Research Article
PDF Mendeley EndNote BibTex Cite

Site-içi Aramalar ve Apriori Algoritması Kullanılarak Web Sitesi Ziyaretçilerinin İhtiyaç Tespitine Yönelik Bir Örnek Olay İncelemesi

Year 2018, Volume 11, Issue 2, 211 - 222, 30.04.2018
https://doi.org/10.17671/gazibtd.397142

Abstract

Bugün web siteleri, milyarlarca insan tarafından kullanılmaktadır. Bir kişinin/topluluğun/kurumun veya markanın; web sitesi aracılığı ile daha çok kişiye ulaşabilmesinde, takipçileri tarafından kabul görmesinde ve böylelikle hedeflediği başarıyı yakalayabilmesinde, site ziyaretçilerinin ihtiyaçlarının tespit edebilmesi son derece önemlidir. Tespit edilen bu ihtiyaçlar, bir web sitesinin tasarım ve içerik yönünden geliştirilmesinde kilit rol oynamaktadır. Bu çalışmanın amacı; site-içi aramalar ve apriori algoritması kullanılarak web sitesi ziyaretçilerinin ihtiyaç tespitine yönelik bir örnek olay incelemesi sunmaktır. Bu kapsamda, veri seti olarak Kırklareli Üniversitesi web sitesinden (www.klu.edu.tr) elde edilen bir aylık web günlük dosyası kullanılmıştır. Analiz süreci, Veri Madenciliği için Çapraz Endüstri Standard Süreç Modeli (CRISP-DM: CRoss-Industry Standard Process for Data Mining) çerçevesinde ele alınmıştır. Üniversite kayıtlarıyla ilgili işlemlerin yoğun olarak gerçekleştirildiği aya yönelik yapılan analizler sonucunda; ziyaretçiler tarafından gerçekleştirilen aramalarda çoğunlukla “Yatay Geçiş”, “Kayıt Yenileme”, “Ders Programı”, “Ders Kayıtları”, “Harç” ve “Kontenjanlar” kelime/kelime gruplarının bulunduğu gözlemlenmiştir. Apriori algoritması ile gerçekleştirilen analizler sonucunda, sırasıyla “Yatay Geçiş” (1177 kez), “Harç” (889 kez) ve “Ders Programı” (600 kez) aramalarının yapılan tüm aramaların başında geldiği tespit edilmiştir. Üniversite web sitesinin daha iyi hizmet vermesine olanak tanıyacak; “Ders Programı ve Yatay Geçiş aramalarını yapan ziyaretçilerin %60’ı Harç kelimesini de aramıştır” şeklinde çeşitli birliktelik kuralları çalışmada paylaşılmıştır.

