Research Article
BibTex RIS Cite

Numerical Analysis of Composite Sandwich Panels Subjected to Underwater Blast Load

Year 2021, , 108 - 121, 31.12.2021
https://doi.org/10.54926/gdt.980177

Abstract

Underwater explosions are tremendously hazardous for floating structures and human life inside. When compared to an air blast, an underwater blast is more effective due to the effect of the fluid domain. Therefore, the design of marine structures with high strength to underwater explosions is a difficult subject as well as important. With the rapid progression of material technology, composite materials are widely preferred over metals in fields of marine and defense industries due to low density, high elasticity and high strength in their nature. In this study, a sandwich panel with a soft-core was modelled using the finite element method, and the dynamic behavior of the panel subjected to an underwater blast load is investigated. In the validation study of the model and method, firstly, the dynamic responses of the carbon epoxy composite plate structure subjected to underwater explosion load were confirmed with the results available in the literature. In this part, ALE (Arbitrary Lagrangian-Eulerian) and Load_SSA (Sub Sea Analysis) methods were used to simulate the dynamic response of the plate and a very good agreement was observed by using the ALE method. Then, the composite sandwich panels with a soft-core (foam) were investigated by the finite element-based ALE method. Finally, the maximum deflection results of the plate structure subjected to underwater explosion loads were examined with parametric studies. Increasing core layer thickness caused a decrease in plate deflections and an increase in post-explosion oscillation frequency under the same blast conditions.

References

  • Aman, Z., Weixing, Z., Shiping, W., & Linhan, F. (2011). Dynamic response of the non-contact underwater explosions on naval equipment. Marine Structures, 24(4), 396–411. https://doi.org/10.1016/j.marstruc.2011.05.005
  • Cole, R. H. (1948). Underwater explosions. In Underwater explosions. Princeton Univ. Press,. https://doi.org/10.5962/bhl.title.48411
  • Dobratz, B. M. (1972). Properties of chemical explosives and explosive simulants. https://doi.org/10.2172/4285272
  • Hammond, L., & Grzebieta, R. (2000). Structural response of submerged air-backed plates by experimental and numerical analyses. Shock and Vibration, 7(6), 333–341. https://doi.org/10.1155/2000/984015
  • Karbhari, V. M., & Zhang, S. (2003). E-glass/vinylester composites in aqueous environments - I: Experimental results. Applied Composite Materials, 10(1), 19–48. https://doi.org/10.1023/A:1021153315780
  • Kumar, P., Stargel, D. S., & Shukla, A. (2013). Effect of plate curvature on blast response of carbon composite panels. Composite Structures, 99, 19–30. https://doi.org/10.1016/j.compstruct.2012.11.036
  • Matos, H., Javier, C., LeBlanc, J., & Shukla, A. (2018). Underwater nearfield blast performance of hydrothermally degraded carbon–epoxy composite structures. Multiscale and Multidisciplinary Modeling, Experiments and Design, 1(1), 33–47. https://doi.org/10.1007/s41939-017-0004-6
  • Nurick, G. N., Gelman, M. E., & Marshall, N. S. (1996). Tearing of blast loaded plates with clamped boundary conditions. International Journal of Impact Engineering, 18(7–8), 803–827. https://doi.org/10.1016/s0734-743x(96)00026-7
  • Qiankun, J., & Gangyi, D. (2011). A finite element analysis of ship sections subjected to underwater explosion. International Journal of Impact Engineering, 38(7), 558–566. https://doi.org/10.1016/j.ijimpeng.2010.11.005
  • Rajendran, R. (2009). Numerical simulation of response of plane plates subjected to uniform primary shock loading of non-contact underwater explosion. Materials & Design, 30(4), 1000–1007. https://doi.org/10.1016/j.matdes.2008.06.054
  • Rajendran, R., & Narasimhan, K. (2001). Linear elastic shock response of plane plates subjected to underwater explosion. International Journal of Impact Engineering, 25(5), 493–506. https://doi.org/10.1016/S0734-743X(00)00056-7
  • Ramajeyathilagam, K., & Vendhan, C. P. (2004). Deformation and rupture of thin rectangular plates subjected to underwater shock. International Journal of Impact Engineering, 30(6), 699–719. https://doi.org/10.1016/j.ijimpeng.2003.01.001
  • Ramajeyathilagam, K., Vendhan, C. P., & Rao, V. B. (2000). Non-linear transient dynamic response of rectangular plates under shock loading. International Journal of Impact Engineering, 24(10), 999–1015. https://doi.org/10.1016/S0734-743X(00)00018-X
  • Schiffer, A., & Tagarielli, V. L. (2015). The response of circular composite plates to underwater blast: Experiments and modelling. Journal of Fluids and Structures, 52, 130–144. https://doi.org/10.1016/j.jfluidstructs.2014.10.009
  • Taskin, M., Arikoglu, A., & Demir, O. (2019). Vibration and damping analysis of sandwich cylindrical shells by the GDQM. AIAA Journal, 57(7), 3040–3051. https://doi.org/10.2514/1.J058128
  • Taylor, G. I. (1963). The pressure and impulse of submarine explosion waves on plates. The Scientific Papers of G. I. Taylor, vol. III. Volume III of The Scientific Papers of G. I. Taylor, Cambridge University Press, Cambridge, UK, 3, 287–303.
  • Wei, X., De Vaucorbeil, A., Tran, P., & Espinosa, H. D. (2013). A new rate-dependent unidirectional composite model – Application to panels subjected to underwater blast. Journal of the Mechanics and Physics of Solids, 61(6), 1305–1318. https://doi.org/10.1016/j.jmps.2013.02.006.
  • Wei, X., Tran, P., De Vaucorbeil, A., Ramaswamy, R. B., Latourte, F., & Espinosa, H. D. (2013). Three-dimensional numerical modeling of composite panels subjected to underwater blast. Journal of the Mechanics and Physics of Solids, 61(6), 1319–1336. https://doi.org/10.1016/j.jmps.2013.02.007.
  • Zhang, N., Zong, Z., & Zhang, W. (2014). Dynamic response of a surface ship structure subjected to an underwater explosion bubble. Marine Structures, 35, 26–44. https://doi.org/10.1016/j.marstruc.2013.11.001

