Araştırma Makalesi
BibTex RIS Kaynak Göster

Yeşil Kapasite Kısıtlı Araç Rotalama Problemi: Bir Literatür Taraması

Yıl 2017, Cilt: 19 Sayı: 1, 345 - 366, 05.05.2017

Öz

Araç rotalama probleminin (ARP) amacı
merkezi bir depodan çeşitli konumlarda yer alan müşterilere benzer veya farklı
kapasitelere sahip araçlarla ürünleri dağıtmak için toplam seyahat uzaklık ve
sürelerini minimize etmektir. Diğer yandan, işletmeler yakıt tüketimin
azaltarak rakiplerine karşı maliyet avantajı elde etmek ve çevreye duyarlı
müşteriler açısından olumlu bir imaj oluşturmayı istemektedir. Araç rotalama
probleminin yeni bir çeşidi olan “yeşil araç rotalama problemi (YARP)” ise,
geleneksel yaklaşımdan farklı olarak yakıt tüketimi ve gaz emisyonu gibi
çevresel faktörleri dikkate alan bir rota tasarlamayı amaçlar. Yasal ve sosyal
çerçevede artan çevre duyarlılığı araç rotalama probleminde çevreyi etkileyen
faktörlerin ele alınmasını sağlamıştır. Böylece, sürdürülebilir dağıtım ağı
daha az enerji kullanılarak ve çevreye daha az zarar vererek oluşturulabilir. Bu
çalışmanın amacı son yıllarda akademik ve endüstriyel çevrelerde popülaritesi
giderek artan yeşil kapasite kısıtlı araç rotalama problemi (YKARP) için
kapsamlı bir literatür taraması sunmaktır. Literatür taramasının kapsamını,
2007-2016 yılları arasında yabancı dildeki dergilerde yayınlamış 57 adet makale
oluşturmaktadır. Bu literatür taramasının akademik çalışmalara sağlayacağı
başlıca faydalar (i) YKARP konusuna
odaklanan makaleler hakkında detaylı bir analizin sunulması, (ii) yakıt tüketimi ve gaz emisyonunu
etkileyen faktörlerin değerlendirilmesi, (iii)
YKARP için çözüm yöntemlerinin değerlendirilmesi, (iv) ileride yapılacak çalışmalar için çeşitli önerilerin
sunulmasıdır.

