Research Article
BibTex RIS Cite

Numerical Investigation of the Effects of Flexible Joint Connection Details on the In-Plane Behavior of Reinforced Concrete Frames

Year 2025, Volume: 4 Issue: 3, 637 - 656, 20.10.2025
https://doi.org/10.62520/fujece.1751726

Abstract

Infill walls quickly become damaged under in-plane and out-of-plane effects, losing their effectiveness within the structural system. Therefore, in recent years, researchers have focused on alternative connection details to better understand the effects of infill walls on the structural system and to minimize the negative effects caused by these elements. This study aimed to numerically investigate the flexible joint connection detail recommended in the Türkiye Building Earthquake Code-2018 (TBEC-2018), focusing on in-plane behavior. This detail was intended to prevent damage to infill walls at low interstory drift levels and to mitigate their negative effects on the structural system. In this context, a total of four reinforced concrete frame models were created: one without walls (BF), one with rigid connections (IF-R), and two with flexible joint connections of varying thicknesses (IF-F30 and IF-F60). Their performance was evaluated under repeated and reversible lateral loads using nonlinear Dynamic/Implicit (Quasi-Static) analyses. The findings indicate that flexible joint connections delay plastic deformation by more evenly distributing stress and damage, while maintaining the system's load-bearing capacity even with large interstory drifts. Furthermore, increasing the flexible joint thickness was found to positively impact ductility and provide more stable and balanced behavior compared to rigid infill connections. These results demonstrate that considering flexible joint details in the structural design process can significantly contribute to performance.

Ethical Statement

“There is no conflict of interest with any person/institution in the prepared article” “There is no need to obtain ethics committee permission for the prepared article”

