Research Article
BibTex RIS Cite

Karmaşık Ortamlarda YOLO ve Transformer Tabanlı Nesne Tespit Modelleri ile Askeri Uçak Tespiti

Year 2025, Volume: 18 Issue: 1, 85 - 97, 31.01.2025
https://doi.org/10.17671/gazibtd.1549034

Abstract

Bilgisayarla görme ve derin öğrenme teknikleri, savunma teknolojileri de dahil olmak üzere çeşitli alanlardaki nesne algılama görevlerinde yaygın olarak uygulanmaktadır. Savaş uçaklarının doğru ve verimli bir şekilde tespit edilmesi, hava savunma sistemlerinin güçlendirilmesinde ve etkili stratejik karar alma süreçlerinin desteklenmesinde kritik bir rol oynamaktadır. Bu çalışmada, 43 uçak modelini kapsayan 19.514 görüntüden oluşan bir veri kümesi kullanılarak YOLOv7, YOLOv8 ve RT-DETR modellerinin savaş uçaklarını tespit etme performansı değerlendirilmektedir. Veri kümesi, çeşitli açılardan ve kentsel, kırsal ve kıyı alanları gibi farklı arka planlardan çekilen görüntüleri içermekte ve gerçekçi test koşulları sağlamaktadır. Bununla birlikte, F14 ve F16 gibi belirli uçak modellerinin diğerlerine göre daha fazla temsil edildiği ve model genellemesini etkileyebilecek sınıf dengesizliği gözlemlenmiştir. Bu zorlukların üstesinden gelmek için hiperparametreler optimize edilmiş ve ortalama Ortalama Hassasiyet (mAP) ve geri çağırma dahil olmak üzere performans ölçütleri analiz edilmiştir. Deneysel sonuçlar, YOLOv8'in %94 mAP ve %88,1 geri çağırma, YOLOv7'nin %90,2 mAP ve %82,7 geri çağırma değerlerine ulaştığını, RT-DETR'nin ise %92,7 mAP ve %90,4 geri çağırma ile tutarlı bir performans sergilediğini göstermektedir. Bu bulgular, değerlendirilen modellerin güçlü yönlerini ve kısıtlamalarını vurgulamakta ve savunma uygulamalarında tespit sistemlerinin iyileştirilmesi için çıkarımlar sağlamaktadır.

