Research Article
BibTex RIS Cite

Kayıcı Teknelerde İleri Hızın Yan Ötelenme Kuvveti ve Savrulma Momentine Olan Etkisi

Year 2021, , 192 - 208, 31.12.2021
https://doi.org/10.54926/gdt.1015362

Abstract

Bir çok alanda yaygın bir şekilde kullanılmakta olan kayıcı tekneler sakin suda seyretseler dahi deplasman tipi teknelerden farklı bir hidrodinamik davranışa sahiptir. Bu durum bu tip teknelerin manevra parametrelerinin hesaplanmasını cazip bir hale getirmektedir. Bu çalışmada farklı ilerleme hızları ve farklı hücum açılarında, kayıcı bir tekneye etki eden yan ötelenme kuvveti ve savrulma momentini URANS yöntemi yardımıyla elde edebilmek için sayısal statik sürüklenme analizleri yapılmıştır. Sonuçlar yan ötelenme kuvveti ve savrulma momentinin ileri hız değişiminden ciddi oranda etkilendiğini ve bunun sonucunda hidrodinamik türevlerin %50'nin üstünde bir değişime uğradığını göstermektedir. Bu nedenle özellikle ön kayıcı ve kayıcı bölgelerde, kayıcı teknelerin hidrodinamik türevlerinin doğru bir şekilde tahmin edilebilmesi için ileri hızın hesaplamalara dâhil edilmesi gerekmektedir.

Thanks

Yıldız Teknik Üniversitesi Gemi İnşaatı ve Denizcilik Fakültesi Öğretim Üyesi Dr. Ferdi Çakıcı'ya ticari program, iş istasyonu gibi olanaklar ve makaleye olan bilimsel katkısından ötürü teşekkür ederim.