References

  • M.M. Abdelaziz, M. S. Gomma, and H. El-Ghazaly, “Seismic evaluation of reinforced concrete structures infilled with masonry infill walls,” Asian J. Civ. Eng., vol. 20, no. 7, pp. 961–981, Nov. 2019.
  • O. Akyürek, H. Tekeli, and F. Demir, “Plandaki Dolgu Duvar Yerleşiminin Bina Performansı Üzerindeki Etkisi,” Int. J. Eng. Res. Dev., vol. 10, no. 1, Art. no. 1, Jan. 2017.
  • O. Oztürkoglu, U. Taner, and Y. Yesilce, “Investigation of infill wall-frame interaction in reinforced concrete structures,” Dokuz Eylul Univ. Fac. Eng. J. Sci. Eng., vol. 17, no. 51, pp. 109–121, 2015.
  • M. Dolšek, and P. Fajfar, “The effect of masonry infills on the seismic response of a four-storey reinforced concrete frame a deterministic assessment,” Eng. Struct., vol. 30, no. 7, pp. 1991–2001, Jul. 2008.
  • S. Sattar, and A. B. Liel, “Seismic performance of reinforced concrete frame structures with and without masonry infill walls,” in Proc. 9th US Nat. 10th Can. Conf. Earthquake Eng., 2010, Accessed: Jul. 14, 2025.
  • H. Baghi, A. Oliveira, J. Valença, E. Cavaco, L. Neves, and E. Júlio, “Behavior of reinforced concrete frame with masonry infill wall subjected to vertical load,” Eng. Struct., vol. 171, pp. 476–487, Sep. 2018.
  • T. Nwofor, and J. Chinwah, “Finite element modeling of shear strength of infilled frames with openings,” Int. J. Eng. Technol., vol. 2, pp. 992–1001, Jun. 2012.
  • N. Ning, D. Yu, C. Zhang, and S. Jiang, “Pushover analysis on infill effects on the failure pattern of reinforced concrete frames,” Appl. Sci., vol. 7, no. 4, Art. no. 4, Apr. 2017.
  • Ö. Çavdar, G. Köse, and F. Sunca, “Betonarme binaların deprem performanslarına dolgu duvarların etkisinin incelenmesi,” Uludağ Univ. J. Fac. Eng., pp. 465–484, Apr. 2020.
  • P. Usta, Ö. Onat, and Ö. Bozdağ, “Effect of masonry infill walls on the nonlinear response of reinforced concrete structure: October 30, 2020 İzmir earthquake case,” Eng. Fail. Anal., vol. 146, p. 107081, Apr. 2023.
  • B. Binici, A. Yakut, K. Kadas, O. Demirel, U. Akpinar, A. Canbolat, F. Yurtseven, O. Oztaskin, S. Aktas, and E. Canbay, “Performance of RC buildings after Kahramanmaraş Earthquakes: lessons toward performance based design,” Earthq. Eng. Eng. Vib., vol. 22, no. 4, pp. 883–894, Oct. 2023.
  • B. Sevim, Y. Ayvaz, S. Akbulut, M. F. Aydıner, S. Uzun, and A. Ari, “Seismic performance and damage evaluation of reinforced concrete structures based on field investigation made after February 6, 2023, Kahramanmaraş Earthquakes,” J. Earthq. Tsunami, vol. 18, no. 01, p. 2350032, Feb. 2024.
  • A. I. Turan, A. Celik, A. Kumbasaroglu, and H. Yalciner, “Assessment of reinforced concrete building damages following the Kahramanmaraş earthquakes in Malatya, Turkey (February 6, 2023),” Eng. Sci. Technol. Int. J., vol. 54, p. 101718, Jun. 2024.
  • M. Yetkin, İ. Ö. Dedeoğlu, and G. Tunç, “February 6, 2023, Kahramanmaraş twin earthquakes: Evaluation of ground motions and seismic performance of buildings for Elazığ, southeast of Türkiye,” Soil Dyn. Earthq. Eng., vol. 181, p. 108678, Jun. 2024.
  • İ. Ö. Dedeoğlu, M. Yetkin, and Y. Calayir, “24 January 2020 Sivrice-Elazığ earthquake: Assessment of seismic characteristics of earthquake, earthquake territory and structural performance of reinforced concrete structures,” Sak. Univ. J. Sci., vol. 26, no. 5, pp. 892–907, Oct. 2022.
  • İ. Ö. Dedeoğlu, M. Yetkin, Y. Calayır, and H. Erkek, “January 24, 2020 Sivrice-Elazığ (Türkiye) earthquake: The seismic assessment of the earthquake territory, geotechnical findings and performance of masonry buildings,” Iran. J. Sci. Technol. Trans. Civ. Eng., vol. 48, no. 4, pp. 2393–2412, Aug. 2024.
  • M. Yetkin, İ. Ö. Dedeoğlu, and Y. Calayir, “24 Ocak 2020 Sivrice depremi sonrasında Elazığ ilinde bulunan minarelerde meydana gelen hasarların araştırılması ve değerlendirilmesi,” Fırat Univ. J. Eng. Sci., vol. 33, no. 2, pp. 379–389, Sep. 2021.
  • I. O. Dedeoglu, M. Yetkin, G. Tunc, and O. E. Ozbulut, “Evaluating earthquake-induced damage in Dogansehir, Malatya after 2023 Kahramanmaras earthquake sequence: Geotechnical and structural perspectives,” J. Build. Eng., vol. 104, p. 112266, Jun. 2025.
  • M. Tan, Ö. Avşar, F. Yıldızhan, and N. Atmaca, “Effect of infill walls on the seismic performance of a severely damaged substandard RC building during the February 6, 2023, Kahramanmaras earthquake sequence,” Eng. Fail. Anal., vol. 169, p. 109117, Mar. 2025.
  • O. İnce, “Structural damage assessment of reinforced concrete buildings in Adıyaman after Kahramanmaraş (Türkiye) earthquakes on 6 February 2023,” Eng. Fail. Anal., vol. 156, p. 107799, Feb. 2024.
  • B. Yön, İ. Ö. Dedeoğlu, M. Yetkin, H. Erkek, and Y. Calayır, “Evaluation of the seismic response of reinforced concrete buildings in the light of lessons learned from the February 6, 2023, Kahramanmaraş, Türkiye earthquake sequences,” Nat. Hazards, vol. 121, no. 1, pp. 873–909, Jan. 2025.
  • A. Furtado, H. Rodrigues, A. Arêde, and H. Varum, “Experimental tests on strengthening strategies for masonry infill walls: A literature review,” Constr. Build. Mater., vol. 263, p. 120520, 2020.