References

  • [1] Internet: InternetLiveStats.com, Total number of Websites - Internet Live Stats, http://www.internetlivestats.com/total-number-of-websites/#trend, 19.01.2018.
  • [2] I. Graham, A Pattern Language for Web Usability, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.
  • [3] B. Özkan ve Y. Özkan, R ile Programlama, 1, Papatya Yayıncılık Eğitim, İstanbul, Türkiye, 2017.
  • [4] A. Chauhan ve S. Tarar, “Prediction of User Browsing Behavior Using Web Log Data”, International Journal of Scientific Research in Science, Engineering and Technology, 2 (1), 419–422, 2016.
  • [5] J. Grace, V. Maheswari, ve N. Dhinaharan, “Analysis of Web Logs And Web User In Web Mining”, International Journal of Network Security & Its Applications, 3 (1), 99-110, 2011.
  • [6] C. M. Barnum, “3 - Big U and little u usability”, Usability Testing Essentials, Morgan Kaufmann, Boston, ABD, 53–81, 2011.
  • [7] J. Nielsen, Usability Engineering, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1993.
  • [8] M. Gezer, Ç. Erol, ve S. Gülseçen, “Bir Web Sayfasının Veri Madenciliği İle Analizi”, Akademik Bilişim, 31 Ocak-2 Şubat, 2007.
  • [9] E. Hochsztain, “A Mining Approach to Evaluate Geoportals Usability”, 2015 International Workshop on Data Mining with Industrial Applications (DMIA), 1–7, 14-16 Eylül, 2015.
  • [10] J. Srivastava, R. Cooley, M. Deshpande, ve P.-N. Tan, “Web Usage Mining: Discovery and Applications of Usage Patterns from Web Data”, SIGKDD Explorations, 1 (2), 12–23, 2000.
  • [11] R. Das ve İ. Türkoğlu, “Extraction of Interesting Patterns through Association Rule Mining For Improvement of Website Usability”, Istanbul University - Journal of Electrical & Electronics Engineering, 9 (2), 1037–1046, 2009.
  • [12] N. K. Tyagi, A. K. Solanki, ve M. Wadhwa, “Analysis of Server Log by Web Usage Mining for Website Improvement”, International Journal of Computer Science Issues, 7 (4), 17-21, 2010.
  • [13] K. R. Suneetha ve R. Krishnamoorthi, “Classification Of Web Log Data To Identify Interested Users Using Decision Trees”, The International Conference on Computing, Communications and Information Technology Applications, 21-23 Ocak, 2010.
  • [14] C. J. Carmona, S. Ramírez-Gallego, F. Torres, E. Bernal, J. Del, ve S. García, “Web usage mining to improve the design of an e-commerce website: OrOliveSur.com”, Expert Systems with Applications, 39 (12), 11243–11249, 2012.
  • [15] A. K. Santra ve S. Jayasudha, “Classification of Web Log Data to Identify Interested Users Using Naïve Bayesian Classification”, International Journal of Computer Science Issues, 9 (1), 381–387, 2012.
  • [16] V. Sujatha ve Punithavalli, “Improved user Navigation Pattern Prediction Technique from Web Log Data”, Procedia Engineering, 30, 92–99, 2012.
  • [17] P. Lopes and B. Roy, “Dynamic Recommendation System Using Web Usage Mining for E-commerce Users”, Procedia Computer Science, 45, 60–69, 2015.
  • [18] M. Y. Shih ve S.-S. Huang, “Characterizing Web users based on their required criteria”, 11th International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness (QSHINE), 422–426, 19-20 Ağustos, 2015.
  • [19] H. Zhang, W. Song, L. Liu, ve H. Wang, “The application of matrix Apriori algorithm in web log mining”, 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA), 264–268, 10-12 Mart, 2017.
  • [20] C. Shearer, “The CRISP-DM Model: The New Blueprint for Data Mining”, Journal of Data Warehousing, 5, 13–22, 2000.
  • [21] M. E. Balaban ve E. Kartal, Veri Madenciliği ve Makine Öğrenmesi Temel Algoritmaları ve R Dili ile Uygulamaları, 1, Çağlayan Kitabevi, İstanbul, Türkiye, 2015. [22] Z. Özen, E. Kartal ve İ. E. Emre, “Analysis of a Learning Management System by Using Google Analytics: A Case Study From Turkey”, Technology Management in Organizational and Societal Contexts, IGI Global, ABD, 198–220, 2018.
  • [23] Internet: Apache: The Apache HTTP Server Project, http://httpd.apache.org/, 23.01.2018.
  • [24] D. B. Rathod, “Customizable Web Log Mining from Web Server Log”, International Journal of Engineering Development and Research, 1 (2), 96–100, 2014.
  • [25] Internet: OpenRefine, http://openrefine.org/, 23.01.2018.
  • [26] Internet: RStudio, Take control of your R code, https://www.rstudio.com/products/rstudio/, 23.01.2018.
  • [27] Internet: r-project, R: The R Project for Statistical Computing, https://www.r-project.org/, 23.01.2018.
  • [28] M. Hashler, S. Chelluboina, K. Hornik, ve C. Buchta, “The arules R-Package Ecosystem: Analyzing Interesting Patterns from Large Transaction Data Sets”, Journal of Machine Learning Research, 12, 2021−2025, 2011.
  • [29] Internet: R. Calaway, Microsoft, ve S. Weston, foreach: Provides Foreach Looping Construct for R, https://cran.r-project.org/web/packages/foreach/foreach.pdf, 12.12.2017.
  • [30] Internet: R. Calaway, R. Analytics, ve S. Weston, doMC: Foreach Parallel Adaptor for “parallel”, https://cran.r-project.org/web/packages/doMC/doMC.pdf, 12.12.2017.
  • [31] H. Wickham, “The Split-Apply-Combine Strategy for Data Analysis”, Journal of Statistical Software, 40 (1), 1–29, 2011.
  • [32] Internet: O. Keyes, J. Jacobs, D. Schmidt, M. Greenaway, B. Rudis, A. Pinto, M. Khezrzadeh, P. Meilstrup, A. M. Costello, J. Bezanson, P. Meilstrup ve X. Jiang, urltools: Vectorised Tools for URL Handling and Parsing, https://cran.r-project.org/web/packages/urltools/urltools.pdf, 20.01.2018.
  • [33] R. Agrawal ve R. Srikant, “Fast Algorithms for Mining Association Rules”, Proceedings of the 20th International Conference on Very Large Data Bases, 487–499, 12-15 Eylül, 1994.
  • [34] G. Karahan Adalı, Veri Madenciliğinde Birliktelik Yöntemleri ve Müşteri İlişkileri Yönetimine İlişkin Bir Uygulama, Doktora Tezi, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, 2017.
  • [35] Y. Zhao, Post-mining of Association Rules: Techniques for Effective Knowledge Extraction, 1, PA: Information Science Reference, Hershey, ABD, 2009.
  • [36] C. Zhang ve S. Zhang, Association Rule Mining, Heidelberg: Springer Berlin Heidelberg, Berlin, ABD, 2002.
  • [37] P.-N. Tan, M. Steinbach ve V. Kumar, Introduction to Data Mining, 1, Pearson, Boston, ABD, 2005.

