Research Article
BibTex RIS Cite

Otonom Su Üstü Araçları için COLREG Kurallarını İçeren Çarpışma Önleyici Sistem

Year 2022, , 75 - 85, 30.06.2022
https://doi.org/10.54926/gdt.1104423

Abstract

Bu çalışmada önerilen matematiksel model, MMG (Matematiksel Model Grubu) manevra modeli ve geleneksel PD kontrol sistemine dayalı bir kontrol algoritması olmak üzere iki bölümden oluşmaktadır. MMG modeli, geminin manevra karakteristiklerini hesaplamak için kullanılmaktadır. Kontrol sistemi ise manevra modeliyle birlikte geminin seyir halindeyken herhangi bir engelle karşılaşması durumunda güvenli bir rotanın oluşturulmasını sağlamaktadır. Matlab-Simulink yazılım programında oluşturulan matematiksel model sayesinde COLREG kurallarına uygun olarak rota belirlenebilmektedir. Gemiye ait bilinen hidrodinamik katsayıların MMG modele uygun olması ve geminin seyir test sonuçlarının mevcut olması sebebiyle Esso Osaka gemisi seçilerek bir dizi simülasyon gerçekleştirilmiştir. Öncelikle geminin farklı hızları için dönme ve zigzag testleri yapılarak geminin manevra özellikleri belirlenmiştir. Elde edilen sonuçlar Esso Osaka gemisinin seyir testi sonuçları ile karşılaştırılarak önerilen model doğrulanmıştır. İkinci olarak, belirlenen bir hedef koordinat için geminin rotası elde edilmiştir. Üçüncü olarak ise geminin başlangıç noktası ile önceki simülasyon için belirlenen hedef koordinat arasında farklı büyüklüklerde engel olması durumu düşünülerek simülasyonlar gerçekleştirilmiştir. Sonuç olarak COLREG kurallarına uygun olarak belirlenen sanal koordinatlar sayesinde güvenli yeni rotalar oluşturulmuştur. Geminin manevra karakteristik değerleri kontrol algoritmasına dahil edildiği için sanal koordinatların belirlenmesini doğrudan etkilemektedir. Bu nedenle, doğru manevra özelliklerini bulmak önem arz etmektedir. Önerilen matematiksel modelden elde edilen simülasyon sonuçları değerlendirildiğinde, Esso Osaka gemisi için belirlenen koordinatlar arasında güvenli bir rota oluşturulduğu sonucuna varılmıştır.

