Research Article
BibTex RIS Cite

Farklı Geometrik ve Hidrolik Koşullar Altında Labirent Yan Savak Debi Katsayılarının Literatür Tabanlı Ampirik ve Veri Güdümlü Model Değerlendirmesi

Year 2025, Volume: 4 Issue: 3, 670 - 688, 20.10.2025
https://doi.org/10.62520/fujece.1754458

Abstract

Bu çalışma, literatürden derlenen deneysel veriler ışığında yeni geliştirilen istatistiksel yaklaşımlarla açık kanallarda labirent yan savakların hidrolik davranışını kapsamlı bir şekilde incelemiştir. Bu çalışmada kullanılan model, çoklu doğrusal regresyon (multiple linear regression) modelidir. Bu çalışma, açık kanallarda labirent yan savakların hidrolik davranışını araştıran literatürden önceki çalışmalarda elde edilen deneysel verileri kullanarak, geliştirilen istatistiksel yöntemlerle kapsamlı bir şekilde incelemiştir. Temel amaç, debi katsayısı (Cd) ile boyutsuz akış parametreleri ve debi arasındaki karmaşık ilişkileri ortaya koymaktır. Deneysel veriler, Cd değerlerinin boyutsuz h/w oranıyla belirginleşen akım rejimleri ile doğrusal olmayan bir ilişki sergilediğini göstermiştir; bu ilişkide, h/w=2.0−2.6 aralığı optimal hidrolik performans bölgesi olarak belirlenmiştir. Ayrıca, akış debisi (Q) arttıkça Cd değerinde genel bir düşüş eğilimi, özellikle 10 L/s üzerindeki yüksek debilerde dramatik bir azalma gözlemlenmiştir; bu durum, yüksek debilerde potansiyel boğulma etkilerine işaret etmektedir. Çalışmada, SPSS istatistik yazılımı kullanılarak debi katsayılarını tahmin eden bir model geliştirilmiştir. Bu model, genel eğilimleri yakalamakta başarılı olmakla birlikte, belirli akış rejimlerinde deneysel verilerden önemli sapmalar göstermiştir. Regresyon analizleri, modelin düşük ve orta-yüksek debi aralıklarında (örn. 6-8 L/s için R2=0.91, 11-12.5 L/s için R2=0.95) yüksek doğrulukla tahmin yapabildiğini, ancak çok yüksek debilerde (17-23 L/s için R2=0.70) tahmin gücünde belirgin bir düşüş olduğunu ortaya koymuştur. Bu bulgular, modelin genellenebilirliğindeki sınırlamalara ve özellikle yüksek debi rejimlerindeki karmaşık akış dinamikleri için daha sofistike modelleme yaklaşımlarına duyulan ihtiyaca işaret etmektedir. Regresyon analizleri, modelin orta debi aralıklarında yüksek doğrulukla çalıştığını (R2=0.91 ve R2=0.95), ancak yüksek debilerde tahmin gücünün düştüğünü (R2=0.70) gösterdi. Bu bulgular, labirent savakların hidrolik tasarımına katkıda bulunmakta ve yüksek akış senaryolarında gelişmiş tahmin araçlarına olan ihtiyacı vurgulamaktadır. Elde edilen veriler, labirent savakların hidrolik tasarım prensiplerine önemli katkılar sağlamakta ve su kaynakları mühendisliği uygulamaları için daha etkin ve güvenilir araçların geliştirilmesine yönelik bilimsel bir temel sunmaktadır.

Ethical Statement

"Hazırlanan makale için etik kurul onayına gerek yoktur." "Hazırlanan makalede herhangi bir kişi veya kurumla çıkar çatışması bulunmamaktadır."

