IMPACTS of SUPERSONIC and SUBSONIC AMMUNITION on GUNSHOT RESIDUE DISTRIBUTION
Year 2024,
, 27 - 62, 29.05.2024
Gökhan İbrahim Öğünç
,
Nilgün Şen
,
Bayram Yüksel
,
Emre Oğur
,
Hatice İşcan
Abstract
In incidents where firearms are involved, the determination of the firing distance is one of the basic steps of the analysis aimed at determining the origin of the incident with Forensic Shot Analysis studies. Shot residues consist of partially burned and unburnt powder grains, gunpowder gas, capsule residues and inorganic and organic residues. As a result of determining the presence and density of shot residues on the target, the distance from which the shot was fired can be determined.
The pattern and density of shot residues exhibit a direct correlation with the specifications of firearms and ammunition. The intended use and traits of the weapon affect the properties of the ammunition. An instance of specialised ammunition is subsonic cartridges which have lower powder burn rates and amounts compared to supersonic cartridges.
To ensure accurate gunshot residue analysis, gunshot residue density and pattern from reference test-fires are necessary. The key factors affecting the GSR analysis are the type of weapon and ammunition used during test-fires, which should closely match those used in the incident. Any variation in these variables can reduce the precision of the residue analysis.
In the study, an independent T-test was applied to determine whether there is a significant difference between the gunshot residue density on the target during test firing of 9×19mm diameter and type Supersonic and Subsonic cartridges with semi-automatic pistols at distances of 0cm, 15cm, 30cm, 60cm and 100cm.
It was determined that a significant difference existed between supersonic and subsonic cartridges in the density and patterns of gunshot residue on the target resulting from shots fired at the mentioned distances.
References
- Akçay, M. (2017). Internal And Transitional Ballistic Solution for Spherical and Perforated Propellants And Verification With Experimental Results. Isı Bilimi ve Tekniği Dergisi, 37(1), s. 35-44.
- Dillon, Jr., S. (1990). The Sodium Rhodizonate Test: A Chemically Specific Chromophoric Test for Lead in Gunshot Residues. AFTE Journal, 22(3), s. 251-256.
- DiMaio, V. (2016). Gunshot Wounds: Practical Aspects of Firearms, Ballistics, and Forensic Techniques (3 b.). Boca Raton: CRC Press.
- Elkins, K. (2019). Introduction to Forensic Chemistry. Boca Raton: CRC Press.
- Feeneya, W., Pyl, C., Bell, S., and Trejos, T. (2020). Trends in Composition, Collection, Persistence, and Analysis of IGSR and OGSR: A Review. Forensic Chemistry, 19, s. 1-16.
- Feigl, F., & Suter, H. (1942). Analytical Use of Sodium Rhodizonate. Ind. Eng. Chem. Anal. Ed. 14 (10), pp 840-842.
- Heard, B. J. (2008). Handbook of Firearms and Ballistics Examining and Interpreting Forensic Evidence Second Edition. Wiley-Blackwell.
- Hueske, E. (2016). Practical Analysis and Reconstruction of Shooting Incidents. Boca Raton: CRC Press.
- Monturo, C. (2019). Forensic Firearm Examination. New York: Academic Press
- Mozayani, A., & Noziglia, C. (2006). The Forensic Laboratory Handbook Procedures and Practice. Humana Press.
- Pyl, C., Ovide, O., Ho, M., Yuksel, B., & Trejos, T. (2019). Spectrochemical Mapping Using Laser Induced Breakdown Spectroscopy as a More Objective Approach to Shooting Distance Determination. Spectrochimica Acta Part B: Atomic Spectroscopy, 152, s. 93-101.
- Savage, K., Clark, L., & Tilstone, W. (2006). Forensic Science an Encyclopedia of History, Methods, and Techniques. CLIO: ABC.
- Schwoeble, A., & Exline, D. (2000). Current Methods in Forensic Gunshot Residue Analysis. Boca Raton: CRC Press.
- Shrivastava, P., Jain, V., & Nagpal, S. (2021). Gunshot Residue Detection Technologies—a Review. Egyptian Journal of Forensic Sciences, 11(11), s. 1-21.
- Von Rentzell, N. (2018). The “Lipstick Round”: An Evaluation of Total Synthetic Jacketed Bullets, a New Lead-free Primer, and Their Effects on Firearms Identification. AFTE Journal, 50(4), s. 198-211.
- Wallace, J. S. (2018). Chemical Analysis of Firearms, Ammunition, and Gunshot Residue (2 b.). Boca Raton: CRC Press.
- Yüksel, B., Ho, M., Ovide, O., Pyl, C., & Trejos, T. (2019). Infrared Imaging As A Complementary Aid in Estimating Muzzle-to-Target Shooting Distance: An Application on Dark, Patterned and Bloody Sample. Turkiye Klinikleri Journal of Forensic Medicine and Forensic Sciences, 16(2), s. 73-80.
- Yüksel, B., Şen, N., Ögünç, G., & Erdoğan, A. (2022). Elemental Profiling of Toxic and Modern Primers Using ICP-MS, SEM-EDS, and XPS: an Application in Firearm Discharge Residue Investigation. Australian Journal of Forensic Sciences, 55(4), s. 529-546.
SÜPERSONİK ve SUBSONİK MÜHİMMATIN ATIŞ ARTIKLARININ DAĞILIMI ÜZERİNDEKİ ETKİLERİ
Year 2024,
, 27 - 62, 29.05.2024
Gökhan İbrahim Öğünç
,
Nilgün Şen
,
Bayram Yüksel
,
Emre Oğur
,
Hatice İşcan
Abstract
Ateşli silahların kullanıldığı olaylarda, atış mesafesinin tespit edilmesi, Adli Atış Analizi çalışmaları ile olayın orijinin tespit edilmesine yönelik analizlerin temel adımlarından birisidir. Atış artıkları, kısmen yanmış ve yanmamış barut taneleri, barut gazı, kapsül eczası artıkları ile birlikte inorganik ve organik kalıntılardan oluşmaktadır. Hedef üzerinde atış artıklarının varlığı ve yoğunluğunun tespit edilmesi neticesinde atışın hangi mesafeden yapıldığı tespit edilebilmektedir.
