Research Article
BibTex RIS Cite

Zeminde Temas Patlamasının Deneysel ve Eşleştirilmiş Eulerian ve Lagrangian Sayısal Modeli ile İncelenmesi

Year 2025, Volume: 4 Issue: 3, 618 - 636, 20.10.2025
https://doi.org/10.62520/fujece.1736569

Abstract

Bu çalışma, Eşleştirilmiş Eulerian ve Lagrangian (CEL) yöntemini kullanarak, topraktaki temas yüzeyi patlamalarından kaynaklanan krater oluşumuna ilişkin deneysel ve sayısal bir araştırma sunmaktadır. Patlayıcının temas halinde infilak etmesiyle meydana gelen krater oluşumu, şok dalgası ve topraktaki elastik-plastik dalga yayılımı, CEL yaklaşımı ile sayısal olarak modellenmiştir. Deneysel olarak, TNT eşdeğeri bir patlayıcı zemine temas halinde patlatılarak krater geometrisi (çap ve derinlik) incelenmiştir. Sayısal modelleme, deneysel koşullarla uyumlu şekilde oluşturulmuş ve elde edilen sonuçlar karşılaştırılmıştır. Patlayıcı maddenin davranışını tanımlamak için JWL durum denklemleri kullanılmıştır. Patlayıcı ve toprak malzemelerinin mekanik özellikleri, Mohr-Coulomb modeliyle tanımlanarak CEL yöntemi aracılığıyla elde edilen deformasyonlar, deneysel verilerle karşılaştırılmıştır. Patlama sonucu toprakta oluşan püskürmenin, krater boyutlarının ve şok dalgasının yayılımının zemin davranışı üzerinde önemli etkileri olduğu görülmüştür. Bu çalışma, savunma sanayii uygulamaları ile kazaran veya terör saldırısına maruz patlamalarda zemin davranışının anlaşılmasına yönelik önemli bir rehberlik sunmaktadır.

Ethical Statement

Hazırlanan makalede herhangi bir kişi/kurumla çıkar çatışması bulunmamaktadır.