A Case Study on Identifying Visitor Needs of a Website by Using In-Site Search and Apriori Algorithm

Year 2018, Volume 11, Issue 2, 211 - 222, 30.04.2018
https://doi.org/10.17671/gazibtd.397142

Abstract

Nowadays, websites are used by billions of people. The identification of the visitor needs of website is very important for a person/a community/an organization or a brand to reach more people through a website, to be accepted by website followers, and so to achieve targeted success. These identified needs play a key role in improving a website in terms of design and content. The aim of this study is to provide a case study to identify visitor needs of a website by using in-site search and the apriori algorithm. In this context, a monthly web log file which is obtained from Kırklareli University website (www.klu.edu.tr) was used as data set. Analysis process is discussed in the context of CRISP-DM: CRoss-Industry Standard Process for Data Mining. It is observed that word/word groups of “Undergraduate Transfer”, “Re-enrollment”, “Syllabus”, “Course Registration”, “Tuition” and “Quota” mostly exist in searches performed by visitors in the results of analyzes especially during the month that the university registration process is done intensely. In the results of analyses performed with apriori algorithm, it is found that the searches of “Undergraduate Transfer” (1177 times), “Tuition” (889 times) and “Syllabus” (600 times) lead of all searches. Association rules such as “%60 of the visitors who searched Syllabus and Undergraduate Transfer, searched Tuition as well”, which allow the university website to serve better, have been shared in the study.