References

  • S. M. Borghei, M. R. Jalili, and M. Ghodsian, “Discharge coefficient for sharp-crested side weir in subcritical flow,” J. Hydraul. Eng., vol. 125, no. 10, pp. 1051–1056, 1999.
  • M. E. Emiroglu, N. Kaya, and H. Agaccioglu, “Discharge capacity of labyrinth side weir located on a straight channel,” J. Irrig. Drain. Eng., vol. 136, no. 1, pp. 37–46, 2010.
  • M. E. Emiroglu, H. Agaccioglu, and N. Kaya, “Discharging capacity of rectangular side weirs in straight open channels,” Flow Meas. Instrum., vol. 22, no. 4, pp. 319–330, 2011.
  • C. P. Kumar, and S. K. Pathak, “Triangular side weirs,” J. Irrig. Drain. Eng., vol. 113, no. 1, pp. 98–105, 1987.
  • M. Tunc, M. E. Emiroglu, and M. Gogus, “Local scour at triangular labyrinth side weirs located on an alluvial channel,” J. Irrig. Drain. Eng., vol. 148, no. 5, p. 04022008, 2022.
  • S. Abbasi, S. Fatemi, A. Ghaderi, and S. Di Francesco, “The effect of geometric parameters of the antivortex on a triangular labyrinth side weir,” Water, vol. 13, no. 1, p. 14, 2020.
  • M. E. Emiroglu, M. Gogus, M. Tunc, and K. Islamoglu, “Effects of antivortex structures installed on trapezoidal labyrinth side weirs on discharge capacity and scouring,” J. Irrig. Drain. Eng., vol. 143, no. 6, p. 04017006, 2017.
  • H. Karami, S. Karimi, H. Bonakdari, and S. Shamshirband, “Predicting discharge coefficient of triangular labyrinth weir using extreme learning machine, artificial neural network and genetic programming,” Neural Comput. Appl., vol. 29, pp. 983–989, 2018.
  • R. W. P. May, Hydraulic Design of Side Weirs. London: Thomas Telford, 2003.
  • V. Kartal, and M. E. Emiroglu, “Numerical simulation of the flow passing through the side weir-gate,” Flow Meas. Instrum., vol. 95, p. 102519, 2024.
  • K. Neysi, M. Daryaee, S. M. Kashefipour, A. Shahriari, and M. Zayeri, “Improving water diversion efficiency in converging side weirs through side vane installation: a numerical simulation,” J. Irrig. Sci. Eng., vol. 47, no. 4, pp. 93–104, 2025.
  • T. J. Alfatlawi, and R. D. M. Alkafaji, “Effect of anti-vortex structures installed on stepped labyrinth side weirs on discharge capacity,” Flow Meas. Instrum., vol. 89, p. 102307, 2023.
  • H. Chanson, “Low-head hydraulic structures in irrigation and drainage engineering: Challenging operation and design implications,” J. Irrig. Drain. Eng., vol. 150, no. 5, p. 03124001, 2024.
  • R. Zarei, M. Ghodsian, Y. Sangsefidi, and C. A. Chooplou, “Submerged flow over various shapes of piano key weir,” Flow Meas. Instrum., vol. 97, p. 102595, 2024.
  • M. G. Eltarabily, A. Kamal Hamed, M. Elkiki, and T. Selim, “Hydraulic assessment of different types of piano key weirs,” ISH J. Hydraul. Eng., vol. 31, no. 1, pp. 8–31, 2025.
  • V. Kartal, M. E. Emiroglu, and M. F. Yuksel, “Discharge performance of side gates with different shapes,” Water Sci. Technol., vol. 91, no. 4, pp. 344–362, 2025.
  • D. Singh and M. Kumar, “Hydraulic design and analysis of piano key weirs: a review,” Arab. J. Sci. Eng., vol. 47, no. 4, pp. 5093–5107, 2022.
  • U. Iqbal, and M. Z. B. Riaz, “Blockage at cross-drainage hydraulic structures–Advances, challenges and opportunities,” Heliyon, vol. 10, no. 16, 2024.
  • G. Degoutte ,and R. Tourment, Spillways on River Levees. Versailles: Éditions Quae, 2021.
  • S. Kumar, Z. Ahmad, and T. Mansoor, “A new approach to improve the discharging capacity of sharp-crested triangular plan form weirs,” Flow Meas. Instrum., vol. 22, no. 3, pp. 175–180, 2011.
  • M. Zeinivand, and M. Ghomeshi, “The discharge coefficient of sharp triangular weir pierced by orifices,” Flow Meas. Instrum., vol. 97, p. 102560, 2024.

Literature-Based Empirical and Data-Driven Model Evaluation of Labyrinth Side Weir Flow Coefficients under Different Geometric and Hydraulic Conditions

Year 2025, Volume: 4 Issue: 3, 670 - 688, 20.10.2025
https://doi.org/10.62520/fujece.1754458