  • M. H. Zhang, L. Pang, J. N. Ding, and D. Wang, “A review of the methods of strengthening RC frames with masonry infilled wall structures,” Earthq. Eng. Eng. Vib., vol. 41, no. 1, pp. 53–62, 2021.
  • M. T. Tan, B. Binici, O. Kale, and G. Ozcebe, “The successful performance of a reinforced concrete building with FRP strengthened infill walls and externally installed shear walls subjected to Kahramanmaras and Hatay 2023 earthquakes,” Bull. Earthq. Eng., Nov. 2024.
  • M. Zargaran, N. K. A. Attari, and N. Azadvar, “Seismic behavior of infill and nonstructural masonry walls strengthened with textile reinforced mortar,” Constr. Build. Mater., vol. 458, p. 139691, Jan. 2025.
  • P. Triller, K. Kwiecień, A. Kwiecień, U. M. Tekieli, M. Szumera, T. Rousakis, V. Vanian, A.T. Akyildiz, and A. Viskovic, “Efficiency of FRPU strengthening of a damaged masonry infill wall under in-plane cyclic shear loading and elevated temperatures,” Eng. Struct., vol. 317, p. 118652, Oct. 2024.
  • S. Karimi and M. R. Mirjalili, “Strengthened decoupled masonry infill walls: An experimental study on out-of-plane performance under cyclic loads,” Constr. Build. Mater., vol. 475, p. 141159, May 2025.
  • Y. Shen, X. Yan, H. Jia, H. Liu, G. Wu, and W. He, “Experimental evaluation of the out-of-plane behavior of a traditional timber frame with mud and rubble infill wall strengthened by a polypropylene band mesh on one side,” Structures, vol. 58, p. 105392, Dec. 2023.
  • M. Asad, J. Thamboo, T. Zahra, and D. P. Thambiratnam, “Mitigating damages to infill walls under combined in-plane and out-of-plane loadings using a spider web-inspired strengthening strategy: Numerical analyses,” Eng. Struct., vol. 323, p. 119297, Jan. 2025.
  • TBEC-2018 Disaster and Emergency Management Agency (AFAD), Türkiye Building Earthquake Code, 2018.
  • NZS-4230, Design of Reinforced Concrete Masonry Structures. Standards New Zealand, 2004.
  • ACI 530.1-11, Building Code Requirements and Specification for Masonry Structures and Related Commentaries. American Concrete Institute, Farmington Hills, 2011.
  • X. Zhou, W. Zhao, P. Chen, D. Jin-peng, C. Chang-yun, and C. Kang, “Experimental and finite element analysis: Out-of-plane mechanical performance of infill walls with flexible connection,” Adv. Struct. Eng., vol. 26, no. 8, pp. 1377–1394, Jun. 2023.
  • M. Zhang, J. Ding, W. Jin, K. Ding, and M. Ren, “Study on in-plane/out-of-plane seismic performance of masonry-infilled RC frame with openings and a new type of flexible connection,” Bull. Earthq. Eng., vol. 22, no. 4, pp. 2201–2233, Mar. 2024.
  • H. Zhang, “A review of seismic performance of infill wall frame structures under flexible connections,” Adv. Res. Teach., vol. 25, no. 1, pp. 13–20, 2024.
  • O. F. Bayrak, M. Bikçe, M. Erdem, and E. Emsen, “Dolgu duvarların düzlem içi ve düzlem dışı davranışına esnek derzli bağlantı elemanının etkisi,” Osmaniye Korkut Ata Univ. J. Inst. Sci. Tech., vol. 3, no. 1, pp. 24–28, 2020.
  • X. Palios, M. N. Fardis, E. Strepelias, and S. N. Bousias, “Unbonded brickwork for the protection of infills from seismic damage,” Eng. Struct., vol. 131, pp. 614–624, Jan. 2017.
  • M. Preti, and V. Bolis, “Masonry infill construction and retrofit technique for the infill-frame interaction mitigation: Test results,” Eng. Struct., vol. 132, pp. 597–608, Feb. 2017.
  • P. Morandi, R. R. Milanesi, and G. Magenes, “Innovative solution for seismic-resistant masonry infills with sliding joints: In-plane experimental performance,” Eng. Struct., vol. 176, pp. 719–733, Dec. 2018.
  • A. De Angelis, and M. R. Pecce, “The role of infill walls in the dynamic behavior and seismic upgrade of a reinforced concrete framed building,” Front. Built Environ., vol. 6, Dec. 2020.
  • M. Vailati, and G. Monti, “Recycled-plastic joints for earthquake resistant infill panels,” in Proc. 2nd Eur. Conf. Earthq. Eng. Seismol., Istanbul, 2014.
  • M. Gams, A. Kwiecien, J. Korelc, T. Rousakis, and A. Viskovic, “Modelling of deformable polymer to be used for joints between infill masonry walls and R.C. frames,” Procedia Eng., vol. 193, pp. 455–461, 2017.
  • ABAQUS, User Assistance. Dassault Systèmes Simulia Corporation, Providence, Rhode Island, USA.
  • FEMA 461, Interim Testing Protocols for Determining the Seismic Performance Characteristics of Structural and Nonstructural Components. Federal Emergency Management Agency (FEMA), 2007.
  • J. Lubliner, J. Oliver, S. Oller, and E. Onate, “A plastic-damage model for concrete,” Int. J. Solids Struct., vol. 25, no. 3, pp. 299–326, 1989.
  • J. Lee, and G. L. Fenves, “Plastic-damage model for cyclic loading of concrete structures,” J. Eng. Mech., vol. 124, no. 8, pp. 892–900, 1998.
  • M. Valente, and G. Milani, “Damage assessment and collapse investigation of three historical masonry palaces under seismic actions,” Eng. Fail. Anal., vol. 98, pp. 10–37, 2019.
  • A. Raza, and A. Ahmad, “Numerical investigation of load-carrying capacity of GFRP-reinforced rectangular concrete members using CDP model in ABAQUS,” Adv. Civ. Eng., vol. 2019, 2019.