Kaynakça

  • Adiba, E., & Ahemd, H. A. (2014). Evolutionary Algorithm for the Bi-Objective Green Vehicle Routing Problem. International Journal of Scientific & Engineering Research, 5(9), 70-77.
  • Apaydin, O., & Gonullu, M. T. (2008). Emission control with route optimization in solid waste collection process: A case study. Sadhana, 33(2), 71-82.
  • Archetti, C., & Speranza, M. G. (2012). Vehicle routing problems with split deliveries. International Transactions in Operational Research, 19(1-2), 3-22.
  • Bektaş, T., & Laporte, G. (2011). The pollution-routing problem. Transportation Research Part B: Methodological, 45(8), 1232-1250.
  • Berbeglia, G., Cordeau, J. F., Gribkovskaia, I., & Laporte, G. (2007). Static pickup and delivery problems: a classification scheme and survey. Top, 15(1), 1-31.
  • Bigazzi, A., & Bertini, R. (2009). Adding green performance metrics to a transportation data archive. Transportation Research Record: Journal of the Transportation Research Board, (2121), 30-40.
  • Bing, X., de Keizer, M., Bloemhof-Ruwaard, J. M., & van der Vorst, J. G. (2014). Vehicle routing for the eco-efficient collection of household plastic waste. Waste management, 34(4), 719-729.
  • Ćirović, G., Pamučar, D., & Božanić, D. (2014). Green logistic vehicle routing problem: Routing light delivery vehicles in urban areas using a neuro-fuzzy model. Expert Systems with Applications, 41(9), 4245-4258.
  • Crainic, T. G., Mancini, S., Perboli, G., & Tadei, R. (2012). Impact of generalized travel costs on satellite location in the two-echelon vehicle routing problem. Procedia-Social and Behavioral Sciences, 39, 195-204.
  • Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management Science, 6(1), 80-91.
  • Demir, E., Bektaş, T., & Laporte, G. (2011). A comparative analysis of several vehicle emission models for road freight transportation. Transportation Research Part D: Transport and Environment, 16(5), 347-357.
  • Demir, E., Bektaş, T., & Laporte, G. (2012). An adaptive large neighborhood search heuristic for the pollution-routing problem. European Journal of Operational Research, 223(2), 346-359.
  • Demir, E., Bektaş, T., & Laporte, G. (2014a). The bi-objective pollution-routing problem. European Journal of Operational Research, 232(3), 464-478.
  • Demir, E., Bektaş, T., & Laporte, G. (2014b). A review of recent research on green road freight transportation. European Journal of Operational Research, 237(3), 775-793.
  • Eglese, R., & Black, D. (2010). Optimizing the routing of vehicles. 2010) Green Logistics: Improving the environmental sustainability of logistics, KoganPage, 215-228.
  • Ehmke, J. F., Campbell, A. M., & Thomas, B. W. (2016). Vehicle routing to minimize time-dependent emissions in urban areas. European Journal of Operational Research, 251, 478-494.
  • Eksioglu, B., Vural, A. V., & Reisman, A. (2009). The vehicle routing problem: A taxonomic review. Computers & Industrial Engineering, 57(4), 1472-1483. Erdoğan, S., & Miller-Hooks, E. (2012). A green vehicle routing problem. Transportation Research Part E: Logistics and Transportation Review, 48(1), 100-114.
  • Ericsson, E. (2001). Independent driving pattern factors and their influence on fuel-use and exhaust emission factors. Transportation Research Part D: Transport and Environment, 6(5), 325-345.
  • Fahimnia, B., Reisi, M., Paksoy, T., & Özceylan, E. (2013). The implications of carbon pricing in Australia: An industrial logistics planning case study. Transportation Research Part D: Transport and Environment, 18, 78-85.
  • Felipe, Á., Ortuño, M. T., Righini, G., & Tirado, G. (2014). A heuristic approach for the green vehicle routing problem with multiple technologies and partial recharges. Transportation Research Part E: Logistics and Transportation Review, 71, 111-128.
  • Figliozzi, M. (2010). Vehicle routing problem for emissions minimization. Transportation Research Record: Journal of the Transportation Research Board, (2197), 1-7.
  • Figliozzi, M. A. (2011). The impacts of congestion on time-definitive urban freight distribution networks CO2 emission levels: Results from a case study in Portland, Oregon. Transportation Research Part C: Emerging Technologies, 19(5), 766-778.
  • Franceschetti, A., Honhon, D., Van Woensel, T., Bektaş, T., & Laporte, G. (2013). The time-dependent pollution-routing problem. Transportation Research Part B: Methodological, 56, 265-293.
  • Gajanand, M. S., & Narendran, T. T. (2013). Green route planning to reduce the environmental impact of distribution. International Journal of Logistics Research and Applications, 16(5), 410-432.
  • Glock, C. H., & Kim, T. (2015). Coordinating a supply chain with a heterogeneous vehicle fleet under greenhouse gas emissions. The International Journal of Logistics Management, 26(3), 494-516.