References

  • K. Bayoudh, R. Knani, F. Hamdaoui, A. Mtibaa, “A survey on deep multimodal learning for computer vision: advances, trends, applications, and datasets”, The Visual Computer, 38(8), 2939-2970, 2022.
  • A. A. Khan, A. A. Laghari, S. A. Awan, “Machine learning in computer vision: a review”, EAI Endorsed Transactions on Scalable Information Systems, 8(32), 2021.
  • J. Zhao, R. Masood, S. Seneviratne, “A review of computer vision methods in network security”, IEEE Communications Surveys & Tutorials, 23(3), 1838-1878, 2021.
  • E. Dilek, M. Dener, “Computer vision applications in intelligent transportation systems: a survey”, Sensors, 23(6), 2938, 2023.
  • R. Szeliski, Computer Vision: Algorithms and Applications, Springer Nature, 2022.
  • S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, D. Terzopoulos, “Image segmentation using deep learning: A survey”,IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(7), 3523-3542, 2022.
  • W. Chen, Y. Li, Z. Tian, F. Zhang, “2D and 3D object detection algorithms from images: A Survey”, Array, 100305, 2023.
  • X. Zhuang, D. Li, Y. Wang, K. Li, “Military target detection method based on EfficientDet and Generative Adversarial Network”, Engineering Applications of Artificial Intelligence, 132, 107896, 2024.
  • S. Khalid, H. M. Oqaibi, M. Aqib, Y. Hafeez, “Small pests detection in field crops using deep learning object detection”, Sustainability, 15(8), 6815, 2023.
  • M. Abdel-Aty, Y. Wu, O. Zheng, J. Yuan, “Using closed-circuit television cameras to analyze traffic safety at intersections based on vehicle key points detection”, Accident Analysis & Prevention, 176, 106794, 2022.
  • J. Liu, Y. Jin, “A comprehensive survey of robust deep learning in computer vision”, Journal of Automation and Intelligence, 2023.
  • K. Roopa, T. V. Rama Murthy, P. C. Prasanna Raj, “Neural network classifier for fighter aircraft model recognition”, Journal of Intelligent Systems, 27(3), 447-463, 2018.
  • H. Zhu, H. Lung, N. Lin, “Carrier-based aircraft detection on flight deck of aircraft carrier with simulated 3-D model by deep neural network”, 3rd International Conference on Computer Science and Software Engineering, 96–101, May 2020.
  • Q. Liu, X. Xiang, Y. Wang, Z. Luo, F. Fang, “Aircraft detection in remote sensing image based on corner clustering and deep learning”, Engineering Applications of Artificial Intelligence, 87, 103333, 2020.
  • W. Ma, H. Chen, Y. Zhang, “An improved YOLOv3 model for aircraft detection in remote sensing images”, IEEE Access, 8, 120129-120138, 2020.
  • Y. Yang, G. Xie, Y. Qu, “Real-time detection of aircraft objects in remote sensing images based on improved YOLOv4”, 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), 1156–1164, March 2021.
  • Q. Wu, D. Feng, C. Cao, X. Zeng, Z. Feng, J. Wu, Z. Huang, “Improved mask R-CNN for aircraft detection in remote sensing images”, Sensors, 21(8), 2618, 2021.
  • L. Zhou, H. Yan, Y. Shan, C. Zheng, Y. Liu, X. Zuo, B. Qiao, “Aircraft detection for remote sensing images based on deep convolutional neural networks”, Journal of Electrical and Computer Engineering, 2021(1), 4685644, 2021.
  • M. Liu, Q. Hu, C. Wang, T. Tian, W. Chen, “Daff-Net: Dual attention feature fusion network for aircraft detection in remote sensing images”, 2021 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 4196–4199, July 2021.
  • L. Zhou, L. Zhang, N. Konz, “Computer vision techniques in manufacturing”, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 53(1), 105–117, 2022.
  • E. Kiyak, G. Unal, “Small aircraft detection using deep learning”, Aircraft Engineering and Aerospace Technology, 93(4), 671–681, 2021.
  • H. M. A. Mohammed, M. Polat, A. A. Tahlıl, İ. Y. Özbek, “Multi-scale aircraft detection from satellite images”, Erzincan University Journal of Science and Technology, 14(1), 322–330, 2021.
  • Y. Wang, T. Wang, X. Zhou, W. Cai, R. Liu, M. Huang, et al., “TransEffiDet: aircraft detection and classification in aerial images based on EfficientDet and transformer”, Computational Intelligence and Neuroscience, 2262549, 2022.
  • P. Gupta, B. Pareek, G. Singal, D. V. Rao, “Edge device based military vehicle detection and classification from UAV”, Multimedia Tools and Applications, 81(14), 19813–19834, 2022.
  • A. D. W. Sumari, D. E. Adinandra, A. R. Syulistyo, S. Lovrencic, “Intelligent Military Aircraft Recognition and Identification to Support Military Personnel on the Air Observation Operation”, International Journal on Advanced Science, Engineering, and Information Technology (IJASEIT), 6(Accepted for Publication), 2022.
  • T. Wang, X. Zeng, C. Cao, W. Li, Z. Feng, J. Wu, et al., “CGC-NET: Aircraft Detection in Remote Sensing Images Based on Lightweight Convolutional Neural Network”, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 2805–2815, 2022.
  • S. Lou, J. Yu, Y. Xi, X. Liao, “Aircraft target detection in remote sensing images based on improved YOLOv5”, IEEE Access, 10, 5184–5192, 2022.