References

  • [1] Internet: InternetLiveStats.com, Total number of Websites - Internet Live Stats, http://www.internetlivestats.com/total-number-of-websites/#trend, 19.01.2018.
  • [2] I. Graham, A Pattern Language for Web Usability, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.
  • [3] B. Özkan ve Y. Özkan, R ile Programlama, 1, Papatya Yayıncılık Eğitim, İstanbul, Türkiye, 2017.
  • [4] A. Chauhan ve S. Tarar, “Prediction of User Browsing Behavior Using Web Log Data”, International Journal of Scientific Research in Science, Engineering and Technology, 2 (1), 419–422, 2016.
  • [5] J. Grace, V. Maheswari, ve N. Dhinaharan, “Analysis of Web Logs And Web User In Web Mining”, International Journal of Network Security & Its Applications, 3 (1), 99-110, 2011.
  • [6] C. M. Barnum, “3 - Big U and little u usability”, Usability Testing Essentials, Morgan Kaufmann, Boston, ABD, 53–81, 2011.
  • [7] J. Nielsen, Usability Engineering, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1993.
  • [8] M. Gezer, Ç. Erol, ve S. Gülseçen, “Bir Web Sayfasının Veri Madenciliği İle Analizi”, Akademik Bilişim, 31 Ocak-2 Şubat, 2007.
  • [9] E. Hochsztain, “A Mining Approach to Evaluate Geoportals Usability”, 2015 International Workshop on Data Mining with Industrial Applications (DMIA), 1–7, 14-16 Eylül, 2015.
  • [10] J. Srivastava, R. Cooley, M. Deshpande, ve P.-N. Tan, “Web Usage Mining: Discovery and Applications of Usage Patterns from Web Data”, SIGKDD Explorations, 1 (2), 12–23, 2000.
  • [11] R. Das ve İ. Türkoğlu, “Extraction of Interesting Patterns through Association Rule Mining For Improvement of Website Usability”, Istanbul University - Journal of Electrical & Electronics Engineering, 9 (2), 1037–1046, 2009.
  • [12] N. K. Tyagi, A. K. Solanki, ve M. Wadhwa, “Analysis of Server Log by Web Usage Mining for Website Improvement”, International Journal of Computer Science Issues, 7 (4), 17-21, 2010.
  • [13] K. R. Suneetha ve R. Krishnamoorthi, “Classification Of Web Log Data To Identify Interested Users Using Decision Trees”, The International Conference on Computing, Communications and Information Technology Applications, 21-23 Ocak, 2010.
  • [14] C. J. Carmona, S. Ramírez-Gallego, F. Torres, E. Bernal, J. Del, ve S. García, “Web usage mining to improve the design of an e-commerce website: OrOliveSur.com”, Expert Systems with Applications, 39 (12), 11243–11249, 2012.
  • [15] A. K. Santra ve S. Jayasudha, “Classification of Web Log Data to Identify Interested Users Using Naïve Bayesian Classification”, International Journal of Computer Science Issues, 9 (1), 381–387, 2012.
  • [16] V. Sujatha ve Punithavalli, “Improved user Navigation Pattern Prediction Technique from Web Log Data”, Procedia Engineering, 30, 92–99, 2012.
  • [17] P. Lopes and B. Roy, “Dynamic Recommendation System Using Web Usage Mining for E-commerce Users”, Procedia Computer Science, 45, 60–69, 2015.
  • [18] M. Y. Shih ve S.-S. Huang, “Characterizing Web users based on their required criteria”, 11th International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness (QSHINE), 422–426, 19-20 Ağustos, 2015.