  • Goeke, D., & Schneider, M. (2015). Routing a mixed fleet of electric and conventional vehicles. European Journal of Operational Research, 245(1), 81-99.
  • Hiermann, G., Puchinger, J., Ropke, S., & Hartl, R. F. (2016). The electric fleet size and mix vehicle routing problem with time windows and recharging stations. European Journal of Operational Research, 252(3), 995-1018.
  • Hsu, C. I., Hung, S. F., & Li, H. C. (2007). Vehicle routing problem with time-windows for perishable food delivery. Journal of Food Engineering, 80(2), 465-475.
  • Jabali, O., Woensel, T., & de Kok, A. G. (2012). Analysis of travel times and CO2 emissions in time‐dependent vehicle routing. Production and Operations Management, 21(6), 1060-1074.
  • Jovanović, A. D., Pamučar, D. S., & Pejčić-Tarle, S. (2014). Green vehicle routing in urban zones–A neuro-fuzzy approach. Expert Systems with Applications, 41(7), 3189-3203.
  • Kirby, H. R., Hutton, B., McQuaid, R. W., Raeside, R., & Zhang, X. (2000). Modelling the effects of transport policy levers on fuel efficiency and national fuel consumption. Transportation Research Part D: Transport and Environment, 5(4), 265-282.
  • Koç, Ç., Bektaş, T., Jabali, O., & Laporte, G. (2014). The fleet size and mix pollution-routing problem. Transportation Research Part B: Methodological, 70, 239-254.
  • Koç, Ç., Bektaş, T., Jabali, O., & Laporte, G. (2016). The impact of depot location, fleet composition and routing on emissions in city logistics. Transportation Research Part B: Methodological, 84, 81-102.
  • Koç, Ç., & Karaoglan, I. (2016). The green vehicle routing problem: A heuristic based exact solution approach. Applied Soft Computing, 39, 154-164.
  • Kopfer, H. W., Schönberger, J., & Kopfer, H. (2014). Reducing greenhouse gas emissions of a heterogeneous vehicle fleet. Flexible Services and Manufacturing Journal, 26(1-2), 221-248.
  • Kramer, R., Subramanian, A., Vidal, T., & Lucídio dos Anjos, F. C. (2015a). A matheuristic approach for the Pollution-Routing Problem. European Journal of Operational Research, 243(2), 523-539.
  • Kramer, R., Maculan, N., Subramanian, A., & Vidal, T. (2015b). A speed and departure time optimization algorithm for the pollution-routing problem. European Journal of Operational Research, 247(3), 782-787.
  • Kuo, Y. (2010). Using simulated annealing to minimize fuel consumption for the time-dependent vehicle routing problem. Computers & Industrial Engineering, 59(1), 157-165.
  • Kuo, Y., & Wang, C. C. (2011). Optimizing the VRP by minimizing fuel consumption. Management of Environmental Quality: An International Journal, 22(4), 440-450.
  • Küçükoğlu, İ., Ene, S., Aksoy, A., & Öztürk, N. (2015). A memory structure adapted simulated annealing algorithm for a green vehicle routing problem. Environmental Science and Pollution Research, 22(5), 3279-3297.
  • Kwon, Y. J., Choi, Y. J., & Lee, D. H. (2013). Heterogeneous fixed fleet vehicle routing considering carbon emission. Transportation Research Part D: Transport and Environment, 23, 81-89.
  • Laporte, G. (1992). The vehicle routing problem: An overview of exact and approximate algorithms. European Journal of Operational Research, 59(3), 345-358.
  • Laporte, G., Gendreau, M., Potvin, J. Y., & Semet, F. (2000). Classical and modern heuristics for the vehicle routing problem. International Transactions in Operational Research, 7(4‐5), 285-300.
  • Laporte, G. (2009). Fifty years of vehicle routing. Transportation Science, 43(4), 408-416.
  • Li, J. (2012). Vehicle routing problem with time windows for reducing fuel consumption. Journal of Computers, 7(12), 3020-3027.
  • Lin, C., Choy, K. L., Ho, G. T., Chung, S. H., & Lam, H. Y. (2014a). Survey of green vehicle routing problem: Past and future trends. Expert Systems with Applications, 41(4), 1118-1138.
  • Lin, C., Choy, K. L., Ho, G. T., & Ng, T. W. (2014b). A genetic algorithm-based optimization model for supporting green transportation operations. Expert Systems with Applications, 41(7), 3284-3296.
  • Liu, W. Y., Lin, C. C., Chiu, C. R., Tsao, Y. S., & Wang, Q. (2014). Minimizing the Carbon Footprint for the Time-Dependent Heterogeneous-Fleet Vehicle Routing Problem with Alternative Paths. Sustainability, 6(7), 4658-4684.
  • Maden, W., Eglese, R., & Black, D. (2010). Vehicle routing and scheduling with time-varying data: A case study. Journal of the Operational Research Society, 61(3), 515-522.
  • Montoya-Torres, J. R., Franco, J. L., Isaza, S. N., Jiménez, H. F., & Herazo-Padilla, N. (2015). A literature review on the vehicle routing problem with multiple depots. Computers & Industrial Engineering, 79, 115-129.
  • Norouzi, N., Sadegh-Amalnick, M., & Tavakkoli-Moghaddam, R. (2016). Modified particle swarm optimization in a time-dependent vehicle routing problem: minimizing fuel consumption. Optimization Letters, 1-14.