Supporting Institution

TÜBİTAK

Project Number

219M392

References

  • P.A. Persson, R. Holmberg, and J. Lee, Rock Blasting and Explosives Engineering. Boca Raton, FL, USA: CRC Press, 2018.
  • J.W. Bull, and C.H. Woodford, “Camouflets and their effect on runway support,” Comput. Struct., vol. 69, no. 6, pp. 695–706, Dec. 1998.
  • B. Luccioni, D. Ambrosini, G. Nurick, and I. Snyman, “Craters produced by underground explosions,” Comput. Struct., vol. 87, no. 21–22, pp. 1366–1373, 2009.
  • C. Mougeotte, P. Carlucci, S. Recchia, and H. Ji, “Novel approach to conducting blast load analyses using Abaqus/Explicit-CEL,” in Proc. 2010 SIMULIA Customer Conf., 2010, pp. 1–15. [Online]. Available: http://www.simulia.com/download/scc-papers/Defense/novel-approach-conducting-blast-load-analyses-2010-F.pdf
  • Z. Wang, H. Hao, and Y. Lu, “A three-phase soil model for simulating stress wave propagation due to blast loading,” Int. J. Numer. Anal. Methods Geomech., vol. 28, no. 1, pp. 33–56, Jan. 2004.
  • X. Tong, and C. Y. Tuan, “Viscoplastic cap model for soils under high strain rate loading,” J. Geotech. Geoenviron. Eng., vol. 133, no. 2, pp. 206–214, Feb. 2007.
  • J. An, C. Y. Tuan, B. A. Cheeseman, and G. A. Gazonas, “Simulation of soil behavior under blast loading,” Int. J. Geomech., vol. 11, no. 4, pp. 323–334, 2011.
  • S. Savaş, and D. Bakir, “An investigation of the effects of the vehicle terror suicide attack in the urban area,” Eng. Fail. Anal., vol. 145, p. 107049, Mar. 2023.
  • R. D. Ambrosini, and B. M. Luccioni, “Craters produced by explosions on the soil surface,” J. Appl. Mech., vol. 73, no. 6, pp. 890–900, Nov. 2006.
  • J. D. Riera, and I. Iturrioz, “Numerical study of the effect of explosive sources near the ground surface: Crater formation,” Nucl. Eng. Des., vol. 236, no. 10, pp. 1029–1035, 2006.
  • M. Souli, and I. Shahrour, “Arbitrary Lagrangian Eulerian formulation for soil structure interaction problems,” Soil Dyn. Earthq. Eng., vol. 35, pp. 72–79, Apr. 2012.
  • C. Li, Y. Chen, Y. Yao, Y. Gou, Q. Wang, J. Guo, and X. Xie, “Field test and numerical research of blast-induced liquefaction in calcareous sand,” Shock Vib., vol. 2025, no. 1, Jan. 2025.
  • A. Hussein, and P. Heyliger, “On the accuracy of CEL blast simulations: validation and application,” Asian J. Civ. Eng., vol. 26, no. 2, pp. 843–866, Feb. 2025.
  • S. A. Hosseini, and N. Hosseini, “Numerical modeling of underground explosion and response of buried structures using coupled Eulerian-Lagrangian method,” Adv. Def. Sci. Technol., vol. 4, pp. 325–336, 2018.
  • A. Jahami, J. Halawi, Y. Temsah, and L. Jaber, “Assessment of soil–structure interaction effects on the Beirut port silos due to the 4 August 2020 explosion: A coupled Eulerian–Lagrangian approach,” Infrastructures, vol. 8, no. 10, 2023.
  • Unified Facilities Criteria (UFC), Structures to Resist the Effects of Accidental Explosions. 2008.
  • G. Farag, and A. Chinnayya, “On the Jones-Wilkins-Lee equation of state for high explosive products,” Propellants, Explos. Pyrotech., vol. 49, no. 3, Mar. 2024.
  • A. Giam, W. Toh, and V. B. C. Tan, “Numerical review of Jones–Wilkins–Lee parameters for trinitrotoluene explosive in free-air blast,” J. Appl. Mech., vol. 87, no. 5, May 2020.
  • J. W. Lee, E. L. Hornig, and H. C. Kury, “Adiabatic expansion of high explosive,” 1968.
  • X. Xie, Y. Yao, G. Yang, and Y. Jia, “Large-scale field experiments on blast-induced vibration and crater in sand medium,” Int. J. Geomech., vol. 17, no. 8, pp. 1–10, 2017.
  • J. Wang, Y. Zhang, Z. Qin, S. Song, and P. Lin, “Analysis method of water inrush for tunnels with damaged water-resisting rock mass based on finite element method-smooth particle hydrodynamics coupling,” Comput. Geotech., vol. 126, p. 103725, 2020.
  • L. Liu, Z. Zong, C. Gao, S. Yuan, and F. Lou, “Experimental and numerical study of CFRP protective RC piers under contact explosion,” Compos. Struct., vol. 234, Feb. 2020.
  • A. Goswami, T. Ganesh, and S. Das, “RC structures subjected to combined blast and fragment impact loading: A state-of-the-art review on the present and the future outlook,” Int. J. Impact Eng., vol. 170, p. 104355, 2022.
  • R. D. Ambrosini, B. M. Luccioni, R. F. Danesi, J. D. Riera, and M. M. Rocha, “Size of craters produced by explosive charges on or above the ground surface,” Shock Waves, vol. 12, no. 1, pp. 69–78, Jul. 2002.
  • X. Xiang, and D. Zi-Hang, “Numerical implementation of a modified Mohr–Coulomb model and its application in slope stability analysis,” J. Mod. Transp., vol. 25, no. 1, pp. 40–51, Mar. 2017.
  • I. Rais, M. Asim Ansari, M. R. Sadique, M. M. Ansari, T. Alam, and D. Dobrotă, “Finite element modelling and analysis of sustainable safety bunkers in war zones,” Sustain. Resilient Infrastruct., pp. 1–24, Apr. 2025.
  • İ. Keskin, M. Y. Ahmed, N. R. Taher, M. Gör, and B. Z. Abdulsamad, “An evaluation on effects of surface explosion on underground tunnel: Availability of ABAQUS finite element method,” Tunn. Undergr. Sp. Technol., vol. 120, p. 104306, Feb. 2022.
  • Z. Wang, Y. Lu, H. Hao, and K. Chong, “A full coupled numerical analysis approach for buried structures subjected to subsurface blast,” Comput. Struct., vol. 83, no. 4–5, pp. 339–356, Jan. 2005.
  • D. Bhowmik, D. K. Baidya, and S. P. Dasgupta, “A numerical and experimental study of hollow steel pile in layered soil subjected to lateral dynamic loading,” Soil Dyn. Earthq. Eng., vol. 53, pp. 119–129, Oct. 2013.
  • D. Bhowmik, D. K. Baidya, and S. P. Dasgupta, “A numerical and experimental study of hollow steel pile in layered soil subjected to vertical dynamic loading,” Soil Dyn. Earthq. Eng., vol. 85, pp. 161–165, Jun. 2016.
  • B. K. Hodge, and K. Koenig, Compressible Fluid Dynamics with Personal Computer Applications. Englewood Cliffs, NJ, USA: Prentice Hall, 1995.
  • N. M. Nagy, “Numerical evaluation of craters produced by explosions on the soil surface,” Acta Phys. Pol. A, vol. 128, no. 2, pp. 260–266, 2015.
  • G. K. Batchelor, An Introduction to Fluid Dynamics. Cambridge, U.K.: Cambridge Univ. Press, 2000.
  • G. Kinney and K. Graham, Explosive Shocks in Air. 2nd ed. Berlin, Germany: Springer, 1985.