  • [19] H. Zhang, W. Song, L. Liu, ve H. Wang, “The application of matrix Apriori algorithm in web log mining”, 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA), 264–268, 10-12 Mart, 2017.
  • [20] C. Shearer, “The CRISP-DM Model: The New Blueprint for Data Mining”, Journal of Data Warehousing, 5, 13–22, 2000.
  • [21] M. E. Balaban ve E. Kartal, Veri Madenciliği ve Makine Öğrenmesi Temel Algoritmaları ve R Dili ile Uygulamaları, 1, Çağlayan Kitabevi, İstanbul, Türkiye, 2015. [22] Z. Özen, E. Kartal ve İ. E. Emre, “Analysis of a Learning Management System by Using Google Analytics: A Case Study From Turkey”, Technology Management in Organizational and Societal Contexts, IGI Global, ABD, 198–220, 2018.
  • [23] Internet: Apache: The Apache HTTP Server Project, http://httpd.apache.org/, 23.01.2018.
  • [24] D. B. Rathod, “Customizable Web Log Mining from Web Server Log”, International Journal of Engineering Development and Research, 1 (2), 96–100, 2014.
  • [25] Internet: OpenRefine, http://openrefine.org/, 23.01.2018.
  • [26] Internet: RStudio, Take control of your R code, https://www.rstudio.com/products/rstudio/, 23.01.2018.
  • [27] Internet: r-project, R: The R Project for Statistical Computing, https://www.r-project.org/, 23.01.2018.
  • [28] M. Hashler, S. Chelluboina, K. Hornik, ve C. Buchta, “The arules R-Package Ecosystem: Analyzing Interesting Patterns from Large Transaction Data Sets”, Journal of Machine Learning Research, 12, 2021−2025, 2011.
  • [29] Internet: R. Calaway, Microsoft, ve S. Weston, foreach: Provides Foreach Looping Construct for R, https://cran.r-project.org/web/packages/foreach/foreach.pdf, 12.12.2017.
  • [30] Internet: R. Calaway, R. Analytics, ve S. Weston, doMC: Foreach Parallel Adaptor for “parallel”, https://cran.r-project.org/web/packages/doMC/doMC.pdf, 12.12.2017.
  • [31] H. Wickham, “The Split-Apply-Combine Strategy for Data Analysis”, Journal of Statistical Software, 40 (1), 1–29, 2011.
  • [32] Internet: O. Keyes, J. Jacobs, D. Schmidt, M. Greenaway, B. Rudis, A. Pinto, M. Khezrzadeh, P. Meilstrup, A. M. Costello, J. Bezanson, P. Meilstrup ve X. Jiang, urltools: Vectorised Tools for URL Handling and Parsing, https://cran.r-project.org/web/packages/urltools/urltools.pdf, 20.01.2018.
  • [33] R. Agrawal ve R. Srikant, “Fast Algorithms for Mining Association Rules”, Proceedings of the 20th International Conference on Very Large Data Bases, 487–499, 12-15 Eylül, 1994.
  • [34] G. Karahan Adalı, Veri Madenciliğinde Birliktelik Yöntemleri ve Müşteri İlişkileri Yönetimine İlişkin Bir Uygulama, Doktora Tezi, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, 2017.
  • [35] Y. Zhao, Post-mining of Association Rules: Techniques for Effective Knowledge Extraction, 1, PA: Information Science Reference, Hershey, ABD, 2009.
  • [36] C. Zhang ve S. Zhang, Association Rule Mining, Heidelberg: Springer Berlin Heidelberg, Berlin, ABD, 2002.
  • [37] P.-N. Tan, M. Steinbach ve V. Kumar, Introduction to Data Mining, 1, Pearson, Boston, ABD, 2005.

