Research Article
BibTex RIS Cite

Numerical Investigation of Self Propulsion of BB2 Joubert Submarine Form

Year 2021, , 25 - 42, 31.12.2021
https://doi.org/10.54926/gdt.934890

Abstract

Nowadays many Navies have submarines and refer them as the backbone of their Navies. The most important task of diesel-electric submarines, whose primary operational task in history was to intercept / control maritime trade routes, is to collect information without being noticed and to perform surprise operations against underwater, land and air targets when necessary. Submarines can be noticed and lose their invisibility thanks to today's high-tech radar systems when they come to the surface of the water and even when they reach periscope depth to go snorkeling without their hulls rising above the water. The ratio of the time submarines charges their batteries during their cruise to the time the submarines spend under water is called indiscretion rate. Reducing this rate is considered as a measure of the invisibility of submarines. While developing new designs and technologies, reducing this rate is considered as the main design goal. Air-independent propulsion systems, which significantly increase the underwater sailing range of submarines, have lowered the rate of snorkeling time of modern submarines, and the operation area of today's submarine equipped with these systems shifts from brown waters to blue waters. Another important factor in the rate of snorkeling cruising time is the hydrodynamic form and the propulsive efficiency of the submarine. The submarine, which has a more efficient form, will be able to cruise for a longer time with the same speed and same energy capacity underwater and will have a lower indiscretion rate. Nowadays, computational fluid dynamics is used by designers as an effective tool and enables the design of hydrodynamic forms that can drive the submarine more efficiently at desired service speeds and the propellers that will push these forms with both high efficiency and low acoustic trace. In this study, the self-propulsion characteristics of the Joubert BB2 submarine form, which has been frequently preferred in recent years in the studies conducted in the open literature, was calculated with computational fluid dynamics methods and the speed of the propeller used in the propulsion of the submarine was obtained to propel the ship at the service speed of the submarine. With the determination of the self-propulsion point, the Taylor wake fraction, thrust deduction, hull efficiency, relative rotative efficiency and propulsive efficiency were calculated and compared with open literature.