Esnek Derz Bağlantı Detaylarının Betonarme Çerçevelerin Düzlem İçi Davranışına Etkisinin Nümerik Olarak İncelenmesi

Year 2025, Volume: 4 Issue: 3, 637 - 656, 20.10.2025
https://doi.org/10.62520/fujece.1751726

Abstract

Dolgu duvarlar, düzlem içi ve düzlem dışı etkiler altında kısa sürede hasar alarak yapısal sistem içerisindeki etkinliklerini kaybetmektedir. Bu nedenle, son yıllarda araştırmacılar, dolgu duvarların yapısal sistem üzerindeki etkilerini daha iyi anlamak ve bu elemanların sebep olduğu olumsuzlukları minimize edebilmek amacıyla alternatif bağlantı detaylarına odaklanmıştır. Bu çalışma, Türkiye Bina Deprem Yönetmeliği-2018 (TBDY-2018)’de önerilen esnek derz bağlantı detayını, özellikle düzlem içi davranış açısından sayısal olarak incelemeyi amaçlamaktadır. Bu detayın, düşük göreli kat ötelemesi seviyelerinde dolgu duvarlarının hasar görmesini önlemesi ve yapısal sistem üzerindeki olumsuz etkilerini azaltması hedeflenmektedir. Bu kapsamda, biri duvarsız (BF), biri rijit bağlı (IF-R) ve ikisi farklı kalınlıkta esnek derz bağlantılı (IF-F30 ve IF-F60) olmak üzere toplam dört betonarme çerçeve modeli oluşturulmuş; doğrusal olmayan Dynamic/Implicit (Quasi-Static) analizlerle tekrarlı ve tersinir yatay yükler altında performansları değerlendirilmiştir. Elde edilen bulgular, esnek derz bağlantılarının gerilme ve hasar dağılımını daha yayılı hale getirerek plastik şekil değiştirmeyi geciktirdiğini ve büyük göreli kat ötelemelerinde dahi sistemin taşıma kapasitesini koruduğunu göstermektedir. Ayrıca, esnek derz kalınlığının artırılmasının sünekliği olumlu etkilediği ve rijit dolgu bağlantısına kıyasla daha kararlı ve dengeli bir davranış sağladığı görülmüştür. Bu sonuçlar, esnek derz detaylarının yapısal tasarım sürecinde dikkate alınmasının, performans açısından önemli katkılar sunabileceğini ortaya koymaktadır.