Details

Primary Language Turkish
Subjects Computer Science, Information System
Journal Section Articles
Authors

Veli Özcan BUDAK (Primary Author)
Kırklareli Üniversitesi, Bilgi İşlem Daire Başkanlığı
0000-0002-0960-0542
Türkiye


Elif KARTAL
İSTANBUL ÜNİVERSİTESİ, FEN BİLİMLERİ ENSTİTÜSÜ, ENFORMATİK (DR)
0000-0003-4667-1806
Türkiye


Sevinç GÜLSEÇEN
İSTANBUL ÜNİVERSİTESİ, FEN BİLİMLERİ ENSTİTÜSÜ, ENFORMATİK (DR)
0000-0001-8537-7111
Türkiye

Publication Date April 30, 2018
Published in Issue Year 2018, Volume 11, Issue 2

Cite

Bibtex @research article { gazibtd397142, journal = {Bilişim Teknolojileri Dergisi}, issn = {1307-9697}, eissn = {2147-0715}, address = {}, publisher = {Gazi University}, year = {2018}, volume = {11}, number = {2}, pages = {211 - 222}, doi = {10.17671/gazibtd.397142}, title = {Site-içi Aramalar ve Apriori Algoritması Kullanılarak Web Sitesi Ziyaretçilerinin İhtiyaç Tespitine Yönelik Bir Örnek Olay İncelemesi}, key = {cite}, author = {Budak, Veli Özcan and Kartal, Elif and Gülseçen, Sevinç} }
APA Budak, V. Ö. , Kartal, E. & Gülseçen, S. (2018). Site-içi Aramalar ve Apriori Algoritması Kullanılarak Web Sitesi Ziyaretçilerinin İhtiyaç Tespitine Yönelik Bir Örnek Olay İncelemesi . Bilişim Teknolojileri Dergisi , 11 (2) , 211-222 . DOI: 10.17671/gazibtd.397142
MLA Budak, V. Ö. , Kartal, E. , Gülseçen, S. "Site-içi Aramalar ve Apriori Algoritması Kullanılarak Web Sitesi Ziyaretçilerinin İhtiyaç Tespitine Yönelik Bir Örnek Olay İncelemesi" . Bilişim Teknolojileri Dergisi 11 (2018 ): 211-222 <https://dergipark.org.tr/en/pub/gazibtd/issue/36840/397142>
Chicago Budak, V. Ö. , Kartal, E. , Gülseçen, S. "Site-içi Aramalar ve Apriori Algoritması Kullanılarak Web Sitesi Ziyaretçilerinin İhtiyaç Tespitine Yönelik Bir Örnek Olay İncelemesi". Bilişim Teknolojileri Dergisi 11 (2018 ): 211-222
RIS TY - JOUR T1 - Site-içi Aramalar ve Apriori Algoritması Kullanılarak Web Sitesi Ziyaretçilerinin İhtiyaç Tespitine Yönelik Bir Örnek Olay İncelemesi AU - Veli Özcan Budak , Elif Kartal , Sevinç Gülseçen Y1 - 2018 PY - 2018 N1 - doi: 10.17671/gazibtd.397142 DO - 10.17671/gazibtd.397142 T2 - Bilişim Teknolojileri Dergisi JF - Journal JO - JOR SP - 211 EP - 222 VL - 11 IS - 2 SN - 1307-9697-2147-0715 M3 - doi: 10.17671/gazibtd.397142 UR - https://doi.org/10.17671/gazibtd.397142 Y2 - 2018 ER -
EndNote %0 Journal of Information Technologies Site-içi Aramalar ve Apriori Algoritması Kullanılarak Web Sitesi Ziyaretçilerinin İhtiyaç Tespitine Yönelik Bir Örnek Olay İncelemesi %A Veli Özcan Budak , Elif Kartal , Sevinç Gülseçen %T Site-içi Aramalar ve Apriori Algoritması Kullanılarak Web Sitesi Ziyaretçilerinin İhtiyaç Tespitine Yönelik Bir Örnek Olay İncelemesi %D 2018 %J Bilişim Teknolojileri Dergisi %P 1307-9697-2147-0715 %V 11 %N 2 %R doi: 10.17671/gazibtd.397142 %U 10.17671/gazibtd.397142
ISNAD Budak, Veli Özcan , Kartal, Elif , Gülseçen, Sevinç . "Site-içi Aramalar ve Apriori Algoritması Kullanılarak Web Sitesi Ziyaretçilerinin İhtiyaç Tespitine Yönelik Bir Örnek Olay İncelemesi". Bilişim Teknolojileri Dergisi 11 / 2 (April 2018): 211-222 . https://doi.org/10.17671/gazibtd.397142
AMA Budak V. Ö. , Kartal E. , Gülseçen S. Site-içi Aramalar ve Apriori Algoritması Kullanılarak Web Sitesi Ziyaretçilerinin İhtiyaç Tespitine Yönelik Bir Örnek Olay İncelemesi. Bilişim Teknolojileri Dergisi. 2018; 11(2): 211-222.
Vancouver Budak V. Ö. , Kartal E. , Gülseçen S. Site-içi Aramalar ve Apriori Algoritması Kullanılarak Web Sitesi Ziyaretçilerinin İhtiyaç Tespitine Yönelik Bir Örnek Olay İncelemesi. Bilişim Teknolojileri Dergisi. 2018; 11(2): 211-222.
IEEE V. Ö. Budak , E. Kartal and S. Gülseçen , "Site-içi Aramalar ve Apriori Algoritması Kullanılarak Web Sitesi Ziyaretçilerinin İhtiyaç Tespitine Yönelik Bir Örnek Olay İncelemesi", Bilişim Teknolojileri Dergisi, vol. 11, no. 2, pp. 211-222, Apr. 2018, doi:10.17671/gazibtd.397142