References

  • Groves, N.C., Huang T.T., ve Chang, M.S., “Geometric Characteristics of DARPA Suboff Models”, David Taylor Research Center, Ship Hydromechanics Department , Report Number DTRC/SHD-1298-01, 1989.
  • Huang T., Liu H. ve Groves N., "Experiments of DARPA Suboff Program", David Taylor Research Center, Ship Hydromechanics Department, Report Number DTRC/SHD-1298-02, 1989.
  • Crook, L.B., "Resistance for DARPA Suboff as Represented by Model 5470", DTRC/SHD-1298-07, 1990. Roddy, R.F., "Investigation of the Stability and Control Characteristics of Several Configurations of the DARPA Suboff Model (DTRC 5470) from Captive-Model Experiments, DTRC/SHD-1298-08, 1990.
  • Liu, H. ve Huang T., "Summary of DARPA Suboff experimental program data", Report NumberCRDKNSWC/HD-1298-11, 1998.
  • Di Fellice F., Felli M., Liefvendahl M. ve Svennberg U., "Numerical and Experimental Analysis of the wake behavior of a Generic Submarine Propeller", First International Symposium on Marine Propulsors, Trodheim, Norway, 2009.
  • Alin, N., Bensow, R., Fureby, C. ve Huuva, T., "Current Capabilities of DES and LES for Submarines at Straight Course", Journal of Ship Research, Vol. 54 ,s.184-196, 2010.
  • Alin, C., Chapius, M., Fureby, C., Liefvendahl, M., Svennberg, U. ve Troeng, C., "A Numerical Study of Submarine Propeller- Hull Interactions", 28th Symposium on Naval Hydrodynamics, Pasadena, A.B.D., 2010
  • Liefvendahl, M., Troeng, C., "Computation of Cycle-to-cycle Variation ib Blade Load for a Submarine Propeller using LES", Second International Symposium on Marine Propulsors, Hamburg, 2011.
  • N. Chase and P. M. Carrica, “Submarine propeller computations and application to self-propulsion of DARPA Suboff,” Ocean Eng., vol. 60, pp. 68–80, 2013, doi: 10.1016/j.oceaneng.2012.12.029.
  • Ozden M. C. , Gurkan A. Y. , Ozden Y. , Canyurt T. G. , Korkut E., " Underwater radiated noise prediction for a submarine propeller in different flow conditions", Ocean Engineering, cilt.126, ss.488-500, 2016.
  • A. Özden, Y., Çelik, F., " Denizaltı Kıç Koniklik Açısının Ve Boy-Genişlik Oranının Tekne Verimi Üzerine Etkilerinin Sayısal Olarak İncelenmesi", Gemi ve Deniz Teknolojisi, sa.208, ss.71-87, 2017.
  • S. Sezen, A. Dogrul, C. Delen, and S. Bal, “Investigation of self-propulsion of DARPA Suboff by RANS method,” Ocean Eng., vol. 150, no. July 2017, pp. 258–271, 2018, doi: 10.1016/j.oceaneng.2017.12.051.
  • O. K. Kinaci, M. K. Gokce, A. D. Alkan, and A. Kukner, “On self-propulsion assessment of marine vehicles,” Brodogradnja, vol. 69, no. 4, pp. 29–51, 2018, doi: 10.21278/brod69403.
  • A. Özden Y. , Özden M. C. , Demir E., Kurdoğlu S., "Experimental and Numerical Investigation of DARPA Suboff Submarine propelled with INSEAN E1619 Propeller for Self-Propulsion", Journal Of Ship Research, cilt.63, sayı 4, ss.235-250, 2019.
  • Sezen, S., Delen, C., Dogrul, A., Atlar, M., “An investigation of scale effects on the self-propulsion characteristics of a submarine”, Applied Ocean Research 113, 2021, doi:10.1016/j.apor.2021.102728.
  • Joubert, P.N., "Some Aspects of Submarine Design Part 1", Australia Defence Science and Technology Organisation Report DSTO-TR-1622, 2004.
  • Joubert, P.N., "Some Aspects of Submarine Design Part 2", Australia Defence Science and Technology Organisation Report DSTO-TR-1920, 2006.
  • Quick, H. ve Woodyatt, B., "Experimental Testing of a Generic Submarine Model in the DSTO Low Speed Wind Tunnel", Defence Science and Technology Organisation, DSTO-TN-1274, Mart 2014.
  • Toxopeus, S.I., "SHWG Collaborative Exercise: BB1", MARIN Report No. 24784-3-RD, Ekim 2013.
  • Toxopeus, S.I. Quadvlieg, F. ve Kerkvliet, M., "SHWG Collaborative Exercise: Part 6: Generic Submarine Hydrodynamics BB2, MARIN İnformal document", Eylül 2017.
  • P. M. Carrica, M. Kerkvliet, F. Quadvlieg, and J. E. Martin, “CFD Simulations and Experiments of a Maneuvering Generic Submarine and Prognosis for Simulation of Near Surface Operation,” 31st Symp. Nav. Hydrodyn. (ONR), Monterey, CA, no. September, pp. 11–16, 2016.
  • P. M. Carrica, Y. Kim, and J. E. Martin, “Near-surface self propulsion of a generic submarine in calm water and waves,” Ocean Eng., vol. 183, no. May, pp. 87–105, 2019, doi: 10.1016/j.oceaneng.2019.04.082.
  • R. Skejic and M. Greve, “On the Added Resistance of Underwater Vehicles in Close Proximity to Regular Waves” Conference: Warship 2017: Naval Submarines & UUVsAt: Bath, UK, June 2017.
  • B. Overpelt, B. Nienhuis, and B. Anderson, “Free Running Manoeuvring Model Tests On A Modern Generic SSK Class Submarine (BB2),” Pacific Int. Marit. Conf., 2015.
  • M. Pontarelli, J. E. Martin, and P. M. Carrica, “Dynamic Instabilities in Propeller Crashback,” Proc. Fifth Int. Symp. Mar. Propulsors, vol. 1, no. June, 2017.
  • Y. J. Cho, W. Seok, K. H. Cheon, and S. H. Rhee, “Maneuvering simulation of an X-plane submarine using computational fluid dynamics,” Int. J. Nav. Archit. Ocean Eng., vol. 12, pp. 843–855, 2020, doi: 10.1016/j.ijnaoe.2020.10.001.
  • B. Aydogdu, A. Dogrul, and F. Cakici, “Resistance Analyses Of Joubert BB2 Benchmark,”2nd international congress on ship and marine technology (GMO- SHIPMAR 2021), pp. 1–10, Istanbul 2021.
  • ITTC, "Recommended Procedures and Guidelines, Propulsion/Bollard Pull Test", Revision 05, 7.5 - 02, 03 - 01.1, 2017.
  • ITTC, "Recommended Procedures and Guidelines, Resistance Test", Revision 03, 7.5 - 03, 02 - 03, 2011.
  • Thomas, R., "Performance Evaluation of the Propulsion System for the Autonomous Underwater Vehicle C-Scout", Master Thesis, Memorial University of Newfoundland, Ağustos 2003. ITTC, "1978 ITTC Performance Prediction Method", 7.5-02-03-01.4, 2017.
  • Schmiechen M., “Wake and Thrust Deduction from Quasisteady Ship Model Propulsion Tests Alone”, VWS Report no. 1100/87, 1987, Almanya.
  • Kracht, A.M., “Load Variation Tests Improve the Reliability of Ship Power Predictions Based on Model Test Results”, Schiffstechnik 38, 1991, Almanya.

