Effective Use of PV Systems for a Sustainable Energy Solution: A Case Study
Year 2025,
Volume: 4 Issue: 3, 490 - 504, 20.10.2025
Fikret Kaya
,
Alper Nabi Akpolat
,
Onur Akar
Abstract
Energy demand is rapidly increasing alongside global population growth. Instead of relying on fossil fuels, which harm the environment, technological advances have enabled the use of renewable energy sources. Solar energy is increasingly recognized as a vital resource among many renewable options, and its usage is expected to grow even more in the future. Photovoltaic (PV) solar panels enable detached houses, especially in remote settlements, to meet their electricity needs. The most important component that converts the energy produced in this PV system to the desired level is the DC-DC converter. One of the most effective methods to obtain the highest amount of power from the PV panel is the application of the Maximum Power Point Tracking (MPPT) technique to the DC-DC converter. Additionally, battery systems have proven to be a viable solution for meeting energy demand during periods when PV panels do not produce electricity. In this study, an efficient working structure has been developed using the MPPT algorithm to meet the load's needs while storing a portion of the electrical energy obtained from five parallel-connected PV panels in a lithium-ion battery. Ensures an uninterrupted energy flow at the highest power output using the most appropriate technique. MATLAB/Simulink software was employed for system design and simulation. Solar radiation data from the summer period of the Enez district in Edirne province were selected for analysis. A lithium-ion battery type was utilized in the system. The results show that energy from the PV panel is insufficient during the early hours of sunrise, at which point energy demand is met by the battery. After a certain hour, the PV panel satisfies the required energy demand, and any excess energy is stored in the battery. This system demonstrates an efficient energy management structure that ensures continuous power supply for off-grid households.
Ethical Statement
Ethics committee approvals are not necessary for the article. There is no conflict of interest with any institution/person in the article.
References
-
A. Saini, A. Tsokanos, and R. Kirner, “Quantum randomness in cryptography: A survey of cryptosystems, RNG-based ciphers, and QRNGs,” Information, vol. 13, no. 8, pp. 350–358, 2022.
-
A. Karakaya, Y. Canbay, H. İ. Bülbül, T. Tuğlular, E. Irmak, E. Kavun, and H. Takçı, Cyber Security and Defense: Biometric and Cryptographic Applications. Ankara, Turkey: Nobel Academic Publishing, 2020.
-
M. Tehranipoor, N. N. Anandakumar, and F. Farahmandi, Hardware Security Training, Hands-On!. Cham, Switzerland: Springer, 2023.
-
L. Yao, X. Wu, and H. Zhang, “DCDRO: A true random number generator based on dynamically configurable dual-output ring oscillator,” Integration, vol. 93, p. 102053, 2023.
-
A. Bikos, P. E. Nastou, G. Petroudis, and Y. C. Stamatiou, “Random number generators: Principles and applications,” Cryptography, vol. 7, no. 4, p. 54, 2023.
-
Y. Yu, “Design and security analysis of TRNGs and PUFs,” Ph.D. dissertation, KTH Royal Inst. of Technology, Stockholm, Sweden, 2022.
-
S. Yakut, “Random number generator based on discrete cosine transform based lossy picture compression,” NATURENGS, vol. 2, no. 2, pp. 76–85, 2021.
-
O. Petura, “True random number generators for cryptography: Design, securing and evaluation,” Ph.D. dissertation, Univ. de Lyon, Lyon, France, 2019.
-
K. Lee, S. Y. Lee, C. Seo, and K. Yim, “TRNG (true random number generator) method using visible spectrum for secure communication on 5G network,” IEEE Access, vol. 6, pp. 12 838–12 847, 2018.
-
Y. Chen, H. Liang, L. Zhang, L. Yao, and Y. Lu, “High throughput dynamic dual entropy source true random number generator based on FPGA,” Microelectron. J., 2024.
-
A. Saini, A. Tsokanos, and R. Kirner, “Quantum randomness in cryptography: A survey of cryptosystems, RNG-based ciphers, and QRNGs,” Information, vol. 13, no. 8, pp. 358–375, 2020.
-
A. J. Acosta, T. Addabbo, and E. Tena-Sánchez, “Embedded electronic circuits for cryptography, hardware security and true random number generation: An overview,” Int. J. Circuit Theory Appl., vol. 45, no. 2, pp. 145–169, 2017.