Experimental and Coupled Eulerian and Lagrangian Numerical Modeling of Ground Contact Explosions

Year 2025, Volume: 4 Issue: 3, 618 - 636, 20.10.2025
https://doi.org/10.62520/fujece.1736569

Abstract

The present work conducts an experimental and numerical analysis of crater formation resulting from contact surface explosions in soil, utilizing the Coupled Eulerian and Lagrangian (CEL) approach. The crater formation caused by the detonation of an explosive in soil, including shock and elastic-plastic wave propagation in soil, has been numerically simulated using the CEL method. An explosive equivalent to TNT was detonated in direct contact with the soil to examine crater shape, specifically diameter and depth. The numerical model was constructed to correspond with experimental conditions, and findings were compared. The JWL state equations were employed to delineate the properties of the explosive material. The mechanical characteristics of the explosive and soil materials were delineated utilizing the Mohr-Coulomb model, and the deformations acquired via the CEL approach were compared with experimental data. The ejecta generated in the soil due to the explosion, the dimensions of the crater, and the propagation of the shock wave significantly influence soil behavior. This study offers critical insights into soil behavior relevant to defense sector applications and incidents involving explosions, whether accidental or terrorist in cause.

Ethical Statement

There is no conflict of interest with any person/institution in the prepared article”