BB2 Joubert Denizaltı Formunun Sevk Noktasının Sayısal Olarak İncelenmesi

Year 2021, , 25 - 42, 31.12.2021
https://doi.org/10.54926/gdt.934890

Abstract

Günümüzde birçok donanma denizaltılara sahip durumdadır ve birçoğu denizaltılarını donanmaların bel kemiği olarak ifade etmektedir. Tarihte birincil harekât görevi deniz ticaret yollarını kesmek/kontrol etmek olan dizel elektrikli denizaltıların günümüzde en önemli görevleri fark edilmeden bilgi toplamak ve gerektiğinde su altı, su üstü, kara ve hava hedeflerine sürpriz harekât gerçekleştirebilmektir. Denizaltılar su üstüne çıktıklarında ve hatta gövdeleri su üstüne çıkmadan sadece şnorkel seyri yapmak için periskop derinliğine geldiklerinde dahi günümüzün yüksek teknolojik radar sistemleri sayesinde fark edilebilmekte ve görünmezliklerini yitirmektedirler. Denizaltıların seyirleri esnasında bataryalarını şarj ettikleri sürenin, denizaltıların su altında geçirdikleri süreye oranı, şnorkel seyir süresi oranı (indiscretion rate) olarak isimlendirilmektedir. Bu oranı azaltmak, denizaltıların görünmezliğinin bir ölçüsü olarak nitelendirilmektedir. Yeni tasarımlar ve teknolojiler geliştirilirken bu oranı aşağı çekmek ana tasarım hedefi olarak ele alınmaktadır. Denizaltıların su altı seyir sığalarını önemli ölçüde artıran havadan bağımsız sevk sistemleri modern denizaltıların şnorkel seyir süresi oranını aşağı çekmiş ve bu sistemlerle donatılmış günümüz denizaltısının harekât sahası, kahverengi sulardan mavi sulara kaymaktadır. Şnorkel seyir süresi oranına diğer bir önemli etken ise denizaltının hidrodinamik formu ve sevk verimliliğidir. Daha verimli bir forma sahip olan denizaltı su altında aynı sürat ve aynı enerji kapasitesi ile daha uzun süre seyir yapabilecek ve daha düşük bir şnorkel seyir süresi oranına sahip olacaktır. Günümüzde hesaplamalı akışkanlar dinamiği tasarımcılar tarafından etkin bir araç olarak kullanılmakta ve denizaltıyı istenilen servis süratlerinde daha verimli sevk edebilecek hidrodinamik formların ve bu formları itecek pervanelerin gerek yüksek verimle gerekse düşük akustik ize sahip olarak tasarlanabilmesine olanak tanımaktadır. Bu çalışmada, açık literatürde yapılan çalışmalarda son yıllarda sıklıkla tercih edilen Joubert BB2 denizaltı formunun direnci hesaplamalı akışkanlar dinamiği yöntemleri ile hesaplanmış ve denizaltının sevkinde kullanılan pervanenin geminin servis hızında gemiyi itmek için gereken devir sayısı bilgilerine ulaşılmıştır. Sevk noktasının tayini ile denizaltı formuna has Taylor iz katsayısı, itme azalması, tekne verimi, bağıl dönme verimi ve bunlara bağlı sevk verimi hesap edilmiştir.

