Research Article
BibTex RIS Cite

5G Teknolojisi için Çift Bantlı(28/38 GHz) Dikdörtgen Mikroşerit Anten Tasarımı

Year 2021, Volume: 14 Issue: 2, 171 - 181, 30.04.2021
https://doi.org/10.17671/gazibtd.813103

Abstract

Düşük atmosferik zayıflamaları nedeniyle 28 GHz ve 38 GHz frekansları 5G teknolojisi için önemli iki frekans bantları olarak bu çalışmanın temelini oluşturmuştur. Farklı besleme yöntemleri ve bant genişliği arttırma tekniklerinin kullanıldığı bu çalışmada dikdörtgen mikroşerit antenlerin HFSS programı ortamında benzetim çalışmaları yapılmıştır. Dikdörtgen yama üzerine açılan yarıklar ile çift bantta rezonansa giren dikdörtgen mikroşerit anten farklı besleme yöntemi ve ilave teknikler ile bant genişliği arttırılmıştır. 28 ve 38 GHz frekanslarında çalışan dikdörtgen mikroşerit antenin en yüksek bant genişliği, toprak yüzeyinin bozulmuş olduğu ve iki alttaşa sahip yakınlık kuplajlı besleme yapısı ile elde edilmiştir. 28 GHz ve 38 GHz frekansları için elde edilen bant genişlikleri sırasıyla 4.79 GHz ve 5.67 GHz olarak HFSS benzetim programıyla hesaplanmıştır. Dikdörtgen mikroşerit antenin çift frekans için kazanç değerleri ise sırasıyla 8.16 dB ve 7.06 dB olarak bulunmuştur.

References

  • Y. Yang, J. Xu, G. Shi, C.-X. Wang, 5G Wireless Systems 5G Wirel. Syst. Simul. Eval. Tech., New York, USA, Springer, 2017.
  • B. Kalra, D. Chauhan, "A Comparative Study of Mobile Wireless Communication Network: 1G to 5G", Int. J. Comput. Sci. Inf. Technol. Res. 2, 430–433, 2014.
  • Türk Telekom 5G+ Bilgi Notu Beyaz Kitap,Türkiye, 2018.
  • Internet: 5G integration with 4G,. https://digitalwholesalesolutions.com/2019/12/beginners-guideto 5g/, 05.06.2020.
  • 5G and spectrum different approaches, Cullen İnternational, Cullen İnternational, Lome, Rebuplic of Togo, 2019.
  • C. Seker, M.T. Güneser, T. Ozturk, "A Review of Millimeter Wave Communication for 5G", 2nd Int. Symp. Multidiscip. Stud. Innov. Technol.,1-5, 2018.
  • O.M. Haraz, M.M.M. Ali, S. Alshebeili, A. Sebak, "Design of a 28/38 GHz dual-band printed slot antenna for the future 5G mobile communication Networks", 2015 IEEE Int. Symp. Antennas Propag. Usn. Natl. Radio Sci. Meet., 1532–1533, 2015.
  • M. M. M. Ali, O. Haraz, S. Alshebeili, "Design of a dual-band printed slot antenna with utilizing a band rejection element for the 5G wireless applications" IEEE Int. Symp. Antennas Propag., 1865–1866., 2016.
  • J. L. Li, M. H. Luo, H. Liu, "Design of a slot antenna for future 5G wireless communication systems", Prog. Electromagn. Res. Symp, 739–741, 2017.
  • H. Ullah, F.A. Tahir, M.U. Khan, "Dual-band planar spiral monopole antenna for 28/38 GHz frequency bands", IEEE Int. Symp. Antennas Propag. Usn. Natl. Radio Sci. Meet., 761–762, 2017.
  • M.K.M. Amin, M.F. Mansor, N. Misran, M.T. Islam, "28/38GHz dual band slotted patch antenna with proximity-coupled feed for 5G communication", Int. Symp. Antennas Propag, 1–2, 2017.
  • S. S. Haider, F. A. Tahir, H. T. Chattha, Q. H. Abbasi, "Compact Polarization Diversity Antenna for 28/38 GHz Bands", 18th Int. Symp. Antenna Technol. Appl. Electromagn, 2018.
  • H. M. Marzouk, M. I. Ahmed, A. A. Shaalan, "A Novel Dual-band 28/38 GHz Slotted Microstip MIMO Antenna for 5G Mobile Applications", IEEE Int. Symp. Antennas Propag. Usn. Radio Sci. Meet., 607–608, 2019.
  • P. Moukala Mpele, F. Mbango, D. Konditi, "A Small Dual Band (28/38 GHz) Elliptical Antenna For 5G Applications with DGS", IJSRT, 2019.
  • C. Balanis, Antenna theory : analysis and design, 1982.
  • D. M. Pozar, Microwave engineering, Fourth edition, Hoboken, NJ : Wiley, 2012.

