Research Article
BibTex RIS Cite

Investigating The Effects Of Cylindrical Appandages On Hydrofoil Surface To Formation Of Cavitation

Year 2021, Issue: 220, 227 - 244, 31.12.2021
https://doi.org/10.54926/gdt.1022039

Abstract

In parallel with the developments in computer technologies, great improvements in computational fluid dynamics approaches enabled researchers to perform realistic cavitation analysis. In this study, cylindrical appandages which have different radius and locations are located on suction side of NACA661-012 hydrofoils leading edge. Effects of these appandages on cavitation occurance have been investagated. Firstly, cavitating and non-cavitating analysis have been performed for original hydrofoil and CFD approach has been verified with experimental and numerical results in literature. Then cavitating simulations of modificated hydrofoils with cylindrical appandages have been performed at 6o angle of attack. Effects of the appandages on cavitation formation and other hydrodynamic parameters were examined by post-processing of the simulations. It is concluded that some of the appandages reduced cavitation formation, some did not affect significantly while some of them increased the amount of cavitation. Meanwhile, the drag and lift forces which determine the performance of a hydrofoil were increased or decreased with different appandages. As a result, implementation of minor modifications on a hydrofoil without changing the characteristic profile can reduce the negative effects of cavitation.

References

  • Usta, O., Aktaş, B., Maasch M., Turan O., Atlar M. and Korkut E., (2017). A Study On the Numerical Prediction of Cavitation Erosion for Propellers. Fifth International Symposium on Marine Propulsion smp’17, Espoo, Finland, June 2017.
  • Sezen S, Kinaci O.K., (2019). Incompressible Flow Assumption in Hydroacoustic Predictions of Marine Propellers. Ocean Eng 186:106138.
  • Lou B., Ciu H., (2021). Fluid–Structure Interaction Vibration Experiments And Numerical Verification Of A Real Marine Propeller. Polish Maritime Research 3 (111) 2021 Vol. 28; Pp. 61-7510.2478/Pomr-2021-0034
  • Stern, F., Wilson, R. V., Coleman, H. W. and Paterson, E. G., 2001. Comprehensive approach to verification and validation of CFD simulations –Part 1: methodology and procedures, Journal of Fluids Engineering –Transactions of ASME, 123(4), p. 793-802.
  • Abbott, I.H., von Doenhoff, A.E., Stivers, L.S. (1945). NACA Report No. 824 - Summary of Airfoil Data, pp. 372-386.
  • Mohammad D. Qandil1, Tarek Elgammal, Ahmad I. Abbas, Ahmad I. Abdelhadi and Ryoichi S. Amano (2019). Predicting the Cavitation Phenomena Over the Hydrofoil: CFD Validation.
  • Kermeen, R.W. (1956). Water Tunnel Tests of THE NACA 661-012 HYDROFOIL IN NONCAVITATING AND CAVITATING FLOWS. Hydrodynamics Laboratary California Institute of Technology. Pasadenamontery, CA
  • Kermeen, R.W. (1956). Water Tunnel Tests of THE NACA 4412 AND WALCHNER PROFILE 7 HYDROFOILS IN NONCAVITATING AND CAVITATING FLOWS. Hydrodynamics Laboratory California Institute of Technology. Pasadenamontery, CA.
  • Moretzzadeh, M., Katal, A., & Javadi, Khodyar. (2014). Cavitation Control on Hydrofoils. Proceedings of the International Conference on Heat Transfer and Fluid Flow.
  • Havaldar, S.N., Pawar, S., Lele, A., Pradhan, R. & Rishi, A. (2015). Experimental Investigation of Lift for NACA 2412 Airfoil without Internal Passage with NACA 2412 Airfoil with Internal Pasage in a Subsonic Wind Tunnel. Journal of Aerospace Engineering & Technology, 5 (2).
  • Sedlar, M.D., Elgammal, T., Abbas, A.I., Abdelhadi, A.I. & Amano, R.S.(2019). Predicting the Cavitation Phenomena Over the Hydrofoil: CFD Validation. AIAA Scitech 2019 Forum.
  • Yang, J., Zhou, L., Wang, Z.W., Zhi, F.L. (2013). The effect of cavitation on the hydrofoil dynamic characteristics. IOP Conference Series: Materials Science and Engineering, 52(6).

Hidrofoil Yüzeyindeki Silindirik Eklentilerin Kavitasyon Oluşumuna Etkilerinin İncelenmesi

Year 2021, Issue: 220, 227 - 244, 31.12.2021
https://doi.org/10.54926/gdt.1022039