Ethical Statement

"Hazırlanan makalede herhangi bir kişi/kurumla çıkar çatışması bulunmamaktadır." "Hazırlanan makale için etik kurul izni alınmasına gerek yoktur."

References

  • M.M. Abdelaziz, M. S. Gomma, and H. El-Ghazaly, “Seismic evaluation of reinforced concrete structures infilled with masonry infill walls,” Asian J. Civ. Eng., vol. 20, no. 7, pp. 961–981, Nov. 2019.
  • O. Akyürek, H. Tekeli, and F. Demir, “Plandaki Dolgu Duvar Yerleşiminin Bina Performansı Üzerindeki Etkisi,” Int. J. Eng. Res. Dev., vol. 10, no. 1, Art. no. 1, Jan. 2017.
  • O. Oztürkoglu, U. Taner, and Y. Yesilce, “Investigation of infill wall-frame interaction in reinforced concrete structures,” Dokuz Eylul Univ. Fac. Eng. J. Sci. Eng., vol. 17, no. 51, pp. 109–121, 2015.
  • M. Dolšek, and P. Fajfar, “The effect of masonry infills on the seismic response of a four-storey reinforced concrete frame a deterministic assessment,” Eng. Struct., vol. 30, no. 7, pp. 1991–2001, Jul. 2008.
  • S. Sattar, and A. B. Liel, “Seismic performance of reinforced concrete frame structures with and without masonry infill walls,” in Proc. 9th US Nat. 10th Can. Conf. Earthquake Eng., 2010, Accessed: Jul. 14, 2025.
  • H. Baghi, A. Oliveira, J. Valença, E. Cavaco, L. Neves, and E. Júlio, “Behavior of reinforced concrete frame with masonry infill wall subjected to vertical load,” Eng. Struct., vol. 171, pp. 476–487, Sep. 2018.
  • T. Nwofor, and J. Chinwah, “Finite element modeling of shear strength of infilled frames with openings,” Int. J. Eng. Technol., vol. 2, pp. 992–1001, Jun. 2012.
  • N. Ning, D. Yu, C. Zhang, and S. Jiang, “Pushover analysis on infill effects on the failure pattern of reinforced concrete frames,” Appl. Sci., vol. 7, no. 4, Art. no. 4, Apr. 2017.
  • Ö. Çavdar, G. Köse, and F. Sunca, “Betonarme binaların deprem performanslarına dolgu duvarların etkisinin incelenmesi,” Uludağ Univ. J. Fac. Eng., pp. 465–484, Apr. 2020.
  • P. Usta, Ö. Onat, and Ö. Bozdağ, “Effect of masonry infill walls on the nonlinear response of reinforced concrete structure: October 30, 2020 İzmir earthquake case,” Eng. Fail. Anal., vol. 146, p. 107081, Apr. 2023.
  • B. Binici, A. Yakut, K. Kadas, O. Demirel, U. Akpinar, A. Canbolat, F. Yurtseven, O. Oztaskin, S. Aktas, and E. Canbay, “Performance of RC buildings after Kahramanmaraş Earthquakes: lessons toward performance based design,” Earthq. Eng. Eng. Vib., vol. 22, no. 4, pp. 883–894, Oct. 2023.
  • B. Sevim, Y. Ayvaz, S. Akbulut, M. F. Aydıner, S. Uzun, and A. Ari, “Seismic performance and damage evaluation of reinforced concrete structures based on field investigation made after February 6, 2023, Kahramanmaraş Earthquakes,” J. Earthq. Tsunami, vol. 18, no. 01, p. 2350032, Feb. 2024.
  • A. I. Turan, A. Celik, A. Kumbasaroglu, and H. Yalciner, “Assessment of reinforced concrete building damages following the Kahramanmaraş earthquakes in Malatya, Turkey (February 6, 2023),” Eng. Sci. Technol. Int. J., vol. 54, p. 101718, Jun. 2024.
  • M. Yetkin, İ. Ö. Dedeoğlu, and G. Tunç, “February 6, 2023, Kahramanmaraş twin earthquakes: Evaluation of ground motions and seismic performance of buildings for Elazığ, southeast of Türkiye,” Soil Dyn. Earthq. Eng., vol. 181, p. 108678, Jun. 2024.
  • İ. Ö. Dedeoğlu, M. Yetkin, and Y. Calayir, “24 January 2020 Sivrice-Elazığ earthquake: Assessment of seismic characteristics of earthquake, earthquake territory and structural performance of reinforced concrete structures,” Sak. Univ. J. Sci., vol. 26, no. 5, pp. 892–907, Oct. 2022.