References

  • Abkowitz, M.A., 1964. ‘Lectures on Ship Hydrodynamics Steering and Maneuverability Technical Report’, Technical Report Hy-5. Hydro and Aerodynamic Laboratory, Lyngby, Denmark.
  • Brown, P.W. and Klosinski, W.E., 1994a. 'Directional Stability Tests of Two Prismatic Planing Hull', Stevens Institute of Technology, US Coast Guard, Hoboken, New Jersey.
  • Brown, P.W. and Klosinski, W.E., 1994b. ‘Directional Stability Tests of a 30 Degree Deadrise Prismatic Planing Hull. Stevens Institute of Technology’, US Coast Guard, Hoboken, New Jersey.
  • Çelik, I., Ghia, U., Roache, P., Fretias, C. J., Coleman, H. and Raad, P. E., 2008. 'Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications', J. Fluids Eng., vol. 130, no. 7, pp. 078001-078001–4.
  • De Luca, F. and Pensa, C., 2012. 'Experimental Investigation on Conventional and Unconventional Interceptors', Trans RINA Part B Int J Small Craft Tech, vol. 153, pp. B65–B72.
  • Duman, S. and Bal, S., 2019. ‘A quick-responding technique for parameters of turning maneuver’, Ocean Engineering, vol. 179, 189-201.
  • Ghadimi, P. and Panahi, S., 2019. 'Numerical investigation of hydrodynamic forces acting on the non-stepped and double-stepped planing hulls during yawed steady motion', Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ., vol. 233, no. 2, pp. 428–442.
  • ITTC, 2011. 'Recommended Procedures and Guidelines - Practical guidelines for Ship CFD Applications'.
  • Judge, C., 2000. ‘A theory for asymmetric vessel impact with horizontal impact velocity’, University of Michigan, Ph.D. dissertation.
  • Kahramanoğlu, E., Çakıcı, F. and Doğrul, A., 2020. ‘Numerical Prediction of the Vertical Responses of Planing Hulls in Regular Head Waves’, J. Mar. Sci. Eng., vol. 8, no. 6.
  • Kahramanoğlu, E., Yıldız, B., Çakıcı, F. and Yılmaz, H., 2021. ‘Numerical Roll Damping Prediction of a Planing Hull’, Ships and Offshore Structures, vol. 16, no 4, 363-372.
  • Katayama, T., Kimoto, R. and Ikeda, Y., 2005. 'Effects of Running Attitudes on Manoeuvring Hydrodynamic Forces for Planing Hulls', International Conference on Fast Sea Transportation (FAST), St. Petersburg, Russia.
  • Katayama, T., Taniguchi, T., Fujii, H. and Ikeda, Y., 2009. 'Development of Maneuvering Simulation Method for High Speed Craft using Hydrodynamic Forces Obtained from Model Tests', 10th International Conference on Fast Sea Transportation (FAST), Athens, Greece.
  • Kazerooni, M. F. and Seif, M.S., 2017. 'Experimental evaluation of forward speed effect on maneuvering hydrodynamic derivatives of a planing hull', 49 Sci. J. Marit. Univ. Szczec., vol. 121, no. 49, pp. 40–53.
  • Kimoto, R., Ikeda, Y. and Katayama, T., 2004. 'Effects of Running Attitude on Hydrodynamic Forces for Oblique Towed Planing Craft', Proc. 2nd Asia-Pacific Workshop Hydrodynamics, pp. 115–122.
  • Larsson, L. and Zou, L., 2014. "Evaluation of Resistance, Sinkage and Trim, Self-Propulsion and Wave Pattern Predictions". In L. Larsson, F. Stern, & M. Visonneau (Eds.), Numerical Ship Hydrodynamics (pp. 17–64). Springer Netherlands.
  • Lewandowski, E.M., 1994. 'Trajectory prediction for high-speed planing craft', Int. J. Shipbuilding Progress, vol. 41, pp. 137–148.
  • Lewandowski, E.M., 1995. 'The transverse dynamic stability of hard chine planing craft' in: Paper Presented at: Proceedings of the Sixth International Symposium on Practical Design of Ships and Mobile Units, Seoul, Korea.
  • Lewandowski, E.M., 1996. 'Prediction of the dynamic roll stability of hard-Chine planing craft', Journal of Ship Research, vol. 40, pp: 144–148.
  • Mancini, S. 2016. 'The Problem of the Verification and Validation Processes of CFD Simulations of Planing Hulls', PhD Thesis, Universita Degli Studi Di Napoli Federico II, Italy.
  • Morabito, M.G., 2015. 'Prediction of planing hull side forces in yaw using slender body oblique impact theory', Ocean Engineering, vol. 101, pp. 47–57.
  • Mousaviraad, S.M., Wang, Z. and Stern F., 2015. ‘URANS studies of hydrodynamic performance and slamming loads on high-speed planing hulls in calm water and waves for deep and shallow conditions’, Applied Ocean Research, vol. 51, 222-240.
  • Norrbin, N.H., 1970. ’Theory and observation on the use of a mathematical model for ship manoeuvring in deep and confined waters’ 8th Symposium on Naval Hydrodynamics, USA.
  • Plante, M., Toxopeus, S., Blok, J. and Keuning A., 1998. 'Hydrodynamic manoeuvring aspects of planing craft', International Symposium and Workshop on Forces Acting on a Manoeuvring Vessel, Val de Reuil, France.
  • Richardson, L. F., 1910. ‘The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam.’ Philos. Trans. R. Soc. Lond., vol. 210, 307-357.
  • Siemens PLM, 2019. ‘STAR CCM+ User Guide’, Version 14.02.
  • Stern, F., Wilson, R.V., Coleman, H.W. and Paterson, E.G., 2001. ‘Comprehensive Approach to Verification and Validation of CFD Simulations—Part 1: Methodology and Procedures’, J. Fluids Eng., vol. 123, no. 4, pp. 793–802.
  • Sukas, O.F., Kinaci, O. K. Cakici, F. and Gokce, M. K., 2017. 'Hydrodynamic assessment of planing hulls using overset grids', Appl. Ocean Res., vol. 65, pp. 35–46.
  • Tavakoli, S. and Dashtimanesh, A., 2018. 'Mathematical simulation of planar motion mechanism test for planing hulls by using 2D+T theory', Ocean Eng., vol. 169, pp. 651–672.
  • Yasukawa, H. and Yoshimura, Y., 2015. ‘Introduction of MMG standard method for ship maneuvering predictions’, J. Mar. Sci. Technol., vol. 20, 37–52.
  • Yoon, H., 2009. ‘Phase-averaged stereo-PIV flow field and force/moment/motion measurements for surface combatant in PMM maneuvers’, PhD Thesis, University of IOWA.
  • Yoshimura, Y., 2005. ‘Mathematical model for manoeuvring ship motion (MMG Model)’, In: Workshop on Mathematical Models for Operations Involving Ship-Ship Interaction, Tokyo, Japan, pp. 1–6.