Su Altı Patlama Yüküne Maruz Sandviç Kompozit Panellerin Nümerik Analizi

Year 2021, , 108 - 121, 31.12.2021
https://doi.org/10.54926/gdt.980177

Abstract

Su altı patlamaları, yüzer yapılar ve içerisindeki insan yaşamı için son derece tehlikelidir. Hava patlamaları ile karşılaştırıldığında, su altı patlaması, sıvı ortamının etkisiyle çok daha zorlayıcıdır. Bu sebeple su altı patlamasına karşı dayanımı yüksek deniz yapılarının tasarımı önemli olduğu kadar zor bir konudur. Malzeme teknolojisinin hızla ilerlemesiyle birlikte kompozit malzemeler, düşük yoğunluklu, yüksek elastikiyete ve yüksek mukavemete sahip olmaları nedeniyle deniz ve savunma alanlarında metallere göre yaygın olarak tercih edilmektedirler. Bu çalışmada, yumuşak çekirdekli bir sandviç panel, sonlu elemanlar yöntemi kullanılarak modellenmiş ve su altı patlama yükü altında dinamik davranışı incelenmiştir. Model ve yöntemin doğrulama çalışmasında ilk olarak, su altı patlama yüküne maruz karbon epoksi kompozit plak yapısının dinamik tepkileri literatürde mevcut olan sonuçlarla doğrulanmıştır. Bu bölümde, plağın dinamik tepkisini analiz etmek için ALE (Arbitrary Lagrangian-Eulerian) ve Load_SSA (Sub-Sea Analysis) yöntemleri kullanılmış ve ALE yöntemi kullanılarak iyi bir uyum elde edildiği gözlenmiştir. Ardından, yumuşak çekirdekli (köpük) kompozit sandviç paneller sonlu eleman tabanlı ALE yöntemi ile incelenmiştir. Son olarak, parametrik çalışmalarla birlikte plak yapısının su altı patlama yükleri altında maksimum deformasyon sonuçları irdelenmiştir. Artan çekirdek katman kalınlığı, aynı patlama şartlarında plak orta nokta çökmesinin azalmasına ve patlama sonrası salınım frekansının artmasına sebep olduğu görülmüştür.