References

  • Budak, G., Beji, S. (2020). Controlled course-keeping simulations of a ship under external disturbances. Ocean Engineering 218 (2020) 108126.
  • Dubey, R., Louis, S. J. (2021). VORRT-COLREGS: A Hybrid Velocity Obstacles and RRT Based COLREGs-Compliant Path Planner for Autonomous Surface Vessels. arXiv:2109.00862. doi = {10.48550/ARXIV.2109.00862}.
  • Eriksen Bjørn-Olav H., Bitar Glenn, Breivik Morten, Lekkas Anastasios M., (2020). Hybrid Collision Avoidance for ASVs Compliant with COLREGs Rules 8 and 13–17. Frontiers in Robotics and AI, Vol 7, DOI=10.3389/frobt.2020.00011.
  • Grinyak, V. M., Devyatisil’nyi A. S., (2016). Fuzzy Collision Avoidance System for Ships. J. Comput. Syst. Sci. Int. No:2, pp. 93-103. DOI: 10.1134/S106423071601007X.
  • He, Y., Li, Z., Mou, J., Hu, W., Li, L., Wang, B. (2021). Collision-avoidance path planning for multi-ship encounters considering ship manoeuvrability and COLREGs. Transportation Safety and Environment, 2021, Vol. 3, No. 2 103–113.
  • Huang, Y.; Chen, L.; Chen, P.; Negenborn, R.R.; van Gelder, P.H.A.J.M., (20120). Ship collision avoidance methods: State-of-the-art. Safety Science, 121, 451–473, doi:10.1016/j.ssci.2019.09.018.
  • IMO, (1972). Convention on the international regulations for preventing collisions at sea (COLREGs).http://www.imo.org.
  • Li, J., Wang, H., Zhao, W., Xue, Y. (2019). Ship’s Trajectory Planning Based on Improved Multiobjective Algorithm for Collision Avoidance. J. Adv. Transp. 2019,4068783.
  • Liu, J., Zhao, B., Li, L. (2017). Collision Avoidance for Underactuated Ocean-going Vessels Considering COLREGs Constraints. IEEE Access. DOI10.1109/ACCESS.2021.3123449.
  • Namgung, H. (2021). Collision Risk Inference System for Maritime Autonomous Surface Ships Using COLREGs Rules Compliant Collision Avoidance. IEEE Access. DOI: 10.1109/ACCESS.2021.3049238.
  • Ogawa, A. and Kasai, H., (1978). On the mathematical model of maneuvering motion of ships. Int. Shipbuild. Prog. 25 (292), 306–319.
  • Perera, L. P., Carvalho, J. P., Soares, C. G., (2009). Decision making system for the collision avoidance of marine vessel navigation based on COLREGs rules and regulations. 13th Congress of Intl. Maritime Assoc. of Mediterranean, Istanbul, Turkey, 12-15 Oct. 2009, Page 1121-1128. DOI: 10.13140/2.1.2257.2487.
  • Bing Wang, B., He, Y., Hu, W., Mou, J., Li, L., Zhang, K., Huang, L. (2021). A Decision-Making Method for Autonomous Collision Avoidance for the Stand-On Vessel Based on Motion Process and COLREGs. J. Mar. Sci. Eng. 2021, 9, 584. https://doi.org/10.3390/jmse9060584.
  • Yasukawa, H. and Yoshimura, Y., 2015. Introduction of mmg standard method for ship maneuvering predictions. J. Mar. Sci. Technol. 20, 37–52.
  • Zaccone, R. and Martelli, M. (2020). A collision avoidance algorithm for ship guidance applications. Journal of Marine Engineering & Technology 2020, VOL. 19, NO. S1, 62–75 https://doi.org/10.1080/20464177.2019.1685836.
  • Zhou, Z., Zhang, Y., Wang, S. (2021). A Coordination System between Decision Making and Controlling for Autonomous Collision Avoidance of Large Intelligent Ships. J. Mar. Sci. Eng. 2021, 9, 1202. https://doi.org/10.3390/jmse9111202.

A Collision Avoidance System Based on COLREGs Rules for Autonomous Surface Vessels

Year 2022, , 75 - 85, 30.06.2022
https://doi.org/10.54926/gdt.1104423

Abstract

The proposed mathematical model in this study consists of two parts, one is the maneuvering model, called MMG (Mathematical Model Group), and the other is a control algorithm based on traditional PD control system. The MMG model is used to compute the ship's maneuvering characteristics, and a ship can safely reach target coordinates with the help of a control algorithm if it encounters any obstacles along the way. Because of the suitable hydrodynamic coefficients of Esso Osaka, the proposed mathematical model is evaluated using trial test data from Esso Osaka. Firstly, the maneuvering characteristics of the ship were determined by performing the turning and zigzag tests for different velocity of the ship. By comparing the results obtained with the trial test results of the Esso Osaka, the suggested model was verified. Secondly, the ship's route was obtained for a determined target coordinate. Thirdly, a new route is automatically obtained by assuming that there is an obstacle between the starting point of the ship and the target coordinate determined for the previous simulation. As a result, this new route is created thanks to the virtual coordinates determined in accordance with the COLREGs rules. Since the maneuvering characteristic values of the ship are included in the written algorithm, it directly affects the determination of the virtual coordinates. Therefore, it is very important to find accurate maneuvering characteristics. Evaluating the simulation results obtained from the proposed mathematical model, it is concluded that a safe route has been created between the coordinates determined for the Esso Osaka ship. Moreover, the ship reaches the target coordinate without any collision.