-
S. Yakut, T. Tuncer, and A. B. Özer, “A new secure and efficient approach for TRNG and its post-processing algorithms,” J. Circuits, Syst. Comput., vol. 29, no. 15, p. 2050244, 2020.
-
F. Ozkaynak, “Cryptologic random number generators,” Türkiye Bilişim Vakfı J. Comput. Sci. Eng., vol. 8, no. 2, pp. 37–45, 2015.
-
V. Fischer, and F. Bernard, “True random number generators in FPGAs,” in Security Trends for FPGAs: From Secured to Secure Reconfigurable Systems. New York, NY, USA: Springer, 2011, pp. 1–20.
-
W. Schindler, “Random number generators for cryptographic applications,” in Cryptographic Engineering. New York, NY, USA: Springer, 2009, pp. 5–23.
-
V. Fischer, M. Deutschmann, S. Lattacher, and G. Battum, “Report on selected TRNG and PUF principles,” HECTOR Project, Tech. Rep. D2.1, Univ. Jean Monnet, 2016.
-
J. D. Golic, “New methods for digital generation and postprocessing of random data,” IEEE Trans. Comput., vol. 55, no. 10, pp. 1217–1229, 2009.
-
S. Yakut, T. Tuncer, and A. B. Ozer, “Secure and efficient hybrid random number generator based on sponge constructions for cryptographic applications,” Elektronika ir Elektrotechnika, vol. 25, no. 4, pp. 40–46, 2019.
-
Ö. Aydın, and C. Kösemen, “XorshiftUL+: A novel hybrid random number generator for Internet of Things and wireless sensor network applications,” Pamukkale Univ. J. Eng. Sci., vol. 26, no. 5, pp. 953–958, 2020.
-
R. B. Naik, and U. Singh, “A review on applications of chaotic maps in pseudo-random number generators and encryption,” Ann. Data Sci., vol. 11, no. 1, pp. 25–50, 2024.
-
S. Ruhault, “Security analysis for pseudo-random number generators,” Ph.D. dissertation, Ecole Norm. Supérieure (ENS), Paris, France, 2015.
-
J. Balasch, F. Bernard, V. Fischer, M. Grujić, M. Laban, and O. Petura, “Design and testing methodologies for true random number generators towards industry certification,” in Proc. IEEE 23rd Eur. Test Symp. (ETS), 2018, pp. 1–10.
-
M. Stipčević, and Ç. K. Koç, “True random number generators,” in Open Problems in Mathematics and Computational Science. Cham, Switzerland: Springer, 2024, pp. 275–315.
-
F. Yu, L. Li, Q. Tang, S. Cai, Y. Song, and Q. Xu, “A survey on true random number generators based on chaos,” Discrete Dyn. Nat. Soc., vol. 2020, no. 5, pp. 1–10, 2020.
-
M. C. Belhadjoudja, “Chaos synchronization using nonlinear observers with applications to cryptography,” arXiv preprint arXiv:2108.02577, 2022.
-
A. R´enyi, “On measures of entropy and information,” in Proc. 4th Berkeley Symp. Math. Statist. Prob., 1961, vol. 1, pp. 547–561.
-
W. Killmann, and W. Schindler, “A proposal for functionality classes for random number generators,” BDI, Bonn, Germany, Rep., 2011.
-
W. Schindler, and W. Killmann, “Evaluation criteria for true (physical) random number generators used in cryptographic applications,” in Proc. Cryptograph. Hardw. Embedded Syst. (CHES), 4th Int. Workshop, 2002, pp. 431–449.
-
V. Fischer, “A closer look at security in random number generators design,” in Proc. Constructive Side-Channel Anal. Secure Design (COSADE), 3rd Int. Workshop, Darmstadt, Germany, 2012, pp. 167–182.
-
M. S. Turan, E. Barker, J. Kelsey, K. A. McKay, M. L. Baish, and M. Boyle, “Recommendation for the entropy sources used for random bit generation,” NIST Special Publ., vol. 800-90B, 2018.
-
B. Yang, “True random number generators for FPGAs,” Ph.D. dissertation, Dept. Elect. Eng., Arenberg Doctoral School, Leuven, Belgium, 2018.
-
A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, N. Heckert, J. Dray, S. Vo, and L. Bassham, “SP 800-22 rev. 1a: A statistical test suite for random and pseudorandom number generators for cryptographic applications,” Nat. Inst. Standards Technol. (NIST), Gaithersburg, MD, USA, 2011.