  • İ. Ö. Dedeoğlu, M. Yetkin, Y. Calayır, and H. Erkek, “January 24, 2020 Sivrice-Elazığ (Türkiye) earthquake: The seismic assessment of the earthquake territory, geotechnical findings and performance of masonry buildings,” Iran. J. Sci. Technol. Trans. Civ. Eng., vol. 48, no. 4, pp. 2393–2412, Aug. 2024.
  • M. Yetkin, İ. Ö. Dedeoğlu, and Y. Calayir, “24 Ocak 2020 Sivrice depremi sonrasında Elazığ ilinde bulunan minarelerde meydana gelen hasarların araştırılması ve değerlendirilmesi,” Fırat Univ. J. Eng. Sci., vol. 33, no. 2, pp. 379–389, Sep. 2021.
  • I. O. Dedeoglu, M. Yetkin, G. Tunc, and O. E. Ozbulut, “Evaluating earthquake-induced damage in Dogansehir, Malatya after 2023 Kahramanmaras earthquake sequence: Geotechnical and structural perspectives,” J. Build. Eng., vol. 104, p. 112266, Jun. 2025.
  • M. Tan, Ö. Avşar, F. Yıldızhan, and N. Atmaca, “Effect of infill walls on the seismic performance of a severely damaged substandard RC building during the February 6, 2023, Kahramanmaras earthquake sequence,” Eng. Fail. Anal., vol. 169, p. 109117, Mar. 2025.
  • O. İnce, “Structural damage assessment of reinforced concrete buildings in Adıyaman after Kahramanmaraş (Türkiye) earthquakes on 6 February 2023,” Eng. Fail. Anal., vol. 156, p. 107799, Feb. 2024.
  • B. Yön, İ. Ö. Dedeoğlu, M. Yetkin, H. Erkek, and Y. Calayır, “Evaluation of the seismic response of reinforced concrete buildings in the light of lessons learned from the February 6, 2023, Kahramanmaraş, Türkiye earthquake sequences,” Nat. Hazards, vol. 121, no. 1, pp. 873–909, Jan. 2025.
  • A. Furtado, H. Rodrigues, A. Arêde, and H. Varum, “Experimental tests on strengthening strategies for masonry infill walls: A literature review,” Constr. Build. Mater., vol. 263, p. 120520, 2020.
  • M. H. Zhang, L. Pang, J. N. Ding, and D. Wang, “A review of the methods of strengthening RC frames with masonry infilled wall structures,” Earthq. Eng. Eng. Vib., vol. 41, no. 1, pp. 53–62, 2021.
  • M. T. Tan, B. Binici, O. Kale, and G. Ozcebe, “The successful performance of a reinforced concrete building with FRP strengthened infill walls and externally installed shear walls subjected to Kahramanmaras and Hatay 2023 earthquakes,” Bull. Earthq. Eng., Nov. 2024.
  • M. Zargaran, N. K. A. Attari, and N. Azadvar, “Seismic behavior of infill and nonstructural masonry walls strengthened with textile reinforced mortar,” Constr. Build. Mater., vol. 458, p. 139691, Jan. 2025.
  • P. Triller, K. Kwiecień, A. Kwiecień, U. M. Tekieli, M. Szumera, T. Rousakis, V. Vanian, A.T. Akyildiz, and A. Viskovic, “Efficiency of FRPU strengthening of a damaged masonry infill wall under in-plane cyclic shear loading and elevated temperatures,” Eng. Struct., vol. 317, p. 118652, Oct. 2024.
  • S. Karimi and M. R. Mirjalili, “Strengthened decoupled masonry infill walls: An experimental study on out-of-plane performance under cyclic loads,” Constr. Build. Mater., vol. 475, p. 141159, May 2025.
  • Y. Shen, X. Yan, H. Jia, H. Liu, G. Wu, and W. He, “Experimental evaluation of the out-of-plane behavior of a traditional timber frame with mud and rubble infill wall strengthened by a polypropylene band mesh on one side,” Structures, vol. 58, p. 105392, Dec. 2023.
  • M. Asad, J. Thamboo, T. Zahra, and D. P. Thambiratnam, “Mitigating damages to infill walls under combined in-plane and out-of-plane loadings using a spider web-inspired strengthening strategy: Numerical analyses,” Eng. Struct., vol. 323, p. 119297, Jan. 2025.
