Research Article
BibTex RIS Cite

Lineer Olmayan BEM ve RANS Yöntemleriyle Gemi Pervanelerinin Performans Tahmini

Year 2019, Issue: 215, 78 - 92, 09.08.2019

Abstract

Kanat elemanı momentum tekniği, bir pervanenin performans tayininde son derece hızlı, basit ve efektif bir yöntemdir. Geleneksel lineer kanat elemanı momentum yöntemi, direncin indüklenmiş hücum açısı üzerindeki etkisinin küçük olduğunu kabul eder. Dolayısıyla, kanat açıklığı boyunca indüklenmiş hücum açıları küçük kalır. Ancak bu yaklaşımözellikle, yüksek ilerleme sayılarında doğru sonuçlar vermez. Lineer olmayan kanat elemanı momentum teoris bu problem çözer. Bu çalışmada, DTMB 4381 test pervanesinin açık su performansı kanat elemanı momentum teorisi ve RANS yöntemleriyle incelenmiştir. Elde edilen sonuçlar, lineer kanat elemanları yönteminin sonuçları ve deneysel verilerle karşılaştırılmıştır.

References

  • Bal, S. (2011a). A method for optimum cavitating ship propellers. Turkish Journal of Engineering and Environmental Sciences (TUBITAK), 35, 139-158. Bal, S. (2011b). Practical technique for improvement of open water propeller performance. Proceedings of the Institution of Mechanical Engineers, Part M, Journal of Engineering for the Maritime Environment, 225(4), 375-386. Bal, S. and Guner, M. (2009). Performance analysis of podded propulsors. Ocean Engineering, 36, 556-563. Benini, E. (2004). Significance of blade element theory in performance prediction of marine propellers. Ocean Engineering, 31, 957–974. Brizzolara, S., Villa, D., Stefano, G. (2008) A systematic comparison between RANS and Panel Methods for Propeller Analysis, Proceedings of 8th International Conference on Hydrodynamics, Nantes, France. Carlton J. S. (2012). Marine propellers and propulsion, Butterworth-Heinemann, Burlington, USA, 3rd edition. Celik, I. B., Ghia, U., and Roache, P. J. (2008). “Procedure for estimation and reporting of uncertainty due to discretization in CFD applications,” J. Fluids Eng.-Trans. ASME. Fluent 17.2 User’s Manual (2016). Grassi, D. and Brizzolara, S. (2007). Numerical analysis of propeller performance by lifting surface theory. 2nd Int. Conf. on Marine Research and Transportation, June, Italy. Glauert, H. (1935). Airplane propellers. Aerodynamic Theory., Springer, Berlin, Heidelberg, 169–360. ITTC (2011). “75-03-01-04 CFD, General CFD Verification,” ITTC-Recomm. Proced. Guidelines. Karaalioglu, M., S. and Bal, S. (2018). Nonlinear correction to blade element momentum theory for marine propellers. Proc. 3rd International Symposium on Naval Architecture and Maritime (INT-NAM 2018), pp: 917-926, Yildiz Technical University, Besiktas Campus, Istanbul, April 24-25. McCormick, B. W. (1999). Aerodynamics of V/STOL flight, Dover Publications, Mineola, NY. Molland, A., Turnock, S., and Hudson, D. (2011). Ship resistance and propulsion: practical estimation of ship propulsive power. Cambridge Univ. Press., UK. Okulov, V., Sørensen, J., and Wood, D. (2015). The rotor theories by professor Joukowsky: vortex theories. Progress in Aerospace Sciences, 73, 19–46. Roache, P. J. (1998). “Verification of Codes and Calculations,” AIAA J., 36, 696–702. doi:10.2514/2.457 Soydan, A. (2018). Investigation of marine propeller performance characteristic with blade element momentum theory and computational fluid dynamics. MSc Thesis, Istanbul Technical University. Soydan, A. and Bal, S. (2018). Nonlinear large angle solution of blade element momentum theory for marine propellers. Proc. 4th Int. Conf. on Advances in Mechanical Engineering, ICAME 2018, 960-974, Dec. 19-21, Istanbul, Turkey. Sun, Z., Chen, J., Shen, W. and Zhu, W. (2016). Improved blade element momentum theory for wind turbine aerodynamic computations. Renewable Energy, 96, 824–831. Ulgen, K., (2017). Comparison between blade element momentum theory and computational fluid dynamics methods for performance prediction of marine propellers. MSc Thesis, Istanbul Technical University. Url-1 http://web.mit.edu/drela/Public/web/xfoil/, accessed at: 25.08.2018. Versteeg, H.K., Malalasekera, W., (2007). An Introduction to Computational Fluid Dynamics, 2nd Edition, Pearson. Whitmore, S.A. and Merrill, R.S. (2012). Nonlinear large angle solutions of the blade element momentum theory propeller equations. Journal of Aircraft, 49(4). Wilcox, D.C., (1993). Turbulence modelling for CFD, La Canada.
Year 2019, Issue: 215, 78 - 92, 09.08.2019