Supporting Institution

TÜBİTAK

Project Number

219M392

References

  • P.A. Persson, R. Holmberg, and J. Lee, Rock Blasting and Explosives Engineering. Boca Raton, FL, USA: CRC Press, 2018.
  • J.W. Bull, and C.H. Woodford, “Camouflets and their effect on runway support,” Comput. Struct., vol. 69, no. 6, pp. 695–706, Dec. 1998.
  • B. Luccioni, D. Ambrosini, G. Nurick, and I. Snyman, “Craters produced by underground explosions,” Comput. Struct., vol. 87, no. 21–22, pp. 1366–1373, 2009.
  • C. Mougeotte, P. Carlucci, S. Recchia, and H. Ji, “Novel approach to conducting blast load analyses using Abaqus/Explicit-CEL,” in Proc. 2010 SIMULIA Customer Conf., 2010, pp. 1–15. [Online]. Available: http://www.simulia.com/download/scc-papers/Defense/novel-approach-conducting-blast-load-analyses-2010-F.pdf
  • Z. Wang, H. Hao, and Y. Lu, “A three-phase soil model for simulating stress wave propagation due to blast loading,” Int. J. Numer. Anal. Methods Geomech., vol. 28, no. 1, pp. 33–56, Jan. 2004.
  • X. Tong, and C. Y. Tuan, “Viscoplastic cap model for soils under high strain rate loading,” J. Geotech. Geoenviron. Eng., vol. 133, no. 2, pp. 206–214, Feb. 2007.
  • J. An, C. Y. Tuan, B. A. Cheeseman, and G. A. Gazonas, “Simulation of soil behavior under blast loading,” Int. J. Geomech., vol. 11, no. 4, pp. 323–334, 2011.
  • S. Savaş, and D. Bakir, “An investigation of the effects of the vehicle terror suicide attack in the urban area,” Eng. Fail. Anal., vol. 145, p. 107049, Mar. 2023.
  • R. D. Ambrosini, and B. M. Luccioni, “Craters produced by explosions on the soil surface,” J. Appl. Mech., vol. 73, no. 6, pp. 890–900, Nov. 2006.
  • J. D. Riera, and I. Iturrioz, “Numerical study of the effect of explosive sources near the ground surface: Crater formation,” Nucl. Eng. Des., vol. 236, no. 10, pp. 1029–1035, 2006.
  • M. Souli, and I. Shahrour, “Arbitrary Lagrangian Eulerian formulation for soil structure interaction problems,” Soil Dyn. Earthq. Eng., vol. 35, pp. 72–79, Apr. 2012.
  • C. Li, Y. Chen, Y. Yao, Y. Gou, Q. Wang, J. Guo, and X. Xie, “Field test and numerical research of blast-induced liquefaction in calcareous sand,” Shock Vib., vol. 2025, no. 1, Jan. 2025.
  • A. Hussein, and P. Heyliger, “On the accuracy of CEL blast simulations: validation and application,” Asian J. Civ. Eng., vol. 26, no. 2, pp. 843–866, Feb. 2025.
  • S. A. Hosseini, and N. Hosseini, “Numerical modeling of underground explosion and response of buried structures using coupled Eulerian-Lagrangian method,” Adv. Def. Sci. Technol., vol. 4, pp. 325–336, 2018.
  • A. Jahami, J. Halawi, Y. Temsah, and L. Jaber, “Assessment of soil–structure interaction effects on the Beirut port silos due to the 4 August 2020 explosion: A coupled Eulerian–Lagrangian approach,” Infrastructures, vol. 8, no. 10, 2023.
  • Unified Facilities Criteria (UFC), Structures to Resist the Effects of Accidental Explosions. 2008.
  • G. Farag, and A. Chinnayya, “On the Jones-Wilkins-Lee equation of state for high explosive products,” Propellants, Explos. Pyrotech., vol. 49, no. 3, Mar. 2024.
  • A. Giam, W. Toh, and V. B. C. Tan, “Numerical review of Jones–Wilkins–Lee parameters for trinitrotoluene explosive in free-air blast,” J. Appl. Mech., vol. 87, no. 5, May 2020.
  • J. W. Lee, E. L. Hornig, and H. C. Kury, “Adiabatic expansion of high explosive,” 1968.
  • X. Xie, Y. Yao, G. Yang, and Y. Jia, “Large-scale field experiments on blast-induced vibration and crater in sand medium,” Int. J. Geomech., vol. 17, no. 8, pp. 1–10, 2017.
  • J. Wang, Y. Zhang, Z. Qin, S. Song, and P. Lin, “Analysis method of water inrush for tunnels with damaged water-resisting rock mass based on finite element method-smooth particle hydrodynamics coupling,” Comput. Geotech., vol. 126, p. 103725, 2020.
  • L. Liu, Z. Zong, C. Gao, S. Yuan, and F. Lou, “Experimental and numerical study of CFRP protective RC piers under contact explosion,” Compos. Struct., vol. 234, Feb. 2020.
  • A. Goswami, T. Ganesh, and S. Das, “RC structures subjected to combined blast and fragment impact loading: A state-of-the-art review on the present and the future outlook,” Int. J. Impact Eng., vol. 170, p. 104355, 2022.
  • R. D. Ambrosini, B. M. Luccioni, R. F. Danesi, J. D. Riera, and M. M. Rocha, “Size of craters produced by explosive charges on or above the ground surface,” Shock Waves, vol. 12, no. 1, pp. 69–78, Jul. 2002.
  • X. Xiang, and D. Zi-Hang, “Numerical implementation of a modified Mohr–Coulomb model and its application in slope stability analysis,” J. Mod. Transp., vol. 25, no. 1, pp. 40–51, Mar. 2017.
  • I. Rais, M. Asim Ansari, M. R. Sadique, M. M. Ansari, T. Alam, and D. Dobrotă, “Finite element modelling and analysis of sustainable safety bunkers in war zones,” Sustain. Resilient Infrastruct., pp. 1–24, Apr. 2025.
  • İ. Keskin, M. Y. Ahmed, N. R. Taher, M. Gör, and B. Z. Abdulsamad, “An evaluation on effects of surface explosion on underground tunnel: Availability of ABAQUS finite element method,” Tunn. Undergr. Sp. Technol., vol. 120, p. 104306, Feb. 2022.
  • Z. Wang, Y. Lu, H. Hao, and K. Chong, “A full coupled numerical analysis approach for buried structures subjected to subsurface blast,” Comput. Struct., vol. 83, no. 4–5, pp. 339–356, Jan. 2005.
  • D. Bhowmik, D. K. Baidya, and S. P. Dasgupta, “A numerical and experimental study of hollow steel pile in layered soil subjected to lateral dynamic loading,” Soil Dyn. Earthq. Eng., vol. 53, pp. 119–129, Oct. 2013.
  • D. Bhowmik, D. K. Baidya, and S. P. Dasgupta, “A numerical and experimental study of hollow steel pile in layered soil subjected to vertical dynamic loading,” Soil Dyn. Earthq. Eng., vol. 85, pp. 161–165, Jun. 2016.
  • B. K. Hodge, and K. Koenig, Compressible Fluid Dynamics with Personal Computer Applications. Englewood Cliffs, NJ, USA: Prentice Hall, 1995.
  • N. M. Nagy, “Numerical evaluation of craters produced by explosions on the soil surface,” Acta Phys. Pol. A, vol. 128, no. 2, pp. 260–266, 2015.
  • G. K. Batchelor, An Introduction to Fluid Dynamics. Cambridge, U.K.: Cambridge Univ. Press, 2000.
  • G. Kinney and K. Graham, Explosive Shocks in Air. 2nd ed. Berlin, Germany: Springer, 1985.
There are 34 citations in total.

