Rastan, M. M. Alam, H. Zhu, and C. Ji, “Onset of vortex shedding from a bluff body modified from square cylinder to normal flat plate,” Ocean Eng., vol. 244, p. 110393, 2022.
  • V. D. Narasimhamurthy, and H. I. Andersson, “Numerical simulation of the turbulent wake behind a normal flat plate,” Int. J. Heat Fluid Flow, vol. 30, no. 6, pp. 1037–1043, 2009.
  • X. Tian, M. C. Ong, J. Yang, and D. Myrhaug, “Large-eddy simulation of the flow normal to a flat plate including corner effects at a high Reynolds number,” J. Fluids Struct., vol. 49, pp. 149–169, 2014.
  • C. Mazharoglu,, and H. Hacisevki, “Coherent and incoherent flow structures behind a normal flat plate,” Exp. Therm. Fluid Sci., vol. 19, no. 3, pp. 160–167, 1999.
  • W. C. Lasher, “Computation of two-dimensional blocked flow normal to a flat plate,” J. Wind Eng. Ind. Aerodyn., vol. 89, no. 6, pp. 493–513, 2001.
  • S. J. Wu, J. J. Miau, C. C. Hu, and J. H. Chou, “On low-frequency modulations and three-dimensionality in vortex shedding behind a normal plate,” J. Fluid Mech., vol. 526, pp. 117–146, 2005.
  • A. K. Saha, “Far-wake characteristics of two-dimensional flow past a normal flat plate,” Phys. Fluids, vol. 19, no. 12, p. 128110, 2007.
  • X. Amandolese, S. Michelin, and M. Choquel, “Low speed flutter and limit cycle oscillations of a two-degree-of-freedom flat plate in a wind tunnel,” J. Fluids Struct., vol. 43, pp. 244–255, 2013.
  • A. K. Saha, “Direct numerical simulation of two-dimensional flow past a normal flat plate,” J. Eng. Mech., vol. 139, no. 12, pp. 1894–1901, 2013.
  • D. M. Hargreaves, B. Kakimpa, and J. S. Owen, “The computational fluid dynamics modelling of the autorotation of square, flat plates,” J. Fluids Struct., vol. 46, pp. 111–133, 2014.
  • L. Huang, Y. L. Xu, and H. Liao, “Nonlinear aerodynamic forces on thin flat plate: Numerical study,” J. Fluids Struct., vol. 44, pp. 182–194, 2014.
  • M. C. Thompson, A. Radi, A. Rao, J. Sheridan, and K. Hourigan, “Low-Reynolds-number wakes of elliptical cylinders: from the circular cylinder to the normal flat plate,” J. Fluid Mech., vol. 751, pp. 570–600, 2014.
  • A. Hemmati, D. H. Wood, and R. J. Martinuzzi, “Characteristics of distinct flow regimes in the wake of an infinite span normal thin flat plate,” Int. J. Heat Fluid Flow, vol. 62, pp. 423–436, 2016.
  • A. Teimourian, S. G. Yazdi, and H. Hacisevki, “Vortex shedding: a review on flat plate,” Fluid Dyn., vol. 53, pp. 212–221, 2018.
  • E. Braun, K. Agrey, and R. J. Martinuzzi, “End effects of nominally two-dimensional thin flat plates,” Int. J. Heat Fluid Flow, vol. 86, p. 108719, 2020.
  • N. Mahir, and Z. Altac, “Numerical investigation of convective heat transfer in unsteady flow past two cylinders in tandem arrangements,” Int. J. Heat Fluid Flow, vol. 29, no. 5, pp. 1309–1318, 2008.
  • I. Goktepeli, “Drag reduction by the effect of rounded corners for a square cylinder,” Phys. Fluids, vol. 36, no. 9, p. 094108, 2024.
  • I. Goktepeli, “Examination of wake characteristics for tandem circular cylinders via Computational Fluid Dynamics,” J. Adv. Res. Nat. Appl. Sci., vol. 11, no. 1, pp. 1–11, 2025.
There are 21 citations in total.

Details

Primary Language English
Subjects Numerical Methods in Mechanical Engineering
Journal Section Research Articles
Authors

İlker Göktepeli 0000-0002-2886-8018

Publication Date October 20, 2025
Submission Date February 13, 2025
Acceptance Date July 24, 2025
Published in Issue Year 2025 Volume: 4 Issue: 3

Cite

APA Göktepeli, İ. (2025). Numerical Investigation of Two-Dimensional Flow past a Normal Flat Plate. Firat University Journal of Experimental and Computational Engineering, 4(3), 545-556. https://doi.org/10.62520/fujece.1639083
AMA Göktepeli İ. Numerical Investigation of Two-Dimensional Flow past a Normal Flat Plate. FUJECE. October 2025;4(3):545-556. doi:10.62520/fujece.1639083
Chicago Göktepeli, İlker. “Numerical Investigation of Two-Dimensional Flow past a Normal Flat Plate”. Firat University Journal of Experimental and Computational Engineering 4, no. 3 (October 2025): 545-56. https://doi.org/10.62520/fujece.1639083.
EndNote Göktepeli İ (October 1, 2025) Numerical Investigation of Two-Dimensional Flow past a Normal Flat Plate. Firat University Journal of Experimental and Computational Engineering 4 3 545–556.
IEEE İ. Göktepeli, “Numerical Investigation of Two-Dimensional Flow past a Normal Flat Plate”, FUJECE, vol. 4, no. 3, pp. 545–556, 2025, doi: 10.62520/fujece.1639083.
ISNAD Göktepeli, İlker. “Numerical Investigation of Two-Dimensional Flow past a Normal Flat Plate”. Firat University Journal of Experimental and Computational Engineering 4/3 (October2025), 545-556. https://doi.org/10.62520/fujece.1639083.
JAMA Göktepeli İ. Numerical Investigation of Two-Dimensional Flow past a Normal Flat Plate. FUJECE. 2025;4:545–556.
MLA Göktepeli, İlker. “Numerical Investigation of Two-Dimensional Flow past a Normal Flat Plate”. Firat University Journal of Experimental and Computational Engineering, vol. 4, no. 3, 2025, pp. 545-56, doi:10.62520/fujece.1639083.
Vancouver Göktepeli İ. Numerical Investigation of Two-Dimensional Flow past a Normal Flat Plate. FUJECE. 2025;4(3):545-56.