Abstract

References

  • Bal, S. (2011a). A method for optimum cavitating ship propellers. Turkish Journal of Engineering and Environmental Sciences (TUBITAK), 35, 139-158. Bal, S. (2011b). Practical technique for improvement of open water propeller performance. Proceedings of the Institution of Mechanical Engineers, Part M, Journal of Engineering for the Maritime Environment, 225(4), 375-386. Bal, S. and Guner, M. (2009). Performance analysis of podded propulsors. Ocean Engineering, 36, 556-563. Benini, E. (2004). Significance of blade element theory in performance prediction of marine propellers. Ocean Engineering, 31, 957–974. Brizzolara, S., Villa, D., Stefano, G. (2008) A systematic comparison between RANS and Panel Methods for Propeller Analysis, Proceedings of 8th International Conference on Hydrodynamics, Nantes, France. Carlton J. S. (2012). Marine propellers and propulsion, Butterworth-Heinemann, Burlington, USA, 3rd edition. Celik, I. B., Ghia, U., and Roache, P. J. (2008). “Procedure for estimation and reporting of uncertainty due to discretization in CFD applications,” J. Fluids Eng.-Trans. ASME. Fluent 17.2 User’s Manual (2016). Grassi, D. and Brizzolara, S. (2007). Numerical analysis of propeller performance by lifting surface theory. 2nd Int. Conf. on Marine Research and Transportation, June, Italy. Glauert, H. (1935). Airplane propellers. Aerodynamic Theory., Springer, Berlin, Heidelberg, 169–360. ITTC (2011). “75-03-01-04 CFD, General CFD Verification,” ITTC-Recomm. Proced. Guidelines. Karaalioglu, M., S. and Bal, S. (2018). Nonlinear correction to blade element momentum theory for marine propellers. Proc. 3rd International Symposium on Naval Architecture and Maritime (INT-NAM 2018), pp: 917-926, Yildiz Technical University, Besiktas Campus, Istanbul, April 24-25. McCormick, B. W. (1999). Aerodynamics of V/STOL flight, Dover Publications, Mineola, NY. Molland, A., Turnock, S., and Hudson, D. (2011). Ship resistance and propulsion: practical estimation of ship propulsive power. Cambridge Univ. Press., UK. Okulov, V., Sørensen, J., and Wood, D. (2015). The rotor theories by professor Joukowsky: vortex theories. Progress in Aerospace Sciences, 73, 19–46. Roache, P. J. (1998). “Verification of Codes and Calculations,” AIAA J., 36, 696–702. doi:10.2514/2.457 Soydan, A. (2018). Investigation of marine propeller performance characteristic with blade element momentum theory and computational fluid dynamics. MSc Thesis, Istanbul Technical University. Soydan, A. and Bal, S. (2018). Nonlinear large angle solution of blade element momentum theory for marine propellers. Proc. 4th Int. Conf. on Advances in Mechanical Engineering, ICAME 2018, 960-974, Dec. 19-21, Istanbul, Turkey. Sun, Z., Chen, J., Shen, W. and Zhu, W. (2016). Improved blade element momentum theory for wind turbine aerodynamic computations. Renewable Energy, 96, 824–831. Ulgen, K., (2017). Comparison between blade element momentum theory and computational fluid dynamics methods for performance prediction of marine propellers. MSc Thesis, Istanbul Technical University. Url-1 http://web.mit.edu/drela/Public/web/xfoil/, accessed at: 25.08.2018. Versteeg, H.K., Malalasekera, W., (2007). An Introduction to Computational Fluid Dynamics, 2nd Edition, Pearson. Whitmore, S.A. and Merrill, R.S. (2012). Nonlinear large angle solutions of the blade element momentum theory propeller equations. Journal of Aircraft, 49(4). Wilcox, D.C., (1993). Turbulence modelling for CFD, La Canada.
There are 1 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Ahmet Soydan This is me

Şakir Bal This is me

Publication Date August 9, 2019
Published in Issue Year 2019 Issue: 215

Cite

APA Soydan, A., & Bal, Ş. (2019). Lineer Olmayan BEM ve RANS Yöntemleriyle Gemi Pervanelerinin Performans Tahmini. Gemi Ve Deniz Teknolojisi(215), 78-92.