  • Park, Y., & Chae, J. (2014). A review of the solution approaches used in recent G-VRP (Green Vehicle Routing Problem). International Journal of Advanced Logistics, 3(1-2), 27-37.
  • Pradenas, L., Oportus, B., & Parada, V. (2013). Mitigation of greenhouse gas emissions in vehicle routing problems with backhauling. Expert Systems with Applications, 40(8), 2985-2991.
  • Qian, J., & Eglese, R. (2014). Finding least fuel emission paths in a network with time‐varying speeds. Networks, 63(1), 96-106.
  • Ramos, T. R. P., Gomes, M. I., & Barbosa-Póvoa, A. P. (2014). Planning a sustainable reverse logistics system: Balancing costs with environmental and social concerns. Omega, 48, 60-74.
  • Saberi, M., & Verbas, İ. Ö. (2012). Continuous approximation model for the vehicle routing problem for emissions minimization at the strategic level. Journal of Transportation Engineering, 138(11), 1368-1376.
  • Salimifard, K., & Raeesi, R. (2014). A green routing problem: optimising CO2 emissions and costs from a bi-fuel vehicle fleet. International Journal of Advanced Operations Management, 6(1), 27-57.
  • Schneider, M., Stenger, A., & Hof, J. (2015). An adaptive VNS algorithm for vehicle routing problems with intermediate stops. OR Spectrum, 37(2), 353-387.
  • Soysal, M., Bloemhof-Ruwaard, J. M., & Bektaş, T. (2015). The time-dependent two-echelon capacitated vehicle routing problem with environmental considerations. International Journal of Production Economics, 164, 366-378.
  • Suzuki, Y. (2011). A new truck-routing approach for reducing fuel consumption and pollutants emission. Transportation Research Part D: Transport and Environment, 16(1), 73-77.
  • Suzuki, Y., & Kabir, Q. S. (2015). Green Vehicle Routing for Small Motor Carriers. Transportation Journal, 54(2), 186-212.
  • Şahin, B., Yilmaz, H., Ust, Y., Guneri, A. F., & Gulsun, B. (2009). An approach for analysing transportation costs and a case study. European Journal of Operational Research, 193(1), 1-11.
  • Tajik, N., Tavakkoli-Moghaddam, R., Vahdani, B., & Mousavi, S. M. (2014). A robust optimization approach for pollution routing problem with pickup and delivery under uncertainty. Journal of Manufacturing Systems, 33(2), 277-286. Tavares, G., Zsigraiova, Z., Semiao, V., & da Graça Carvalho, M. (2008). A case study of fuel savings through optimisation of MSW transportation routes. Management of Environmental Quality: An International Journal, 19(4), 444-454.
  • Tavares, G., Zsigraiova, Z., Semiao, V., & Carvalho, M. D. G. (2009). Optimisation of MSW collection routes for minimum fuel consumption using 3D GIS modelling. Waste Management, 29(3), 1176-1185.
  • Treitl, S., Nolz, P. C., & Jammernegg, W. (2014). Incorporating environmental aspects in an inventory routing problem. A case study from the petrochemical industry. Flexible Services and Manufacturing Journal, 26(1-2), 143-169.
  • Ubeda, S., Arcelus, F. J., & Faulin, J. (2011). Green logistics at Eroski: A case study. International Journal of Production Economics, 131(1), 44-51.
  • Velázquez-Martínez, J. C., Fransoo, J. C., Blanco, E. E., & Valenzuela-Ocaña, K. B. (2016). A new statistical method of assigning vehicles to delivery areas for CO2 emissions reduction. Transportation Research Part D: Transport and Environment, 43, 133-144.
  • Xiao, Y., Zhao, Q., Kaku, I., & Xu, Y. (2012). Development of a fuel consumption optimization model for the capacitated vehicle routing problem. Computers & Operations Research, 39(7), 1419-1431.
  • Xiao, Y., & Konak, A. (2015). A simulating annealing algorithm to solve the green vehicle routing & scheduling problem with hierarchical objectives and weighted tardiness. Applied Soft Computing, 34, 372-388.
  • Wen, L., & Eglese, R. (2015). Minimum cost VRP with time-dependent speed data and congestion charge. Computers & Operations Research, 56, 41-50.
  • Zhang, S., Lee, C. K. M., Choy, K. L., Ho, W., & Ip, W. H. (2014). Design and development of a hybrid artificial bee colony algorithm for the environmental vehicle routing problem. Transportation Research Part D: Transport and Environment, 31, 85-99.
  • Zhang, Z., Wei, L., & Lim, A. (2015). An evolutionary local search for the capacitated vehicle routing problem minimizing fuel consumption under three-dimensional loading constraints. Transportation Research Part B: Methodological, 82, 20-35.
  • Zhu, X., Garcia-Diaz, A., Jin, M., & Zhang, Y. (2014). Vehicle fuel consumption minimization in routing over-dimensioned and overweight trucks in capacitated transportation networks. Journal of Cleaner Production, 85, 331-336.
Toplam 73 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Sedat Belbağ Bu kişi benim