The Effect of Forward Speed on Sway Force and Yaw Moment for Planing Hulls

Year 2021, , 192 - 208, 31.12.2021
https://doi.org/10.54926/gdt.1015362

Abstract

Planing hulls, commonly used in many areas, have different hydrodynamic behavior than the displacement hulls, even in calm water. Therefore, this makes the calculation of the maneuvering parameters of these hulls appealing. In the present study, a planing hull's numerical static drift analyses are performed using the unsteady RANS approach to evaluate the sway force and yaw moment at different angles of attack and advance velocities. The results show that the sway force and yaw moment are considerably affected by the advance velocity change, resulting in a variation of hydrodynamic derivatives above 50%. Thus, the forward speed should be included in the calculations for the accurate prediction of hydrodynamic maneuvering derivatives of planing hulls, especially in pre-planning and planing regimes.

References

  • Abkowitz, M.A., 1964. ‘Lectures on Ship Hydrodynamics Steering and Maneuverability Technical Report’, Technical Report Hy-5. Hydro and Aerodynamic Laboratory, Lyngby, Denmark.
  • Brown, P.W. and Klosinski, W.E., 1994a. 'Directional Stability Tests of Two Prismatic Planing Hull', Stevens Institute of Technology, US Coast Guard, Hoboken, New Jersey.
  • Brown, P.W. and Klosinski, W.E., 1994b. ‘Directional Stability Tests of a 30 Degree Deadrise Prismatic Planing Hull. Stevens Institute of Technology’, US Coast Guard, Hoboken, New Jersey.
  • Çelik, I., Ghia, U., Roache, P., Fretias, C. J., Coleman, H. and Raad, P. E., 2008. 'Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications', J. Fluids Eng., vol. 130, no. 7, pp. 078001-078001–4.
  • De Luca, F. and Pensa, C., 2012. 'Experimental Investigation on Conventional and Unconventional Interceptors', Trans RINA Part B Int J Small Craft Tech, vol. 153, pp. B65–B72.
  • Duman, S. and Bal, S., 2019. ‘A quick-responding technique for parameters of turning maneuver’, Ocean Engineering, vol. 179, 189-201.
  • Ghadimi, P. and Panahi, S., 2019. 'Numerical investigation of hydrodynamic forces acting on the non-stepped and double-stepped planing hulls during yawed steady motion', Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ., vol. 233, no. 2, pp. 428–442.
  • ITTC, 2011. 'Recommended Procedures and Guidelines - Practical guidelines for Ship CFD Applications'.
  • Judge, C., 2000. ‘A theory for asymmetric vessel impact with horizontal impact velocity’, University of Michigan, Ph.D. dissertation.
  • Kahramanoğlu, E., Çakıcı, F. and Doğrul, A., 2020. ‘Numerical Prediction of the Vertical Responses of Planing Hulls in Regular Head Waves’, J. Mar. Sci. Eng., vol. 8, no. 6.
  • Kahramanoğlu, E., Yıldız, B., Çakıcı, F. and Yılmaz, H., 2021. ‘Numerical Roll Damping Prediction of a Planing Hull’, Ships and Offshore Structures, vol. 16, no 4, 363-372.
  • Katayama, T., Kimoto, R. and Ikeda, Y., 2005. 'Effects of Running Attitudes on Manoeuvring Hydrodynamic Forces for Planing Hulls', International Conference on Fast Sea Transportation (FAST), St. Petersburg, Russia.
  • Katayama, T., Taniguchi, T., Fujii, H. and Ikeda, Y., 2009. 'Development of Maneuvering Simulation Method for High Speed Craft using Hydrodynamic Forces Obtained from Model Tests', 10th International Conference on Fast Sea Transportation (FAST), Athens, Greece.
  • Kazerooni, M. F. and Seif, M.S., 2017. 'Experimental evaluation of forward speed effect on maneuvering hydrodynamic derivatives of a planing hull', 49 Sci. J. Marit. Univ. Szczec., vol. 121, no. 49, pp. 40–53.