  • W. Liu, J. Tian, T. Tian, “YOLM: A remote sensing aircraft detection model”, IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium, 1708–1711, July 2022.
  • B. Azam, M. J. Khan, F. A. Bhatti, A. R. M. Maud, S. F. Hussain, A. J. Hashmi, K. Khurshid, “Aircraft detection in satellite imagery using deep learning-based object detectors”, Microprocessors and Microsystems, 94, 104630, 2022.
  • P. Benjamin, B. Benjamin, G. Dimitri, S. Gérard, E. Eric, “Oriented aircraft object detector using Scaled YOLOv4 on very high resolution satellite and synthetic datasets”, 2023 Joint Urban Remote Sensing Event (JURSE), 1–4, May 2023.
  • Z. Liu, Y. Gao, Q. Du, M. Chen, W. Lv, “YOLO-extract: Improved YOLOv5 for aircraft object detection in remote sensing images”, IEEE Access, 11, 1742–1751, 2023.
  • F. Zhou, H. Deng, Q. Xu, X. Lan, “CNTR-YOLO: Improved YOLOv5 Based on ConvNext and Transformer for Aircraft Detection in Remote Sensing Images”, Electronics, 12(12), 2671, 2023.
  • M. Zhu, E. Kong, “Multi-Scale Fusion Uncrewed Aerial Vehicle Detection Based on RT-DETR”, Electronics, 13(8), 1489, 2024.
  • A. Kumar, S. Singh, “AIR-SCAN: Aircraft Identification and Recognition using Deep Learning Scanning”, 2024 11th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), 1–6, March 2024.
  • K. He, X. Zhang, S. Ren, J. Sun, “Deep residual learning for image recognition”, Proceedings of the IEEE conference on computer vision and pattern recognition, 770–778, 2016.
  • R. Girshick, J. Donahue, T. Darrell, J. Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation”, Proceedings of the IEEE conference on computer vision and pattern recognition, 580–587, 2014.
  • J. Redmon, S. Divvala, R. Girshick, A. Farhadi, “You only look once: Unified, real-time object detection”, Proceedings of the IEEE conference on computer vision and pattern recognition, 779–788, 2016.
  • A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, et al., “Attention is all you need”, Advances in neural information processing systems, 5998–6008, 2017.
  • J. H. Kim, N. Kim, C. S. Won, “High-speed drone detection based on yolo-v8”, ICASSP 2023–2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1–2, June 2023.
  • S. K. Shandilya, A. Srivastav, K. Yemets, A. Datta, A. K. Nagar, “YOLO-based segmented dataset for drone vs. bird detection for deep and machine learning algorithms”, Data in Brief, 50, 109355, 2023.
  • S. Patil, S. M. Jaybhaye, M. M. Khalifa, S. Kharche, A. Khatib, A. Kshirsagar, “Drone detection using YOLO”, AIP Conference Proceedings, 2938(1), December 2023.
  • A. Coluccia, A. Fascista, A. Schumann, L. Sommer, A. Dimou, D. Zarpalas, et al., “Drone vs. bird detection: Deep learning algorithms and results from a grand challenge”, Sensors, 21(8), 2824, 2021.
  • N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, S. Zagoruyko, “End-to-end object detection with transformers”, European Conference on Computer Vision (ECCV), 213–229, 2020.
  • Z. Sun, S. Cao, Y. Yang, K. M. Kitani, “Rethinking transformer-based set prediction for object detection”, Proceedings of the IEEE/CVF International Conference on Computer Vision, 3611–3620, 2021.
  • R. u, D. Wunsch, “Survey of clustering algorithms”, IEEE Transactions on Neural Networks, 16(3), 645–678, 2005.
  • T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, et al., “Microsoft COCO: Common objects in context”, Computer Vision – ECCV 2014, 740–755, 2014.
  • N. Dalal, B. Triggs, “Histograms of oriented gradients for human detection”, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), 886–893, June 2005.
  • S. Ren, K. He, R. Girshick, J. Sun, “Faster R-CNN: Towards real-time object detection with region proposal networks”, Advances in Neural Information Processing Systems, 28, 2015.
  • J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, Y. Wei, “Deformable convolutional networks”, Proceedings of the IEEE International Conference on Computer Vision, 764–773, 2017.
  • S. J. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Pearson, 2016.
  • C. M. Bishop, N. M. Nasrabadi, Pattern Recognition and Machine Learning, Vol. 4(4), Springer, New York, 2006.
  • T. Hastie, R. Tibshirani, J. H. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, New York, 2009.
  • D. G. Lowe, “Distinctive image features from scale-invariant keypoints”, International Journal of Computer Vision, 60, 91–110, 2004.
  • Y. LeCun, Y. Bengio, G. Hinton, “Deep learning”, Nature, 521(7553), 436–444, 2015.
  • C. Cortes, V. Vapnik, “Support-vector networks”, Machine Learning, 20(3), 273–297, 1995.
  • A. Krizhevsky, I. Sutskever, G. E. Hinton, “ImageNet classification with deep convolutional neural networks”, Communications of the ACM, 60(6), 84–90, 2017.
  • K. Simonyan, A. Zisserman, “Very deep convolutional networks for large-scale image recognition”, arXiv preprint arXiv:1409.1556, 2014.
  • J. Redmon, A. Farhadi, “YOLOv3: An incremental improvement”, arXiv preprint arXiv:1804.02767, 2018.
  • X. Zhu, W. Su, L. Lu, B. Li, X. Wang, J. Dai, “Deformable DETR: Deformable transformers for end-to-end object detection”, arXiv preprint arXiv:2010.04159, 2020.