Dual Band (28/38 GHz) Rectangular Microstrip Antenna Design For 5G Technology

Year 2021, Volume: 14 Issue: 2, 171 - 181, 30.04.2021
https://doi.org/10.17671/gazibtd.813103

Abstract

28 GHz and 38 GHz frequencies due to low atmospheric attenuation formed the basis of this study as two important frequency bands for 5G technology. In this study, in which different feeding methods and bandwidth increasing techniques are used, simulation studies of rectangular microstrip antennas in the environment of the HFSS program are made. The rectangular microstrip antenna resonating in dual band with slots opened on the rectangular patch, the bandwidth has been increased with different feeding method and additional techniques. The highest bandwidth of the rectangular microstrip antenna operating at frequencies of 28GHz and 38 GHz was obtained with a proximity coupled feed structure with two substrates where defected ground structure. The bandwidths obtained for 28 GHz and 38 GHz frequencies were calculated as 4.79 GHz and 5.67 GHz respectively, with the HFSS simulation program. The gain values of the rectangular microstrip antenna for dual frequency were found to be 8.16 dB and 7.06 dB respectively.

References

  • Y. Yang, J. Xu, G. Shi, C.-X. Wang, 5G Wireless Systems 5G Wirel. Syst. Simul. Eval. Tech., New York, USA, Springer, 2017.
  • B. Kalra, D. Chauhan, "A Comparative Study of Mobile Wireless Communication Network: 1G to 5G", Int. J. Comput. Sci. Inf. Technol. Res. 2, 430–433, 2014.
  • Türk Telekom 5G+ Bilgi Notu Beyaz Kitap,Türkiye, 2018.
  • Internet: 5G integration with 4G,. https://digitalwholesalesolutions.com/2019/12/beginners-guideto 5g/, 05.06.2020.
  • 5G and spectrum different approaches, Cullen İnternational, Cullen İnternational, Lome, Rebuplic of Togo, 2019.
  • C. Seker, M.T. Güneser, T. Ozturk, "A Review of Millimeter Wave Communication for 5G", 2nd Int. Symp. Multidiscip. Stud. Innov. Technol.,1-5, 2018.
  • O.M. Haraz, M.M.M. Ali, S. Alshebeili, A. Sebak, "Design of a 28/38 GHz dual-band printed slot antenna for the future 5G mobile communication Networks", 2015 IEEE Int. Symp. Antennas Propag. Usn. Natl. Radio Sci. Meet., 1532–1533, 2015.
  • M. M. M. Ali, O. Haraz, S. Alshebeili, "Design of a dual-band printed slot antenna with utilizing a band rejection element for the 5G wireless applications" IEEE Int. Symp. Antennas Propag., 1865–1866., 2016.
  • J. L. Li, M. H. Luo, H. Liu, "Design of a slot antenna for future 5G wireless communication systems", Prog. Electromagn. Res. Symp, 739–741, 2017.
  • H. Ullah, F.A. Tahir, M.U. Khan, "Dual-band planar spiral monopole antenna for 28/38 GHz frequency bands", IEEE Int. Symp. Antennas Propag. Usn. Natl. Radio Sci. Meet., 761–762, 2017.
  • M.K.M. Amin, M.F. Mansor, N. Misran, M.T. Islam, "28/38GHz dual band slotted patch antenna with proximity-coupled feed for 5G communication", Int. Symp. Antennas Propag, 1–2, 2017.
  • S. S. Haider, F. A. Tahir, H. T. Chattha, Q. H. Abbasi, "Compact Polarization Diversity Antenna for 28/38 GHz Bands", 18th Int. Symp. Antenna Technol. Appl. Electromagn, 2018.
  • H. M. Marzouk, M. I. Ahmed, A. A. Shaalan, "A Novel Dual-band 28/38 GHz Slotted Microstip MIMO Antenna for 5G Mobile Applications", IEEE Int. Symp. Antennas Propag. Usn. Radio Sci. Meet., 607–608, 2019.
  • P. Moukala Mpele, F. Mbango, D. Konditi, "A Small Dual Band (28/38 GHz) Elliptical Antenna For 5G Applications with DGS", IJSRT, 2019.
  • C. Balanis, Antenna theory : analysis and design, 1982.
  • D. M. Pozar, Microwave engineering, Fourth edition, Hoboken, NJ : Wiley, 2012.
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Murat Demirci

Seda Ermıs

Publication Date April 30, 2021
Submission Date October 19, 2020
Published in Issue Year 2021 Volume: 14 Issue: 2

Cite

APA Demirci, M., & Ermıs, S. (2021). 5G Teknolojisi için Çift Bantlı(28/38 GHz) Dikdörtgen Mikroşerit Anten Tasarımı. Bilişim Teknolojileri Dergisi, 14(2), 171-181. https://doi.org/10.17671/gazibtd.813103