-
W. M. Daley, C. Shavers, and R. Kammer, “Security requirements for cryptographic modules,” BOOZ-Allen and Hamilton Inc., McLean, VA, USA, Tech. Rep., 1999.
-
R. G. Brown, “Dieharder: A random number test suite,” 2013. [Online]. Available: https://webhome.phy.duke.edu/~rgb/General/dieharder.php. [Accessed: Mar. 16, 2023].
-
P. L’Ecuyer, and R. Simard, “TestU01: A C library for empirical testing of random number generators,” ACM Trans. Math. Softw., vol. 33, no. 4, pp. 22–63, 2007.
-
D. E. Knuth, The Art of Computer Programming, vol. 2, 3rd ed. Boston, MA, USA: Addison-Wesley, 1999.
-
K. Gołofit, P. Z. Wieczorek, and M. Pilarz, “A chaos-metastability TRNG for natively flexible IGZO circuits,” AEU-Int. J. Electron. Commun., vol. 170, p. 154835, 2023.
-
M. Bakiri, C. Guyeux, J. F. Couchot, and A. K. Oudjida, “Survey on hardware implementation of random number generators on FPGA: Theory and experimental analyses,” Comput. Sci. Rev., vol. 27, pp. 135–153, 2018.
-
F. Frustaci, F. Spagnolo, S. Perri, and P. Corsonello, “A high-speed FPGA-based true random number generator using metastability with clock managers,” IEEE Trans. Circuits Syst. II, Exp. Briefs, 2022.
-
J. von Neumann, “Various techniques used in connection with random digits,” in Collected Works, vol. 5. New York, NY, USA: Pergamon, 1963, pp. 768–770.
Sürdürülebilir Enerji Çözümü için FV Sistemlerinin Etkin Kullanımı: Bir Vaka Çalışması
Year 2025,
Volume: 4 Issue: 3, 490 - 504, 20.10.2025
Fikret Kaya
,
Alper Nabi Akpolat
,
Onur Akar
Abstract
Dünyada nüfus artışı ile birlikte enerji talebi de hızla artış göstermektedir. Çevre üzerinde bozucu etkiler oluşturmuş olan fosil yakıtlar yerine teknoloji alanındaki ilerlemeler sayesinde yenilenebilir enerji kaynaklarının kullanılmasının önünü açılmıştır. Güneş enerjisi, birçok yenilenebilir kaynak arasında gittikçe önemi anlaşılan ve gelecekte de kullanımı daha da artacak olan bir kaynak türüdür. Fotovoltaik (FV) güneş panelleri özellikle uzak yerleşim yerlerinde müstakil evlerin elektrik yüklerinin ihtiyaç duyduğu elektrik ihtiyacını karşılamalarına olanak sağlamaktadır. Bu FV sisteminde üretilen enerjinin istenilen seviyedeki enerji miktarına dönüşümünü sağlayan en önemli bileşen DA-DA dönüştürücüdür. FV panelinden en yüksek miktarda gücü alabilmek için en uygun yöntemlerden biri de DA-DA dönüştürücüye Maksimum Güç Noktası İzleme (MPPT) tekniği uygulamasıdır. FV panellerin üretim yapmadığı zaman dilimlerinde enerji ihtiyacının karşılanması için batarya sistemleri kullanmak bir çözüm olmuştur. Bu çalışmada, MPPT algoritması yardımıyla ile beş adet paralel bağlı FV panelden azami şekilde elde edilen elektrik enerjisinin bir kısmı yükün ihtiyacını karşılarken diğer kısmı ise Li-Ion tipi bataryada depolanması amaçlanarak verimli bir çalışma yapısı oluşturulmuştur. Böylece kesintisiz bir enerji akışı sağlanması düşünülmüştür. Sistem tasarımı ve simülasyonu için MATLAB/Simulink yazılımı kullanılmıştır. Güneş ışınım verileri olarak Edirne ili Enez ilçesinin yaz dönemine ait veriler seçilmiştir. Batarya tipi olarak Lityum-İyon tip kullanılmıştır. Sonuçlara baktığımızda, gün doğumunun ilk saatlerinde FV panelden gelen enerjinin yetersiz olduğu ve bu noktada enerjinin bataryadan karşılandığı belirli bir saatten sonra ise panelin ihtiyaç duyulan enerjiyi karşıladığı ve fazla üretilen enerjinin bataryada depolandığı görülmektedir. Bu sayede enerji yönetim sistemiyle kesintisiz enerji akışı en yüksek güçte ve en uygun teknikle sağlanmış olmaktadır.