Detection of Military Aircraft Using YOLO and Transformer-Based Object Detection Models in Complex Environments

Year 2025, Volume: 18 Issue: 1, 85 - 97, 31.01.2025
https://doi.org/10.17671/gazibtd.1549034

Abstract

Computer vision and deep learning techniques are widely applied in object detection tasks across various domains, including defense technologies. Accurate and efficient detection of military aircraft plays a critical role in strengthening air defense systems and enabling effective strategic decision-making. This study evaluates the performance of YOLOv7, YOLOv8, and RT-DETR models in detecting military aircraft using a dataset consisting of 19.514 images spanning 43 aircraft models. The dataset incorporates images captured from various angles and diverse backgrounds, such as urban, rural, and coastal areas, ensuring realistic testing conditions. However, class imbalance is observed, with certain aircraft models, such as the F14 and F16, being more represented than others, which may affect model generalization. To address these challenges, hyperparameters were optimized, and performance metrics, including mean Average Precision (mAP) and recall, were analyzed. Experimental results show that YOLOv8 achieved 94% mAP and 88.1% recall, YOLOv7 reached 90.2% mAP and 82.7% recall, while RT-DETR demonstrated consistent performance with 92.7% mAP and 90.4% recall. These findings highlight the strengths and limitations of the evaluated models and provide inferences for improving detection systems in defense applications.