References

  • Groves, N.C., Huang T.T., ve Chang, M.S., “Geometric Characteristics of DARPA Suboff Models”, David Taylor Research Center, Ship Hydromechanics Department , Report Number DTRC/SHD-1298-01, 1989.
  • Huang T., Liu H. ve Groves N., "Experiments of DARPA Suboff Program", David Taylor Research Center, Ship Hydromechanics Department, Report Number DTRC/SHD-1298-02, 1989.
  • Crook, L.B., "Resistance for DARPA Suboff as Represented by Model 5470", DTRC/SHD-1298-07, 1990. Roddy, R.F., "Investigation of the Stability and Control Characteristics of Several Configurations of the DARPA Suboff Model (DTRC 5470) from Captive-Model Experiments, DTRC/SHD-1298-08, 1990.
  • Liu, H. ve Huang T., "Summary of DARPA Suboff experimental program data", Report NumberCRDKNSWC/HD-1298-11, 1998.
  • Di Fellice F., Felli M., Liefvendahl M. ve Svennberg U., "Numerical and Experimental Analysis of the wake behavior of a Generic Submarine Propeller", First International Symposium on Marine Propulsors, Trodheim, Norway, 2009.
  • Alin, N., Bensow, R., Fureby, C. ve Huuva, T., "Current Capabilities of DES and LES for Submarines at Straight Course", Journal of Ship Research, Vol. 54 ,s.184-196, 2010.
  • Alin, C., Chapius, M., Fureby, C., Liefvendahl, M., Svennberg, U. ve Troeng, C., "A Numerical Study of Submarine Propeller- Hull Interactions", 28th Symposium on Naval Hydrodynamics, Pasadena, A.B.D., 2010
  • Liefvendahl, M., Troeng, C., "Computation of Cycle-to-cycle Variation ib Blade Load for a Submarine Propeller using LES", Second International Symposium on Marine Propulsors, Hamburg, 2011.
  • N. Chase and P. M. Carrica, “Submarine propeller computations and application to self-propulsion of DARPA Suboff,” Ocean Eng., vol. 60, pp. 68–80, 2013, doi: 10.1016/j.oceaneng.2012.12.029.
  • Ozden M. C. , Gurkan A. Y. , Ozden Y. , Canyurt T. G. , Korkut E., " Underwater radiated noise prediction for a submarine propeller in different flow conditions", Ocean Engineering, cilt.126, ss.488-500, 2016.
  • A. Özden, Y., Çelik, F., " Denizaltı Kıç Koniklik Açısının Ve Boy-Genişlik Oranının Tekne Verimi Üzerine Etkilerinin Sayısal Olarak İncelenmesi", Gemi ve Deniz Teknolojisi, sa.208, ss.71-87, 2017.
  • S. Sezen, A. Dogrul, C. Delen, and S. Bal, “Investigation of self-propulsion of DARPA Suboff by RANS method,” Ocean Eng., vol. 150, no. July 2017, pp. 258–271, 2018, doi: 10.1016/j.oceaneng.2017.12.051.
  • O. K. Kinaci, M. K. Gokce, A. D. Alkan, and A. Kukner, “On self-propulsion assessment of marine vehicles,” Brodogradnja, vol. 69, no. 4, pp. 29–51, 2018, doi: 10.21278/brod69403.
  • A. Özden Y. , Özden M. C. , Demir E., Kurdoğlu S., "Experimental and Numerical Investigation of DARPA Suboff Submarine propelled with INSEAN E1619 Propeller for Self-Propulsion", Journal Of Ship Research, cilt.63, sayı 4, ss.235-250, 2019.
  • Sezen, S., Delen, C., Dogrul, A., Atlar, M., “An investigation of scale effects on the self-propulsion characteristics of a submarine”, Applied Ocean Research 113, 2021, doi:10.1016/j.apor.2021.102728.
  • Joubert, P.N., "Some Aspects of Submarine Design Part 1", Australia Defence Science and Technology Organisation Report DSTO-TR-1622, 2004.