Ethical Statement
Makale için etik kurul onayı gerekmemektedir. Makalede herhangi bir kurum/kişiyle çıkar çatışması bulunmamaktadır.
References
-
A. Saini, A. Tsokanos, and R. Kirner, “Quantum randomness in cryptography: A survey of cryptosystems, RNG-based ciphers, and QRNGs,” Information, vol. 13, no. 8, pp. 350–358, 2022.
-
A. Karakaya, Y. Canbay, H. İ. Bülbül, T. Tuğlular, E. Irmak, E. Kavun, and H. Takçı, Cyber Security and Defense: Biometric and Cryptographic Applications. Ankara, Turkey: Nobel Academic Publishing, 2020.
-
M. Tehranipoor, N. N. Anandakumar, and F. Farahmandi, Hardware Security Training, Hands-On!. Cham, Switzerland: Springer, 2023.
-
L. Yao, X. Wu, and H. Zhang, “DCDRO: A true random number generator based on dynamically configurable dual-output ring oscillator,” Integration, vol. 93, p. 102053, 2023.
-
A. Bikos, P. E. Nastou, G. Petroudis, and Y. C. Stamatiou, “Random number generators: Principles and applications,” Cryptography, vol. 7, no. 4, p. 54, 2023.
-
Y. Yu, “Design and security analysis of TRNGs and PUFs,” Ph.D. dissertation, KTH Royal Inst. of Technology, Stockholm, Sweden, 2022.
-
S. Yakut, “Random number generator based on discrete cosine transform based lossy picture compression,” NATURENGS, vol. 2, no. 2, pp. 76–85, 2021.
-
O. Petura, “True random number generators for cryptography: Design, securing and evaluation,” Ph.D. dissertation, Univ. de Lyon, Lyon, France, 2019.
-
K. Lee, S. Y. Lee, C. Seo, and K. Yim, “TRNG (true random number generator) method using visible spectrum for secure communication on 5G network,” IEEE Access, vol. 6, pp. 12 838–12 847, 2018.
-
Y. Chen, H. Liang, L. Zhang, L. Yao, and Y. Lu, “High throughput dynamic dual entropy source true random number generator based on FPGA,” Microelectron. J., 2024.
-
A. Saini, A. Tsokanos, and R. Kirner, “Quantum randomness in cryptography: A survey of cryptosystems, RNG-based ciphers, and QRNGs,” Information, vol. 13, no. 8, pp. 358–375, 2020.
-
A. J. Acosta, T. Addabbo, and E. Tena-Sánchez, “Embedded electronic circuits for cryptography, hardware security and true random number generation: An overview,” Int. J. Circuit Theory Appl., vol. 45, no. 2, pp. 145–169, 2017.
-
S. Yakut, T. Tuncer, and A. B. Özer, “A new secure and efficient approach for TRNG and its post-processing algorithms,” J. Circuits, Syst. Comput., vol. 29, no. 15, p. 2050244, 2020.
-
F. Ozkaynak, “Cryptologic random number generators,” Türkiye Bilişim Vakfı J. Comput. Sci. Eng., vol. 8, no. 2, pp. 37–45, 2015.
-
V. Fischer, and F. Bernard, “True random number generators in FPGAs,” in Security Trends for FPGAs: From Secured to Secure Reconfigurable Systems. New York, NY, USA: Springer, 2011, pp. 1–20.
-
W. Schindler, “Random number generators for cryptographic applications,” in Cryptographic Engineering. New York, NY, USA: Springer, 2009, pp. 5–23.
-
V. Fischer, M. Deutschmann, S. Lattacher, and G. Battum, “Report on selected TRNG and PUF principles,” HECTOR Project, Tech. Rep. D2.1, Univ. Jean Monnet, 2016.
-
J. D. Golic, “New methods for digital generation and postprocessing of random data,” IEEE Trans. Comput., vol. 55, no. 10, pp. 1217–1229, 2009.
-
S. Yakut, T. Tuncer, and A. B. Ozer, “Secure and efficient hybrid random number generator based on sponge constructions for cryptographic applications,” Elektronika ir Elektrotechnika, vol. 25, no. 4, pp. 40–46, 2019.
-
Ö. Aydın, and C. Kösemen, “XorshiftUL+: A novel hybrid random number generator for Internet of Things and wireless sensor network applications,” Pamukkale Univ. J. Eng. Sci., vol. 26, no. 5, pp. 953–958, 2020.