Atış artıklarının yoğunluğu ve deseni doğrudan ateşli silah ve mühimmat özellikleriyle ilgilidir. Mühimmat özellikleri kullanım amacına ve silah özelliklerine göre değişmektedir. Ses üstü fişeklere kıyasla daha düşük barut yanma oranlarına ve miktarlarına sahip olan ses altı fişekler, özel amaçlı mühimmatlara bir örnek olarak verilebilir.
Atış artığı analizini doğru şekilde yapılabilmesi için referans test atışlarından elde edilen atış artığı yoğunluğu ve deseni gereklidir. GSR analizini etkileyen kilit faktörler, olayda kullanılanlarla yakından eşleşmesi gereken test atışları sırasında kullanılan silah ve mühimmat türüdür. Bu değişkenlerdeki herhangi bir farklılık kalıntı analizinin hassasiyetini azaltabilir.
Çalışmada, 9×19mm çap ve tipindeki Süpersonik ve Subsonik fişeklerin yarı otomatik tabancalarla 0cm, 15cm, 30cm, 60cm ve 100cm mesafelerde test atışları sırasında hedef üzerindeki atış artığı yoğunluğu arasında anlamlı bir fark olup olmadığını belirlemek için bağımsız T-testi uygulanmıştır.
Test sonucunda süpersonik ve subsonik fişekler arasında, söz konusu mesafelerde yapılan atışlar sonucunda hedef üzerinde oluşan barut artığı yoğunluğu ve desenlerinde önemli bir fark olduğu tespit edilmiştir.
Supporting Institution
Jandarma ve Sahil Güvenlik Akademisi 22B4 Numaralı Bilimsel Araştırma Projesi kapsamında desteklenmiştir.
References
- Akçay, M. (2017). Internal And Transitional Ballistic Solution for Spherical and Perforated Propellants And Verification With Experimental Results. Isı Bilimi ve Tekniği Dergisi, 37(1), s. 35-44.
- Dillon, Jr., S. (1990). The Sodium Rhodizonate Test: A Chemically Specific Chromophoric Test for Lead in Gunshot Residues. AFTE Journal, 22(3), s. 251-256.
- DiMaio, V. (2016). Gunshot Wounds: Practical Aspects of Firearms, Ballistics, and Forensic Techniques (3 b.). Boca Raton: CRC Press.
- Elkins, K. (2019). Introduction to Forensic Chemistry. Boca Raton: CRC Press.
- Feeneya, W., Pyl, C., Bell, S., and Trejos, T. (2020). Trends in Composition, Collection, Persistence, and Analysis of IGSR and OGSR: A Review. Forensic Chemistry, 19, s. 1-16.
- Feigl, F., & Suter, H. (1942). Analytical Use of Sodium Rhodizonate. Ind. Eng. Chem. Anal. Ed. 14 (10), pp 840-842.
- Heard, B. J. (2008). Handbook of Firearms and Ballistics Examining and Interpreting Forensic Evidence Second Edition. Wiley-Blackwell.
- Hueske, E. (2016). Practical Analysis and Reconstruction of Shooting Incidents. Boca Raton: CRC Press.
- Monturo, C. (2019). Forensic Firearm Examination. New York: Academic Press
- Mozayani, A., & Noziglia, C. (2006). The Forensic Laboratory Handbook Procedures and Practice. Humana Press.
- Pyl, C., Ovide, O., Ho, M., Yuksel, B., & Trejos, T. (2019). Spectrochemical Mapping Using Laser Induced Breakdown Spectroscopy as a More Objective Approach to Shooting Distance Determination. Spectrochimica Acta Part B: Atomic Spectroscopy, 152, s. 93-101.
- Savage, K., Clark, L., & Tilstone, W. (2006). Forensic Science an Encyclopedia of History, Methods, and Techniques. CLIO: ABC.
- Schwoeble, A., & Exline, D. (2000). Current Methods in Forensic Gunshot Residue Analysis. Boca Raton: CRC Press.
- Shrivastava, P., Jain, V., & Nagpal, S. (2021). Gunshot Residue Detection Technologies—a Review. Egyptian Journal of Forensic Sciences, 11(11), s. 1-21.
- Von Rentzell, N. (2018). The “Lipstick Round”: An Evaluation of Total Synthetic Jacketed Bullets, a New Lead-free Primer, and Their Effects on Firearms Identification. AFTE Journal, 50(4), s. 198-211.
- Wallace, J. S. (2018). Chemical Analysis of Firearms, Ammunition, and Gunshot Residue (2 b.). Boca Raton: CRC Press.
- Yüksel, B., Ho, M., Ovide, O., Pyl, C., & Trejos, T. (2019). Infrared Imaging As A Complementary Aid in Estimating Muzzle-to-Target Shooting Distance: An Application on Dark, Patterned and Bloody Sample. Turkiye Klinikleri Journal of Forensic Medicine and Forensic Sciences, 16(2), s. 73-80.
- Yüksel, B., Şen, N., Ögünç, G., & Erdoğan, A. (2022). Elemental Profiling of Toxic and Modern Primers Using ICP-MS, SEM-EDS, and XPS: an Application in Firearm Discharge Residue Investigation. Australian Journal of Forensic Sciences, 55(4), s. 529-546.