References

  • K. Bayoudh, R. Knani, F. Hamdaoui, A. Mtibaa, “A survey on deep multimodal learning for computer vision: advances, trends, applications, and datasets”, The Visual Computer, 38(8), 2939-2970, 2022.
  • A. A. Khan, A. A. Laghari, S. A. Awan, “Machine learning in computer vision: a review”, EAI Endorsed Transactions on Scalable Information Systems, 8(32), 2021.
  • J. Zhao, R. Masood, S. Seneviratne, “A review of computer vision methods in network security”, IEEE Communications Surveys & Tutorials, 23(3), 1838-1878, 2021.
  • E. Dilek, M. Dener, “Computer vision applications in intelligent transportation systems: a survey”, Sensors, 23(6), 2938, 2023.
  • R. Szeliski, Computer Vision: Algorithms and Applications, Springer Nature, 2022.
  • S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, D. Terzopoulos, “Image segmentation using deep learning: A survey”,IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(7), 3523-3542, 2022.
  • W. Chen, Y. Li, Z. Tian, F. Zhang, “2D and 3D object detection algorithms from images: A Survey”, Array, 100305, 2023.
  • X. Zhuang, D. Li, Y. Wang, K. Li, “Military target detection method based on EfficientDet and Generative Adversarial Network”, Engineering Applications of Artificial Intelligence, 132, 107896, 2024.
  • S. Khalid, H. M. Oqaibi, M. Aqib, Y. Hafeez, “Small pests detection in field crops using deep learning object detection”, Sustainability, 15(8), 6815, 2023.
  • M. Abdel-Aty, Y. Wu, O. Zheng, J. Yuan, “Using closed-circuit television cameras to analyze traffic safety at intersections based on vehicle key points detection”, Accident Analysis & Prevention, 176, 106794, 2022.
  • J. Liu, Y. Jin, “A comprehensive survey of robust deep learning in computer vision”, Journal of Automation and Intelligence, 2023.
  • K. Roopa, T. V. Rama Murthy, P. C. Prasanna Raj, “Neural network classifier for fighter aircraft model recognition”, Journal of Intelligent Systems, 27(3), 447-463, 2018.
  • H. Zhu, H. Lung, N. Lin, “Carrier-based aircraft detection on flight deck of aircraft carrier with simulated 3-D model by deep neural network”, 3rd International Conference on Computer Science and Software Engineering, 96–101, May 2020.
  • Q. Liu, X. Xiang, Y. Wang, Z. Luo, F. Fang, “Aircraft detection in remote sensing image based on corner clustering and deep learning”, Engineering Applications of Artificial Intelligence, 87, 103333, 2020.
  • W. Ma, H. Chen, Y. Zhang, “An improved YOLOv3 model for aircraft detection in remote sensing images”, IEEE Access, 8, 120129-120138, 2020.
  • Y. Yang, G. Xie, Y. Qu, “Real-time detection of aircraft objects in remote sensing images based on improved YOLOv4”, 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), 1156–1164, March 2021.
  • Q. Wu, D. Feng, C. Cao, X. Zeng, Z. Feng, J. Wu, Z. Huang, “Improved mask R-CNN for aircraft detection in remote sensing images”, Sensors, 21(8), 2618, 2021.
  • L. Zhou, H. Yan, Y. Shan, C. Zheng, Y. Liu, X. Zuo, B. Qiao, “Aircraft detection for remote sensing images based on deep convolutional neural networks”, Journal of Electrical and Computer Engineering, 2021(1), 4685644, 2021.
  • M. Liu, Q. Hu, C. Wang, T. Tian, W. Chen, “Daff-Net: Dual attention feature fusion network for aircraft detection in remote sensing images”, 2021 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 4196–4199, July 2021.
  • L. Zhou, L. Zhang, N. Konz, “Computer vision techniques in manufacturing”, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 53(1), 105–117, 2022.
  • E. Kiyak, G. Unal, “Small aircraft detection using deep learning”, Aircraft Engineering and Aerospace Technology, 93(4), 671–681, 2021.
  • H. M. A. Mohammed, M. Polat, A. A. Tahlıl, İ. Y. Özbek, “Multi-scale aircraft detection from satellite images”, Erzincan University Journal of Science and Technology, 14(1), 322–330, 2021.
  • Y. Wang, T. Wang, X. Zhou, W. Cai, R. Liu, M. Huang, et al., “TransEffiDet: aircraft detection and classification in aerial images based on EfficientDet and transformer”, Computational Intelligence and Neuroscience, 2262549, 2022.
  • P. Gupta, B. Pareek, G. Singal, D. V. Rao, “Edge device based military vehicle detection and classification from UAV”, Multimedia Tools and Applications, 81(14), 19813–19834, 2022.
  • A. D. W. Sumari, D. E. Adinandra, A. R. Syulistyo, S. Lovrencic, “Intelligent Military Aircraft Recognition and Identification to Support Military Personnel on the Air Observation Operation”, International Journal on Advanced Science, Engineering, and Information Technology (IJASEIT), 6(Accepted for Publication), 2022.
  • T. Wang, X. Zeng, C. Cao, W. Li, Z. Feng, J. Wu, et al., “CGC-NET: Aircraft Detection in Remote Sensing Images Based on Lightweight Convolutional Neural Network”, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 2805–2815, 2022.
  • S. Lou, J. Yu, Y. Xi, X. Liao, “Aircraft target detection in remote sensing images based on improved YOLOv5”, IEEE Access, 10, 5184–5192, 2022.
  • W. Liu, J. Tian, T. Tian, “YOLM: A remote sensing aircraft detection model”, IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium, 1708–1711, July 2022.
  • B. Azam, M. J. Khan, F. A. Bhatti, A. R. M. Maud, S. F. Hussain, A. J. Hashmi, K. Khurshid, “Aircraft detection in satellite imagery using deep learning-based object detectors”, Microprocessors and Microsystems, 94, 104630, 2022.