References

  • Budak, G., Beji, S. (2020). Controlled course-keeping simulations of a ship under external disturbances. Ocean Engineering 218 (2020) 108126.
  • Dubey, R., Louis, S. J. (2021). VORRT-COLREGS: A Hybrid Velocity Obstacles and RRT Based COLREGs-Compliant Path Planner for Autonomous Surface Vessels. arXiv:2109.00862. doi = {10.48550/ARXIV.2109.00862}.
  • Eriksen Bjørn-Olav H., Bitar Glenn, Breivik Morten, Lekkas Anastasios M., (2020). Hybrid Collision Avoidance for ASVs Compliant with COLREGs Rules 8 and 13–17. Frontiers in Robotics and AI, Vol 7, DOI=10.3389/frobt.2020.00011.
  • Grinyak, V. M., Devyatisil’nyi A. S., (2016). Fuzzy Collision Avoidance System for Ships. J. Comput. Syst. Sci. Int. No:2, pp. 93-103. DOI: 10.1134/S106423071601007X.
  • He, Y., Li, Z., Mou, J., Hu, W., Li, L., Wang, B. (2021). Collision-avoidance path planning for multi-ship encounters considering ship manoeuvrability and COLREGs. Transportation Safety and Environment, 2021, Vol. 3, No. 2 103–113.
  • Huang, Y.; Chen, L.; Chen, P.; Negenborn, R.R.; van Gelder, P.H.A.J.M., (20120). Ship collision avoidance methods: State-of-the-art. Safety Science, 121, 451–473, doi:10.1016/j.ssci.2019.09.018.
  • IMO, (1972). Convention on the international regulations for preventing collisions at sea (COLREGs).http://www.imo.org.
  • Li, J., Wang, H., Zhao, W., Xue, Y. (2019). Ship’s Trajectory Planning Based on Improved Multiobjective Algorithm for Collision Avoidance. J. Adv. Transp. 2019,4068783.
  • Liu, J., Zhao, B., Li, L. (2017). Collision Avoidance for Underactuated Ocean-going Vessels Considering COLREGs Constraints. IEEE Access. DOI10.1109/ACCESS.2021.3123449.
  • Namgung, H. (2021). Collision Risk Inference System for Maritime Autonomous Surface Ships Using COLREGs Rules Compliant Collision Avoidance. IEEE Access. DOI: 10.1109/ACCESS.2021.3049238.
  • Ogawa, A. and Kasai, H., (1978). On the mathematical model of maneuvering motion of ships. Int. Shipbuild. Prog. 25 (292), 306–319.
  • Perera, L. P., Carvalho, J. P., Soares, C. G., (2009). Decision making system for the collision avoidance of marine vessel navigation based on COLREGs rules and regulations. 13th Congress of Intl. Maritime Assoc. of Mediterranean, Istanbul, Turkey, 12-15 Oct. 2009, Page 1121-1128. DOI: 10.13140/2.1.2257.2487.
  • Bing Wang, B., He, Y., Hu, W., Mou, J., Li, L., Zhang, K., Huang, L. (2021). A Decision-Making Method for Autonomous Collision Avoidance for the Stand-On Vessel Based on Motion Process and COLREGs. J. Mar. Sci. Eng. 2021, 9, 584. https://doi.org/10.3390/jmse9060584.
  • Yasukawa, H. and Yoshimura, Y., 2015. Introduction of mmg standard method for ship maneuvering predictions. J. Mar. Sci. Technol. 20, 37–52.
  • Zaccone, R. and Martelli, M. (2020). A collision avoidance algorithm for ship guidance applications. Journal of Marine Engineering & Technology 2020, VOL. 19, NO. S1, 62–75 https://doi.org/10.1080/20464177.2019.1685836.
  • Zhou, Z., Zhang, Y., Wang, S. (2021). A Coordination System between Decision Making and Controlling for Autonomous Collision Avoidance of Large Intelligent Ships. J. Mar. Sci. Eng. 2021, 9, 1202. https://doi.org/10.3390/jmse9111202.
There are 16 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Gökhan Budak 0000-0002-4043-9304

Publication Date June 30, 2022
Published in Issue Year 2022

Cite

APA Budak, G. (2022). A Collision Avoidance System Based on COLREGs Rules for Autonomous Surface Vessels. Gemi Ve Deniz Teknolojisi(221), 75-85. https://doi.org/10.54926/gdt.1104423