Details

Primary Language English
Subjects Civil Construction Engineering
Journal Section Research Articles
Authors

Dursun Bakır 0000-0001-6398-0497

Project Number 219M392
Publication Date October 20, 2025
Submission Date July 7, 2025
Acceptance Date September 16, 2025
Published in Issue Year 2025 Volume: 4 Issue: 3

Cite

APA Bakır, D. (2025). Experimental and Coupled Eulerian and Lagrangian Numerical Modeling of Ground Contact Explosions. Firat University Journal of Experimental and Computational Engineering, 4(3), 618-636. https://doi.org/10.62520/fujece.1736569
AMA Bakır D. Experimental and Coupled Eulerian and Lagrangian Numerical Modeling of Ground Contact Explosions. FUJECE. October 2025;4(3):618-636. doi:10.62520/fujece.1736569
Chicago Bakır, Dursun. “Experimental and Coupled Eulerian and Lagrangian Numerical Modeling of Ground Contact Explosions”. Firat University Journal of Experimental and Computational Engineering 4, no. 3 (October 2025): 618-36. https://doi.org/10.62520/fujece.1736569.
EndNote Bakır D (October 1, 2025) Experimental and Coupled Eulerian and Lagrangian Numerical Modeling of Ground Contact Explosions. Firat University Journal of Experimental and Computational Engineering 4 3 618–636.
IEEE D. Bakır, “Experimental and Coupled Eulerian and Lagrangian Numerical Modeling of Ground Contact Explosions”, FUJECE, vol. 4, no. 3, pp. 618–636, 2025, doi: 10.62520/fujece.1736569.
ISNAD Bakır, Dursun. “Experimental and Coupled Eulerian and Lagrangian Numerical Modeling of Ground Contact Explosions”. Firat University Journal of Experimental and Computational Engineering 4/3 (October2025), 618-636. https://doi.org/10.62520/fujece.1736569.
JAMA Bakır D. Experimental and Coupled Eulerian and Lagrangian Numerical Modeling of Ground Contact Explosions. FUJECE. 2025;4:618–636.
MLA Bakır, Dursun. “Experimental and Coupled Eulerian and Lagrangian Numerical Modeling of Ground Contact Explosions”. Firat University Journal of Experimental and Computational Engineering, vol. 4, no. 3, 2025, pp. 618-36, doi:10.62520/fujece.1736569.
Vancouver Bakır D. Experimental and Coupled Eulerian and Lagrangian Numerical Modeling of Ground Contact Explosions. FUJECE. 2025;4(3):618-36.