Yayımlanma Tarihi 5 Mayıs 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 19 Sayı: 1

Kaynak Göster

APA Belbağ, S. (2017). Yeşil Kapasite Kısıtlı Araç Rotalama Problemi: Bir Literatür Taraması. Gazi Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi, 19(1), 345-366.
AMA Belbağ S. Yeşil Kapasite Kısıtlı Araç Rotalama Problemi: Bir Literatür Taraması. Gazi Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi. Nisan 2017;19(1):345-366.
Chicago Belbağ, Sedat. “Yeşil Kapasite Kısıtlı Araç Rotalama Problemi: Bir Literatür Taraması”. Gazi Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi 19, sy. 1 (Nisan 2017): 345-66.
EndNote Belbağ S (01 Nisan 2017) Yeşil Kapasite Kısıtlı Araç Rotalama Problemi: Bir Literatür Taraması. Gazi Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi 19 1 345–366.
IEEE S. Belbağ, “Yeşil Kapasite Kısıtlı Araç Rotalama Problemi: Bir Literatür Taraması”, Gazi Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, c. 19, sy. 1, ss. 345–366, 2017.
ISNAD Belbağ, Sedat. “Yeşil Kapasite Kısıtlı Araç Rotalama Problemi: Bir Literatür Taraması”. Gazi Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi 19/1 (Nisan 2017), 345-366.
JAMA Belbağ S. Yeşil Kapasite Kısıtlı Araç Rotalama Problemi: Bir Literatür Taraması. Gazi Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi. 2017;19:345–366.
MLA Belbağ, Sedat. “Yeşil Kapasite Kısıtlı Araç Rotalama Problemi: Bir Literatür Taraması”. Gazi Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi, c. 19, sy. 1, 2017, ss. 345-66.
Vancouver Belbağ S. Yeşil Kapasite Kısıtlı Araç Rotalama Problemi: Bir Literatür Taraması. Gazi Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi. 2017;19(1):345-66.