References

  • Aman, Z., Weixing, Z., Shiping, W., & Linhan, F. (2011). Dynamic response of the non-contact underwater explosions on naval equipment. Marine Structures, 24(4), 396–411. https://doi.org/10.1016/j.marstruc.2011.05.005
  • Cole, R. H. (1948). Underwater explosions. In Underwater explosions. Princeton Univ. Press,. https://doi.org/10.5962/bhl.title.48411
  • Dobratz, B. M. (1972). Properties of chemical explosives and explosive simulants. https://doi.org/10.2172/4285272
  • Hammond, L., & Grzebieta, R. (2000). Structural response of submerged air-backed plates by experimental and numerical analyses. Shock and Vibration, 7(6), 333–341. https://doi.org/10.1155/2000/984015
  • Karbhari, V. M., & Zhang, S. (2003). E-glass/vinylester composites in aqueous environments - I: Experimental results. Applied Composite Materials, 10(1), 19–48. https://doi.org/10.1023/A:1021153315780
  • Kumar, P., Stargel, D. S., & Shukla, A. (2013). Effect of plate curvature on blast response of carbon composite panels. Composite Structures, 99, 19–30. https://doi.org/10.1016/j.compstruct.2012.11.036
  • Matos, H., Javier, C., LeBlanc, J., & Shukla, A. (2018). Underwater nearfield blast performance of hydrothermally degraded carbon–epoxy composite structures. Multiscale and Multidisciplinary Modeling, Experiments and Design, 1(1), 33–47. https://doi.org/10.1007/s41939-017-0004-6
  • Nurick, G. N., Gelman, M. E., & Marshall, N. S. (1996). Tearing of blast loaded plates with clamped boundary conditions. International Journal of Impact Engineering, 18(7–8), 803–827. https://doi.org/10.1016/s0734-743x(96)00026-7
  • Qiankun, J., & Gangyi, D. (2011). A finite element analysis of ship sections subjected to underwater explosion. International Journal of Impact Engineering, 38(7), 558–566. https://doi.org/10.1016/j.ijimpeng.2010.11.005
  • Rajendran, R. (2009). Numerical simulation of response of plane plates subjected to uniform primary shock loading of non-contact underwater explosion. Materials & Design, 30(4), 1000–1007. https://doi.org/10.1016/j.matdes.2008.06.054
  • Rajendran, R., & Narasimhan, K. (2001). Linear elastic shock response of plane plates subjected to underwater explosion. International Journal of Impact Engineering, 25(5), 493–506. https://doi.org/10.1016/S0734-743X(00)00056-7
  • Ramajeyathilagam, K., & Vendhan, C. P. (2004). Deformation and rupture of thin rectangular plates subjected to underwater shock. International Journal of Impact Engineering, 30(6), 699–719. https://doi.org/10.1016/j.ijimpeng.2003.01.001
  • Ramajeyathilagam, K., Vendhan, C. P., & Rao, V. B. (2000). Non-linear transient dynamic response of rectangular plates under shock loading. International Journal of Impact Engineering, 24(10), 999–1015. https://doi.org/10.1016/S0734-743X(00)00018-X
  • Schiffer, A., & Tagarielli, V. L. (2015). The response of circular composite plates to underwater blast: Experiments and modelling. Journal of Fluids and Structures, 52, 130–144. https://doi.org/10.1016/j.jfluidstructs.2014.10.009
  • Taskin, M., Arikoglu, A., & Demir, O. (2019). Vibration and damping analysis of sandwich cylindrical shells by the GDQM. AIAA Journal, 57(7), 3040–3051. https://doi.org/10.2514/1.J058128
  • Taylor, G. I. (1963). The pressure and impulse of submarine explosion waves on plates. The Scientific Papers of G. I. Taylor, vol. III. Volume III of The Scientific Papers of G. I. Taylor, Cambridge University Press, Cambridge, UK, 3, 287–303.
  • Wei, X., De Vaucorbeil, A., Tran, P., & Espinosa, H. D. (2013). A new rate-dependent unidirectional composite model – Application to panels subjected to underwater blast. Journal of the Mechanics and Physics of Solids, 61(6), 1305–1318. https://doi.org/10.1016/j.jmps.2013.02.006.
  • Wei, X., Tran, P., De Vaucorbeil, A., Ramaswamy, R. B., Latourte, F., & Espinosa, H. D. (2013). Three-dimensional numerical modeling of composite panels subjected to underwater blast. Journal of the Mechanics and Physics of Solids, 61(6), 1319–1336. https://doi.org/10.1016/j.jmps.2013.02.007.
  • Zhang, N., Zong, Z., & Zhang, W. (2014). Dynamic response of a surface ship structure subjected to an underwater explosion bubble. Marine Structures, 35, 26–44. https://doi.org/10.1016/j.marstruc.2013.11.001
There are 19 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mert Serveren This is me 0000-0002-2766-2691

Mustafa Taşkın 0000-0002-7212-2424

Özgür Demir 0000-0003-0865-0684

Publication Date December 31, 2021
Published in Issue Year 2021

Cite

APA Serveren, M., Taşkın, M., & Demir, Ö. (2021). Numerical Analysis of Composite Sandwich Panels Subjected to Underwater Blast Load. Gemi Ve Deniz Teknolojisi(220), 108-121. https://doi.org/10.54926/gdt.980177