Abstract

This study comprehensively investigated the hydraulic behavior of labyrinthine side weirs in open channels using newly developed statistical approaches based on experimental data compiled from the literature. The model used in this study is a multiple linear regression model. The main objective was to reveal the complex relationships between the discharge coefficient (Cd) and the dimensionless flow parameters and the discharge. Experimental data showed that Cd values exhibit a nonlinear relationship with the flow regimes, which is characterized by the dimensionless h/w ratio with the optimal hydraulic performance region being h/w=2.0−2.6. Furthermore, a general decreasing trend in Cd was observed as the discharge (Q) increased, with a particularly dramatic decrease at high flow rates above 10 L/s, indicating potential choking effects at high discharges. A model was developed to estimate the flow coefficients using SPSS statistical software. While this model successfully captured the general trends, it showed significant deviations from the experimental data in certain flow regimes. Regression analyses revealed that the model can predict with high accuracy in low and medium-high flow rate ranges (e.g., R2=0.91 for 6-8 L/s, R2=0.95 for 11-12.5 L/s), but that there is a significant decrease in predictive power at very high flow rates (R2=0.70 for 17-23 L/s). These findings point to limitations in the generalizability of the model and the need for more sophisticated modeling approaches, especially for the complex flow dynamics in high flow regimes. Regression analyses showed that the model performed with high accuracy in medium flow ranges (R2=0.91 and R2=0.95), but its predictive power decreased at high flow rates (R2=0.70). These findings contribute to the hydraulic design of labyrinth weirs and underscore the need for advanced predictive tools in high-flow scenarios. The obtained data provide significant contributions to the hydraulic design principles of labyrinth weirs and provide a scientific basis for the development of more effective and reliable tools for water resources engineering applications.

Ethical Statement

"There is no need for ethics committee approval for the prepared article." "There is no conflict of interest with any person or institution in the prepared article."

References

  • S. M. Borghei, M. R. Jalili, and M. Ghodsian, “Discharge coefficient for sharp-crested side weir in subcritical flow,” J. Hydraul. Eng., vol. 125, no. 10, pp. 1051–1056, 1999.
  • M. E. Emiroglu, N. Kaya, and H. Agaccioglu, “Discharge capacity of labyrinth side weir located on a straight channel,” J. Irrig. Drain. Eng., vol. 136, no. 1, pp. 37–46, 2010.
  • M. E. Emiroglu, H. Agaccioglu, and N. Kaya, “Discharging capacity of rectangular side weirs in straight open channels,” Flow Meas. Instrum., vol. 22, no. 4, pp. 319–330, 2011.
  • C. P. Kumar, and S. K. Pathak, “Triangular side weirs,” J. Irrig. Drain. Eng., vol. 113, no. 1, pp. 98–105, 1987.
  • M. Tunc, M. E. Emiroglu, and M. Gogus, “Local scour at triangular labyrinth side weirs located on an alluvial channel,” J. Irrig. Drain. Eng., vol. 148, no. 5, p. 04022008, 2022.
  • S. Abbasi, S. Fatemi, A. Ghaderi, and S. Di Francesco, “The effect of geometric parameters of the antivortex on a triangular labyrinth side weir,” Water, vol. 13, no. 1, p. 14, 2020.
  • M. E. Emiroglu, M. Gogus, M. Tunc, and K. Islamoglu, “Effects of antivortex structures installed on trapezoidal labyrinth side weirs on discharge capacity and scouring,” J. Irrig. Drain. Eng., vol. 143, no. 6, p. 04017006, 2017.
  • H. Karami, S. Karimi, H. Bonakdari, and S. Shamshirband, “Predicting discharge coefficient of triangular labyrinth weir using extreme learning machine, artificial neural network and genetic programming,” Neural Comput. Appl., vol. 29, pp. 983–989, 2018.
  • R. W. P. May, Hydraulic Design of Side Weirs. London: Thomas Telford, 2003.
  • V. Kartal, and M. E. Emiroglu, “Numerical simulation of the flow passing through the side weir-gate,” Flow Meas. Instrum., vol. 95, p. 102519, 2024.
  • K. Neysi, M. Daryaee, S. M. Kashefipour, A. Shahriari, and M. Zayeri, “Improving water diversion efficiency in converging side weirs through side vane installation: a numerical simulation,” J. Irrig. Sci. Eng., vol. 47, no. 4, pp. 93–104, 2025.
  • T. J. Alfatlawi, and R. D. M. Alkafaji, “Effect of anti-vortex structures installed on stepped labyrinth side weirs on discharge capacity,” Flow Meas. Instrum., vol. 89, p. 102307, 2023.
  • H. Chanson, “Low-head hydraulic structures in irrigation and drainage engineering: Challenging operation and design implications,” J. Irrig. Drain. Eng., vol. 150, no. 5, p. 03124001, 2024.
  • R. Zarei, M. Ghodsian, Y. Sangsefidi, and C. A. Chooplou, “Submerged flow over various shapes of piano key weir,” Flow Meas. Instrum., vol. 97, p. 102595, 2024.
  • M. G. Eltarabily, A. Kamal Hamed, M. Elkiki, and T. Selim, “Hydraulic assessment of different types of piano key weirs,” ISH J. Hydraul. Eng., vol. 31, no. 1, pp. 8–31, 2025.
  • V. Kartal, M. E. Emiroglu, and M. F. Yuksel, “Discharge performance of side gates with different shapes,” Water Sci. Technol., vol. 91, no. 4, pp. 344–362, 2025.
  • D. Singh and M. Kumar, “Hydraulic design and analysis of piano key weirs: a review,” Arab. J. Sci. Eng., vol. 47, no. 4, pp. 5093–5107, 2022.
  • U. Iqbal, and M. Z. B. Riaz, “Blockage at cross-drainage hydraulic structures–Advances, challenges and opportunities,” Heliyon, vol. 10, no. 16, 2024.
  • G. Degoutte ,and R. Tourment, Spillways on River Levees. Versailles: Éditions Quae, 2021.
  • S. Kumar, Z. Ahmad, and T. Mansoor, “A new approach to improve the discharging capacity of sharp-crested triangular plan form weirs,” Flow Meas. Instrum., vol. 22, no. 3, pp. 175–180, 2011.
  • M. Zeinivand, and M. Ghomeshi, “The discharge coefficient of sharp triangular weir pierced by orifices,” Flow Meas. Instrum., vol. 97, p. 102560, 2024.
There are 21 citations in total.