  • TBEC-2018 Disaster and Emergency Management Agency (AFAD), Türkiye Building Earthquake Code, 2018.
  • NZS-4230, Design of Reinforced Concrete Masonry Structures. Standards New Zealand, 2004.
  • ACI 530.1-11, Building Code Requirements and Specification for Masonry Structures and Related Commentaries. American Concrete Institute, Farmington Hills, 2011.
  • X. Zhou, W. Zhao, P. Chen, D. Jin-peng, C. Chang-yun, and C. Kang, “Experimental and finite element analysis: Out-of-plane mechanical performance of infill walls with flexible connection,” Adv. Struct. Eng., vol. 26, no. 8, pp. 1377–1394, Jun. 2023.
  • M. Zhang, J. Ding, W. Jin, K. Ding, and M. Ren, “Study on in-plane/out-of-plane seismic performance of masonry-infilled RC frame with openings and a new type of flexible connection,” Bull. Earthq. Eng., vol. 22, no. 4, pp. 2201–2233, Mar. 2024.
  • H. Zhang, “A review of seismic performance of infill wall frame structures under flexible connections,” Adv. Res. Teach., vol. 25, no. 1, pp. 13–20, 2024.
  • O. F. Bayrak, M. Bikçe, M. Erdem, and E. Emsen, “Dolgu duvarların düzlem içi ve düzlem dışı davranışına esnek derzli bağlantı elemanının etkisi,” Osmaniye Korkut Ata Univ. J. Inst. Sci. Tech., vol. 3, no. 1, pp. 24–28, 2020.
  • X. Palios, M. N. Fardis, E. Strepelias, and S. N. Bousias, “Unbonded brickwork for the protection of infills from seismic damage,” Eng. Struct., vol. 131, pp. 614–624, Jan. 2017.
  • M. Preti, and V. Bolis, “Masonry infill construction and retrofit technique for the infill-frame interaction mitigation: Test results,” Eng. Struct., vol. 132, pp. 597–608, Feb. 2017.
  • P. Morandi, R. R. Milanesi, and G. Magenes, “Innovative solution for seismic-resistant masonry infills with sliding joints: In-plane experimental performance,” Eng. Struct., vol. 176, pp. 719–733, Dec. 2018.
  • A. De Angelis, and M. R. Pecce, “The role of infill walls in the dynamic behavior and seismic upgrade of a reinforced concrete framed building,” Front. Built Environ., vol. 6, Dec. 2020.
  • M. Vailati, and G. Monti, “Recycled-plastic joints for earthquake resistant infill panels,” in Proc. 2nd Eur. Conf. Earthq. Eng. Seismol., Istanbul, 2014.
  • M. Gams, A. Kwiecien, J. Korelc, T. Rousakis, and A. Viskovic, “Modelling of deformable polymer to be used for joints between infill masonry walls and R.C. frames,” Procedia Eng., vol. 193, pp. 455–461, 2017.
  • ABAQUS, User Assistance. Dassault Systèmes Simulia Corporation, Providence, Rhode Island, USA.
  • FEMA 461, Interim Testing Protocols for Determining the Seismic Performance Characteristics of Structural and Nonstructural Components. Federal Emergency Management Agency (FEMA), 2007.
  • J. Lubliner, J. Oliver, S. Oller, and E. Onate, “A plastic-damage model for concrete,” Int. J. Solids Struct., vol. 25, no. 3, pp. 299–326, 1989.
  • J. Lee, and G. L. Fenves, “Plastic-damage model for cyclic loading of concrete structures,” J. Eng. Mech., vol. 124, no. 8, pp. 892–900, 1998.
  • M. Valente, and G. Milani, “Damage assessment and collapse investigation of three historical masonry palaces under seismic actions,” Eng. Fail. Anal., vol. 98, pp. 10–37, 2019.
  • A. Raza, and A. Ahmad, “Numerical investigation of load-carrying capacity of GFRP-reinforced rectangular concrete members using CDP model in ABAQUS,” Adv. Civ. Eng., vol. 2019, 2019.
There are 48 citations in total.