-
R. B. Naik, and U. Singh, “A review on applications of chaotic maps in pseudo-random number generators and encryption,” Ann. Data Sci., vol. 11, no. 1, pp. 25–50, 2024.
-
S. Ruhault, “Security analysis for pseudo-random number generators,” Ph.D. dissertation, Ecole Norm. Supérieure (ENS), Paris, France, 2015.
-
J. Balasch, F. Bernard, V. Fischer, M. Grujić, M. Laban, and O. Petura, “Design and testing methodologies for true random number generators towards industry certification,” in Proc. IEEE 23rd Eur. Test Symp. (ETS), 2018, pp. 1–10.
-
M. Stipčević, and Ç. K. Koç, “True random number generators,” in Open Problems in Mathematics and Computational Science. Cham, Switzerland: Springer, 2024, pp. 275–315.
-
F. Yu, L. Li, Q. Tang, S. Cai, Y. Song, and Q. Xu, “A survey on true random number generators based on chaos,” Discrete Dyn. Nat. Soc., vol. 2020, no. 5, pp. 1–10, 2020.
-
M. C. Belhadjoudja, “Chaos synchronization using nonlinear observers with applications to cryptography,” arXiv preprint arXiv:2108.02577, 2022.
-
A. R´enyi, “On measures of entropy and information,” in Proc. 4th Berkeley Symp. Math. Statist. Prob., 1961, vol. 1, pp. 547–561.
-
W. Killmann, and W. Schindler, “A proposal for functionality classes for random number generators,” BDI, Bonn, Germany, Rep., 2011.
-
W. Schindler, and W. Killmann, “Evaluation criteria for true (physical) random number generators used in cryptographic applications,” in Proc. Cryptograph. Hardw. Embedded Syst. (CHES), 4th Int. Workshop, 2002, pp. 431–449.
-
V. Fischer, “A closer look at security in random number generators design,” in Proc. Constructive Side-Channel Anal. Secure Design (COSADE), 3rd Int. Workshop, Darmstadt, Germany, 2012, pp. 167–182.
-
M. S. Turan, E. Barker, J. Kelsey, K. A. McKay, M. L. Baish, and M. Boyle, “Recommendation for the entropy sources used for random bit generation,” NIST Special Publ., vol. 800-90B, 2018.
-
B. Yang, “True random number generators for FPGAs,” Ph.D. dissertation, Dept. Elect. Eng., Arenberg Doctoral School, Leuven, Belgium, 2018.
-
A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, N. Heckert, J. Dray, S. Vo, and L. Bassham, “SP 800-22 rev. 1a: A statistical test suite for random and pseudorandom number generators for cryptographic applications,” Nat. Inst. Standards Technol. (NIST), Gaithersburg, MD, USA, 2011.
-
W. M. Daley, C. Shavers, and R. Kammer, “Security requirements for cryptographic modules,” BOOZ-Allen and Hamilton Inc., McLean, VA, USA, Tech. Rep., 1999.
-
R. G. Brown, “Dieharder: A random number test suite,” 2013. [Online]. Available: https://webhome.phy.duke.edu/~rgb/General/dieharder.php. [Accessed: Mar. 16, 2023].
-
P. L’Ecuyer, and R. Simard, “TestU01: A C library for empirical testing of random number generators,” ACM Trans. Math. Softw., vol. 33, no. 4, pp. 22–63, 2007.
-
D. E. Knuth, The Art of Computer Programming, vol. 2, 3rd ed. Boston, MA, USA: Addison-Wesley, 1999.
-
K. Gołofit, P. Z. Wieczorek, and M. Pilarz, “A chaos-metastability TRNG for natively flexible IGZO circuits,” AEU-Int. J. Electron. Commun., vol. 170, p. 154835, 2023.
-
M. Bakiri, C. Guyeux, J. F. Couchot, and A. K. Oudjida, “Survey on hardware implementation of random number generators on FPGA: Theory and experimental analyses,” Comput. Sci. Rev., vol. 27, pp. 135–153, 2018.
-
F. Frustaci, F. Spagnolo, S. Perri, and P. Corsonello, “A high-speed FPGA-based true random number generator using metastability with clock managers,” IEEE Trans. Circuits Syst. II, Exp. Briefs, 2022.
-
J. von Neumann, “Various techniques used in connection with random digits,” in Collected Works, vol. 5. New York, NY, USA: Pergamon, 1963, pp. 768–770.