  • Joubert, P.N., "Some Aspects of Submarine Design Part 2", Australia Defence Science and Technology Organisation Report DSTO-TR-1920, 2006.
  • Quick, H. ve Woodyatt, B., "Experimental Testing of a Generic Submarine Model in the DSTO Low Speed Wind Tunnel", Defence Science and Technology Organisation, DSTO-TN-1274, Mart 2014.
  • Toxopeus, S.I., "SHWG Collaborative Exercise: BB1", MARIN Report No. 24784-3-RD, Ekim 2013.
  • Toxopeus, S.I. Quadvlieg, F. ve Kerkvliet, M., "SHWG Collaborative Exercise: Part 6: Generic Submarine Hydrodynamics BB2, MARIN İnformal document", Eylül 2017.
  • P. M. Carrica, M. Kerkvliet, F. Quadvlieg, and J. E. Martin, “CFD Simulations and Experiments of a Maneuvering Generic Submarine and Prognosis for Simulation of Near Surface Operation,” 31st Symp. Nav. Hydrodyn. (ONR), Monterey, CA, no. September, pp. 11–16, 2016.
  • P. M. Carrica, Y. Kim, and J. E. Martin, “Near-surface self propulsion of a generic submarine in calm water and waves,” Ocean Eng., vol. 183, no. May, pp. 87–105, 2019, doi: 10.1016/j.oceaneng.2019.04.082.
  • R. Skejic and M. Greve, “On the Added Resistance of Underwater Vehicles in Close Proximity to Regular Waves” Conference: Warship 2017: Naval Submarines & UUVsAt: Bath, UK, June 2017.
  • B. Overpelt, B. Nienhuis, and B. Anderson, “Free Running Manoeuvring Model Tests On A Modern Generic SSK Class Submarine (BB2),” Pacific Int. Marit. Conf., 2015.
  • M. Pontarelli, J. E. Martin, and P. M. Carrica, “Dynamic Instabilities in Propeller Crashback,” Proc. Fifth Int. Symp. Mar. Propulsors, vol. 1, no. June, 2017.
  • Y. J. Cho, W. Seok, K. H. Cheon, and S. H. Rhee, “Maneuvering simulation of an X-plane submarine using computational fluid dynamics,” Int. J. Nav. Archit. Ocean Eng., vol. 12, pp. 843–855, 2020, doi: 10.1016/j.ijnaoe.2020.10.001.
  • B. Aydogdu, A. Dogrul, and F. Cakici, “Resistance Analyses Of Joubert BB2 Benchmark,”2nd international congress on ship and marine technology (GMO- SHIPMAR 2021), pp. 1–10, Istanbul 2021.
  • ITTC, "Recommended Procedures and Guidelines, Propulsion/Bollard Pull Test", Revision 05, 7.5 - 02, 03 - 01.1, 2017.
  • ITTC, "Recommended Procedures and Guidelines, Resistance Test", Revision 03, 7.5 - 03, 02 - 03, 2011.
  • Thomas, R., "Performance Evaluation of the Propulsion System for the Autonomous Underwater Vehicle C-Scout", Master Thesis, Memorial University of Newfoundland, Ağustos 2003. ITTC, "1978 ITTC Performance Prediction Method", 7.5-02-03-01.4, 2017.
  • Schmiechen M., “Wake and Thrust Deduction from Quasisteady Ship Model Propulsion Tests Alone”, VWS Report no. 1100/87, 1987, Almanya.
  • Kracht, A.M., “Load Variation Tests Improve the Reliability of Ship Power Predictions Based on Model Test Results”, Schiffstechnik 38, 1991, Almanya.
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Alpay Acar 0000-0002-6254-8018

Yasemin Arıkan Özden 0000-0001-9909-0859

Publication Date December 31, 2021
Published in Issue Year 2021

Cite

APA Acar, A., & Arıkan Özden, Y. (2021). BB2 Joubert Denizaltı Formunun Sevk Noktasının Sayısal Olarak İncelenmesi. Gemi Ve Deniz Teknolojisi(220), 25-42. https://doi.org/10.54926/gdt.934890