Details

Primary Language English
Subjects Civil Engineering (Other)
Journal Section Research Articles
Authors

Taha Yasin Altıok 0000-0002-5237-4018

Publication Date October 20, 2025
Submission Date July 26, 2025
Acceptance Date September 16, 2025
Published in Issue Year 2025 Volume: 4 Issue: 3

Cite

APA Altıok, T. Y. (2025). Numerical Investigation of the Effects of Flexible Joint Connection Details on the In-Plane Behavior of Reinforced Concrete Frames. Firat University Journal of Experimental and Computational Engineering, 4(3), 637-656. https://doi.org/10.62520/fujece.1751726
AMA Altıok TY. Numerical Investigation of the Effects of Flexible Joint Connection Details on the In-Plane Behavior of Reinforced Concrete Frames. FUJECE. October 2025;4(3):637-656. doi:10.62520/fujece.1751726
Chicago Altıok, Taha Yasin. “Numerical Investigation of the Effects of Flexible Joint Connection Details on the In-Plane Behavior of Reinforced Concrete Frames”. Firat University Journal of Experimental and Computational Engineering 4, no. 3 (October 2025): 637-56. https://doi.org/10.62520/fujece.1751726.
EndNote Altıok TY (October 1, 2025) Numerical Investigation of the Effects of Flexible Joint Connection Details on the In-Plane Behavior of Reinforced Concrete Frames. Firat University Journal of Experimental and Computational Engineering 4 3 637–656.
IEEE T. Y. Altıok, “Numerical Investigation of the Effects of Flexible Joint Connection Details on the In-Plane Behavior of Reinforced Concrete Frames”, FUJECE, vol. 4, no. 3, pp. 637–656, 2025, doi: 10.62520/fujece.1751726.
ISNAD Altıok, Taha Yasin. “Numerical Investigation of the Effects of Flexible Joint Connection Details on the In-Plane Behavior of Reinforced Concrete Frames”. Firat University Journal of Experimental and Computational Engineering 4/3 (October2025), 637-656. https://doi.org/10.62520/fujece.1751726.
JAMA Altıok TY. Numerical Investigation of the Effects of Flexible Joint Connection Details on the In-Plane Behavior of Reinforced Concrete Frames. FUJECE. 2025;4:637–656.
MLA Altıok, Taha Yasin. “Numerical Investigation of the Effects of Flexible Joint Connection Details on the In-Plane Behavior of Reinforced Concrete Frames”. Firat University Journal of Experimental and Computational Engineering, vol. 4, no. 3, 2025, pp. 637-56, doi:10.62520/fujece.1751726.
Vancouver Altıok TY. Numerical Investigation of the Effects of Flexible Joint Connection Details on the In-Plane Behavior of Reinforced Concrete Frames. FUJECE. 2025;4(3):637-56.