  • Kimoto, R., Ikeda, Y. and Katayama, T., 2004. 'Effects of Running Attitude on Hydrodynamic Forces for Oblique Towed Planing Craft', Proc. 2nd Asia-Pacific Workshop Hydrodynamics, pp. 115–122.
  • Larsson, L. and Zou, L., 2014. "Evaluation of Resistance, Sinkage and Trim, Self-Propulsion and Wave Pattern Predictions". In L. Larsson, F. Stern, & M. Visonneau (Eds.), Numerical Ship Hydrodynamics (pp. 17–64). Springer Netherlands.
  • Lewandowski, E.M., 1994. 'Trajectory prediction for high-speed planing craft', Int. J. Shipbuilding Progress, vol. 41, pp. 137–148.
  • Lewandowski, E.M., 1995. 'The transverse dynamic stability of hard chine planing craft' in: Paper Presented at: Proceedings of the Sixth International Symposium on Practical Design of Ships and Mobile Units, Seoul, Korea.
  • Lewandowski, E.M., 1996. 'Prediction of the dynamic roll stability of hard-Chine planing craft', Journal of Ship Research, vol. 40, pp: 144–148.
  • Mancini, S. 2016. 'The Problem of the Verification and Validation Processes of CFD Simulations of Planing Hulls', PhD Thesis, Universita Degli Studi Di Napoli Federico II, Italy.
  • Morabito, M.G., 2015. 'Prediction of planing hull side forces in yaw using slender body oblique impact theory', Ocean Engineering, vol. 101, pp. 47–57.
  • Mousaviraad, S.M., Wang, Z. and Stern F., 2015. ‘URANS studies of hydrodynamic performance and slamming loads on high-speed planing hulls in calm water and waves for deep and shallow conditions’, Applied Ocean Research, vol. 51, 222-240.
  • Norrbin, N.H., 1970. ’Theory and observation on the use of a mathematical model for ship manoeuvring in deep and confined waters’ 8th Symposium on Naval Hydrodynamics, USA.
  • Plante, M., Toxopeus, S., Blok, J. and Keuning A., 1998. 'Hydrodynamic manoeuvring aspects of planing craft', International Symposium and Workshop on Forces Acting on a Manoeuvring Vessel, Val de Reuil, France.
  • Richardson, L. F., 1910. ‘The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam.’ Philos. Trans. R. Soc. Lond., vol. 210, 307-357.
  • Siemens PLM, 2019. ‘STAR CCM+ User Guide’, Version 14.02.
  • Stern, F., Wilson, R.V., Coleman, H.W. and Paterson, E.G., 2001. ‘Comprehensive Approach to Verification and Validation of CFD Simulations—Part 1: Methodology and Procedures’, J. Fluids Eng., vol. 123, no. 4, pp. 793–802.
  • Sukas, O.F., Kinaci, O. K. Cakici, F. and Gokce, M. K., 2017. 'Hydrodynamic assessment of planing hulls using overset grids', Appl. Ocean Res., vol. 65, pp. 35–46.
  • Tavakoli, S. and Dashtimanesh, A., 2018. 'Mathematical simulation of planar motion mechanism test for planing hulls by using 2D+T theory', Ocean Eng., vol. 169, pp. 651–672.
  • Yasukawa, H. and Yoshimura, Y., 2015. ‘Introduction of MMG standard method for ship maneuvering predictions’, J. Mar. Sci. Technol., vol. 20, 37–52.
  • Yoon, H., 2009. ‘Phase-averaged stereo-PIV flow field and force/moment/motion measurements for surface combatant in PMM maneuvers’, PhD Thesis, University of IOWA.
  • Yoshimura, Y., 2005. ‘Mathematical model for manoeuvring ship motion (MMG Model)’, In: Workshop on Mathematical Models for Operations Involving Ship-Ship Interaction, Tokyo, Japan, pp. 1–6.
There are 32 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Emre Kahramanoğlu 0000-0002-3646-1170

Publication Date December 31, 2021
Published in Issue Year 2021

Cite

APA Kahramanoğlu, E. (2021). The Effect of Forward Speed on Sway Force and Yaw Moment for Planing Hulls. Gemi Ve Deniz Teknolojisi(220), 192-208. https://doi.org/10.54926/gdt.1015362