Abstract

Bilgisayar teknolojilerindeki gelişmelere paralel olarak hesaplamalı akışkanlar dinamiği (HAD) yaklaşımlarındaki büyük ilerlemeler, kavitasyon alanında da gerçekçi analizlerin yapılabilmesine imkan vermiştir. Bu çalışmada NACA661-012 kanat profiline sahip bir hidrofoilin önder kenar bölgesinde, emme yüzeyine farklı konumlarda ve yarıçaplarda silindirik eklentiler yerleştirilmiş ve bunların kavitasyon oluşumuna etkileri araştırılmıştır. Öncelikle orijinal hidrofoil için kavitasyonlu ve kavitasyonsuz durumda analizler gerçekleştirilmiş ve uygulanan HAD yaklaşımının literatürde bulunan deneysel ve sayısal sonuçlar kullanılarak doğrulaması yapılmıştır. Daha sonra silindirik eklentilerin yerleştirildiği, 6o hücum açısına sahip modifikasyonlu hidrofoillerin kavitasyonlu durumdaki analizleri gerçekleştirilmiş ve hidrodinamik parametreleri belirlenmiştir. Analiz sonrası süreçlerde, söz konusu eklentilerin kavitasyon oluşumuna ve diğer hidrodinamik parametrelere olan etkileri incelenmiştir. Eklentilerin bir kısmının kavitasyon oluşumunu azalttığı, bir kısmının önemli bir etki yaratmadığı ve bir kısmının da olumsuz etki yaratarak kavitasyon miktarını artırdığı görülmüştür. Bununla birlikte bir hidrofoilin performansını belirleyen kaldırma ve sürükleme kuvvetlerinin de farklı eklentilerle olumlu veya olumsuz yönde değişebildiği görülmüştür. Sonuç olarak mevcut bir kanat profiline yapılacak küçük modifikasyonlarla kanat profilini değiştirmeden kavitasyonun olumsuz etkilerinin iyileştirilebildiği anlaşılmıştır.

References

  • Usta, O., Aktaş, B., Maasch M., Turan O., Atlar M. and Korkut E., (2017). A Study On the Numerical Prediction of Cavitation Erosion for Propellers. Fifth International Symposium on Marine Propulsion smp’17, Espoo, Finland, June 2017.
  • Sezen S, Kinaci O.K., (2019). Incompressible Flow Assumption in Hydroacoustic Predictions of Marine Propellers. Ocean Eng 186:106138.
  • Lou B., Ciu H., (2021). Fluid–Structure Interaction Vibration Experiments And Numerical Verification Of A Real Marine Propeller. Polish Maritime Research 3 (111) 2021 Vol. 28; Pp. 61-7510.2478/Pomr-2021-0034
  • Stern, F., Wilson, R. V., Coleman, H. W. and Paterson, E. G., 2001. Comprehensive approach to verification and validation of CFD simulations –Part 1: methodology and procedures, Journal of Fluids Engineering –Transactions of ASME, 123(4), p. 793-802.
  • Abbott, I.H., von Doenhoff, A.E., Stivers, L.S. (1945). NACA Report No. 824 - Summary of Airfoil Data, pp. 372-386.
  • Mohammad D. Qandil1, Tarek Elgammal, Ahmad I. Abbas, Ahmad I. Abdelhadi and Ryoichi S. Amano (2019). Predicting the Cavitation Phenomena Over the Hydrofoil: CFD Validation.
  • Kermeen, R.W. (1956). Water Tunnel Tests of THE NACA 661-012 HYDROFOIL IN NONCAVITATING AND CAVITATING FLOWS. Hydrodynamics Laboratary California Institute of Technology. Pasadenamontery, CA
  • Kermeen, R.W. (1956). Water Tunnel Tests of THE NACA 4412 AND WALCHNER PROFILE 7 HYDROFOILS IN NONCAVITATING AND CAVITATING FLOWS. Hydrodynamics Laboratory California Institute of Technology. Pasadenamontery, CA.
  • Moretzzadeh, M., Katal, A., & Javadi, Khodyar. (2014). Cavitation Control on Hydrofoils. Proceedings of the International Conference on Heat Transfer and Fluid Flow.
  • Havaldar, S.N., Pawar, S., Lele, A., Pradhan, R. & Rishi, A. (2015). Experimental Investigation of Lift for NACA 2412 Airfoil without Internal Passage with NACA 2412 Airfoil with Internal Pasage in a Subsonic Wind Tunnel. Journal of Aerospace Engineering & Technology, 5 (2).
  • Sedlar, M.D., Elgammal, T., Abbas, A.I., Abdelhadi, A.I. & Amano, R.S.(2019). Predicting the Cavitation Phenomena Over the Hydrofoil: CFD Validation. AIAA Scitech 2019 Forum.
  • Yang, J., Zhou, L., Wang, Z.W., Zhi, F.L. (2013). The effect of cavitation on the hydrofoil dynamic characteristics. IOP Conference Series: Materials Science and Engineering, 52(6).
There are 12 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Metin Kemal Gökçe 0000-0003-0393-3415

Şafak Akgünlü This is me 0000-0001-8977-9118

Aydın Tekerek This is me 0000-0003-0105-0782

Mehmet Can Durukan 0000-0001-9358-4786

Alper Altınışık 0000-0002-5092-1436

Publication Date December 31, 2021
Published in Issue Year 2021 Issue: 220

Cite

APA Gökçe, M. K., Akgünlü, Ş., Tekerek, A., Durukan, M. C., et al. (2021). Hidrofoil Yüzeyindeki Silindirik Eklentilerin Kavitasyon Oluşumuna Etkilerinin İncelenmesi. Gemi Ve Deniz Teknolojisi(220), 227-244. https://doi.org/10.54926/gdt.1022039