Details

Primary Language English
Subjects Civil Engineering (Other)
Journal Section Research Articles
Authors

Mustafa Tunç 0000-0001-9756-8409

Publication Date October 20, 2025
Submission Date July 30, 2025
Acceptance Date September 19, 2025
Published in Issue Year 2025 Volume: 4 Issue: 3

Cite

APA Tunç, M. (2025). Literature-Based Empirical and Data-Driven Model Evaluation of Labyrinth Side Weir Flow Coefficients under Different Geometric and Hydraulic Conditions. Firat University Journal of Experimental and Computational Engineering, 4(3), 670-688. https://doi.org/10.62520/fujece.1754458
AMA Tunç M. Literature-Based Empirical and Data-Driven Model Evaluation of Labyrinth Side Weir Flow Coefficients under Different Geometric and Hydraulic Conditions. FUJECE. October 2025;4(3):670-688. doi:10.62520/fujece.1754458
Chicago Tunç, Mustafa. “Literature-Based Empirical and Data-Driven Model Evaluation of Labyrinth Side Weir Flow Coefficients under Different Geometric and Hydraulic Conditions”. Firat University Journal of Experimental and Computational Engineering 4, no. 3 (October 2025): 670-88. https://doi.org/10.62520/fujece.1754458.
EndNote Tunç M (October 1, 2025) Literature-Based Empirical and Data-Driven Model Evaluation of Labyrinth Side Weir Flow Coefficients under Different Geometric and Hydraulic Conditions. Firat University Journal of Experimental and Computational Engineering 4 3 670–688.
IEEE M. Tunç, “Literature-Based Empirical and Data-Driven Model Evaluation of Labyrinth Side Weir Flow Coefficients under Different Geometric and Hydraulic Conditions”, FUJECE, vol. 4, no. 3, pp. 670–688, 2025, doi: 10.62520/fujece.1754458.
ISNAD Tunç, Mustafa. “Literature-Based Empirical and Data-Driven Model Evaluation of Labyrinth Side Weir Flow Coefficients under Different Geometric and Hydraulic Conditions”. Firat University Journal of Experimental and Computational Engineering 4/3 (October2025), 670-688. https://doi.org/10.62520/fujece.1754458.
JAMA Tunç M. Literature-Based Empirical and Data-Driven Model Evaluation of Labyrinth Side Weir Flow Coefficients under Different Geometric and Hydraulic Conditions. FUJECE. 2025;4:670–688.
MLA Tunç, Mustafa. “Literature-Based Empirical and Data-Driven Model Evaluation of Labyrinth Side Weir Flow Coefficients under Different Geometric and Hydraulic Conditions”. Firat University Journal of Experimental and Computational Engineering, vol. 4, no. 3, 2025, pp. 670-88, doi:10.62520/fujece.1754458.
Vancouver Tunç M. Literature-Based Empirical and Data-Driven Model Evaluation of Labyrinth Side Weir Flow Coefficients under Different Geometric and Hydraulic Conditions. FUJECE. 2025;4(3):670-88.