  • P. Benjamin, B. Benjamin, G. Dimitri, S. Gérard, E. Eric, “Oriented aircraft object detector using Scaled YOLOv4 on very high resolution satellite and synthetic datasets”, 2023 Joint Urban Remote Sensing Event (JURSE), 1–4, May 2023.
  • Z. Liu, Y. Gao, Q. Du, M. Chen, W. Lv, “YOLO-extract: Improved YOLOv5 for aircraft object detection in remote sensing images”, IEEE Access, 11, 1742–1751, 2023.
  • F. Zhou, H. Deng, Q. Xu, X. Lan, “CNTR-YOLO: Improved YOLOv5 Based on ConvNext and Transformer for Aircraft Detection in Remote Sensing Images”, Electronics, 12(12), 2671, 2023.
  • M. Zhu, E. Kong, “Multi-Scale Fusion Uncrewed Aerial Vehicle Detection Based on RT-DETR”, Electronics, 13(8), 1489, 2024.
  • A. Kumar, S. Singh, “AIR-SCAN: Aircraft Identification and Recognition using Deep Learning Scanning”, 2024 11th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), 1–6, March 2024.
  • K. He, X. Zhang, S. Ren, J. Sun, “Deep residual learning for image recognition”, Proceedings of the IEEE conference on computer vision and pattern recognition, 770–778, 2016.
  • R. Girshick, J. Donahue, T. Darrell, J. Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation”, Proceedings of the IEEE conference on computer vision and pattern recognition, 580–587, 2014.
  • J. Redmon, S. Divvala, R. Girshick, A. Farhadi, “You only look once: Unified, real-time object detection”, Proceedings of the IEEE conference on computer vision and pattern recognition, 779–788, 2016.
  • A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, et al., “Attention is all you need”, Advances in neural information processing systems, 5998–6008, 2017.
  • J. H. Kim, N. Kim, C. S. Won, “High-speed drone detection based on yolo-v8”, ICASSP 2023–2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1–2, June 2023.
  • S. K. Shandilya, A. Srivastav, K. Yemets, A. Datta, A. K. Nagar, “YOLO-based segmented dataset for drone vs. bird detection for deep and machine learning algorithms”, Data in Brief, 50, 109355, 2023.
  • S. Patil, S. M. Jaybhaye, M. M. Khalifa, S. Kharche, A. Khatib, A. Kshirsagar, “Drone detection using YOLO”, AIP Conference Proceedings, 2938(1), December 2023.
  • A. Coluccia, A. Fascista, A. Schumann, L. Sommer, A. Dimou, D. Zarpalas, et al., “Drone vs. bird detection: Deep learning algorithms and results from a grand challenge”, Sensors, 21(8), 2824, 2021.
  • N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, S. Zagoruyko, “End-to-end object detection with transformers”, European Conference on Computer Vision (ECCV), 213–229, 2020.
  • Z. Sun, S. Cao, Y. Yang, K. M. Kitani, “Rethinking transformer-based set prediction for object detection”, Proceedings of the IEEE/CVF International Conference on Computer Vision, 3611–3620, 2021.
  • R. u, D. Wunsch, “Survey of clustering algorithms”, IEEE Transactions on Neural Networks, 16(3), 645–678, 2005.
  • T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, et al., “Microsoft COCO: Common objects in context”, Computer Vision – ECCV 2014, 740–755, 2014.
  • N. Dalal, B. Triggs, “Histograms of oriented gradients for human detection”, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), 886–893, June 2005.
  • S. Ren, K. He, R. Girshick, J. Sun, “Faster R-CNN: Towards real-time object detection with region proposal networks”, Advances in Neural Information Processing Systems, 28, 2015.
  • J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, Y. Wei, “Deformable convolutional networks”, Proceedings of the IEEE International Conference on Computer Vision, 764–773, 2017.
  • S. J. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Pearson, 2016.
  • C. M. Bishop, N. M. Nasrabadi, Pattern Recognition and Machine Learning, Vol. 4(4), Springer, New York, 2006.
  • T. Hastie, R. Tibshirani, J. H. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, New York, 2009.
  • D. G. Lowe, “Distinctive image features from scale-invariant keypoints”, International Journal of Computer Vision, 60, 91–110, 2004.
  • Y. LeCun, Y. Bengio, G. Hinton, “Deep learning”, Nature, 521(7553), 436–444, 2015.
  • C. Cortes, V. Vapnik, “Support-vector networks”, Machine Learning, 20(3), 273–297, 1995.
  • A. Krizhevsky, I. Sutskever, G. E. Hinton, “ImageNet classification with deep convolutional neural networks”, Communications of the ACM, 60(6), 84–90, 2017.
  • K. Simonyan, A. Zisserman, “Very deep convolutional networks for large-scale image recognition”, arXiv preprint arXiv:1409.1556, 2014.
  • J. Redmon, A. Farhadi, “YOLOv3: An incremental improvement”, arXiv preprint arXiv:1804.02767, 2018.
  • X. Zhu, W. Su, L. Lu, B. Li, X. Wang, J. Dai, “Deformable DETR: Deformable transformers for end-to-end object detection”, arXiv preprint arXiv:2010.04159, 2020.
There are 59 citations in total.

Details

Primary Language English
Subjects Deep Learning, Artificial Intelligence (Other)
Journal Section Articles
Authors

Fatih Şengül 0000-0001-5865-7476

Kemal Adem 0000-0002-3752-7354

Publication Date January 31, 2025
Submission Date September 12, 2024
Acceptance Date January 8, 2025
Published in Issue Year 2025 Volume: 18 Issue: 1

Cite

APA Şengül, F., & Adem, K. (2025). Detection of Military Aircraft Using YOLO and Transformer-Based Object Detection Models in Complex Environments. Bilişim Teknolojileri Dergisi, 18(1), 85-97. https://doi.org/10.17671/gazibtd.1549034