Research Article
BibTex RIS Cite

Darpa Denizalti Modelinde Derinliğe Bağlı Olarak Değişen Hidrodinamik Manevra Türevlerinin ve Yatay Stabilitenin İncelenmesi

Year 2022, Issue: 221, 42 - 58, 30.06.2022
https://doi.org/10.54926/gdt.1084413

Abstract

Bilindiği üzere, DARPA SUBOFF denizaltı modeli derin suda yatay stabiliteye sahip değildir. Bu çalışmada, denizaltı modelinin periskop (şnorkel) seyri esnasında veya su yüzeyine yakın hareket ederken yatay stabilitesi 3 serbestlik dereceli olarak tespit edilmiştir. Denizaltı stabilitesi ve hidrodinamik manevra türevleri tespit edilirken farklı derinliklerde yanal öteleme kuvvetine ait doğrusal katsayılar ve savrulma açısal momentine ait doğrusal katsayılar kullanılmıştır. Denizaltı çapı D olmak üzere, derinlikler 1.1D, 2.2D, 3.3D ve 6D olarak seçilmiştir. Manevra türevleri hesaplamalı akışkanlar dinamiği metodlarıyla bir seri sistematik analiz yapılarak elde edilmiştir. Hesaplamalı analizlerde gerekli doğrulama çalışmaları da yapılmıştır. Hesaplamalı akışkanlar dinamiği analizlerinde boyuna ve yanal kuvvet türevleri, ve savrulma momenti türevleri hesaplanarak doğrusal modelde X0, Xv, Xd, Xẟ, Yv, Yr, Yẟ. Nv, Nr ve Nẟ katsayıları belirlenmiş ve hidrodinamik model oluşturulmuştur. Farklı derinliklere göre elde edilen hidrodinamik türevler ile denizaltının yatay stabiliteye sahip olup olmadığı tespit edilmiştir. Denizaltı modelinin, serbest su yüzeyine yakın seyir durumlarında yatay stabiliyete sahip olduğu ve 4.6D derinlikten itibaren ise yatay stabilitesini kaybettiği bulunmuştur.

References

  • Amiri, M. M., Sphaier, S. H., Vitola, A. M., Esperança, P. T., (2019). URANS investigation of the interaction between the free surface and a shallowly submerged underwater vehicle at steady drift, Applied Ocean Research, no. 84, p. 192–205.
  • Ashok, A., & Smits, A. J. (2013). The turbulent wake of a submarine model in pitch and yaw. Begel House Inc.
  • Bettle, M.C., Gerber, A.G., Watt, G.D., (2009). Unsteady analysis of the six DOF motion of a buoyantly rising submarine, Computers & Fluids, no. 38, pp. 1833-1849,.
  • Chase, N. (2012). Simulations of the DARPA Suboff submarine including self-propulsion with the E1619 propeller. IOWA UNIV IOWA CITY.
  • Duman, S. and Bal, S., (2017). Prediction of the turning and zig-zag maneuvering performance of a surface combatant with URANS, Ocean Systems Engineering, An International Journal, Vol. 7, No: 4, pp:435-460,.
  • Duman, S. and Bal, S., (2021). Prediction of the Acceleration and Stopping Manoeuvres of a Bare Hull Surface Combatant by Closed-Form Solutions and CFD”, Ocean Engineering, 235, 109428,.
  • Efremov. D. V., Milanov, E.M., (2019). Hydrodynamics of DARPA SUBOFF Submarine at Shallowly Immersion Conditions, TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Cilt.1 Vol.13,, no. No.2, pp. 337-342,.
  • Foroushani J.A., Sabzpooshani M., (2021). Applied Ocean Research, cilt 108,.
  • Fossen T. I., (1994). Guidance and Control of Ocean Vehicles, New York: John Wiley and Sons.,
  • Groves, N.C., Huang, T. T., Chang, M. S., (1989). Geometric characteristics of DARPA SUBOFF models, DTRC/SHD-1298-01, Bethesda,.
  • Inoune, S., Hirano M., and Kijima, K., Hydrodynamic Derivatıves On Ship Manoeuvring,
  • Kirikbas, O., Kinaci, O.K. and Bal, S., (2021). Sualtı Araçlarının Manevra Karakteristiklerinin Değerlendirilmesi-I: Manevra Analizlerinde Kullanılan Yaklaşımlar, GMO Journal of Ship and Marine Technology, The Turkish Chamber of Naval Architects and Marine Engineers, No: 219, June 2021, pp: 6-58.
  • Kirikbas, O., Bal, S. and Baykal, M.A., (2021). Comparison of the Rules of Classification Societies (IACS Members) in the Area of Submersible Maneuvering, European Journal of Science and Technology, Special Issue 28, November 2021, pp: 178-183.
  • Kirikbas, O., Kinaci, O.K. and Bal, S., (2021). Sualtı Araçlarının Manevra Karakteristiklerinin Değerlendirilmesi-II: Akışkan Sınırlarının Etkileri, GMO Journal of Ship and Marine Technology, The Turkish Chamber of Naval Architects and Marine Engineers, No: 220, December 2021, pp: 135-174.
  • Li, Y., Ye, J., Wu, J., Zhang, T., (2019). The Hydrodynamic Noise Suppression of a Scaled,» Marine Science and Engineering, cilt 7, no. 68, pp. 1-27,.
  • Racine, B. J., & Paterson, E. G., (2005). CFD-based method for simulation of marine- vehicle maneuvering. In 35th AIAA Fluid Dynamics Conference and Exhibit, Toronto, Ontario Canada.
  • Ray A., Singh, S. N., Seshadri, V., (2009). Evaluation of Linear and Nonlinear Hydrodynamic Coefficients of Underwater Vehicles Using CFD,» ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering,.
  • Roddy, R., (1990). «Investigation of the Stability and Control Characteristics of Several Configurations of the Darpa Suboff Model (DTRC Model 5470) from Captive – Model Experiments, DTMB Techn. Report DTRC/SHD‐ 1298‐08, Bethesda, USA,.
  • Sakaki, A., Kerdabadi, S., (2020). Experimental and numerical determination of the hydrodynamic coefficients of an autonomous underwater vehicle., cilt 10.17402/427, pp. 124-135, 2020.
  • Sezen, S., Dogrul, A., Delen, C. and Bal, S., (2018). Investigation of Self-Propulsion of DARPA SUBOFF by RANS Method, Ocean Engineering, Vol. 150, pp: 258-271, 2018.
  • Sukas, O.F., Kinaci, O.K. and Bal, S., (2021). Asymmetric Ship Maneuvering Due to Twisted Rudder Using System-Based and Direct CFD Approaches”, Applied Ocean Research, 108, 102529,.

An Investigation of Hydrodynamic Maneuvering Derivatives and Horizontal Stability of Darpa Suboff Depending on Depth

Year 2022, Issue: 221, 42 - 58, 30.06.2022
https://doi.org/10.54926/gdt.1084413

Abstract

It is known that DARPA SUBOFF submarine model does not have a horizontal stability in deep water. In this study, the horizontal stability of submarine model moving during the periscope (snorkel) position or close to the free water surface, has been determined in 3 DoF (degrees of freedom). While determining the submarine stability and hydrodynamic maneuvering derivatives, linear coefficients of lateral translational force at different depths and linear coefficients of yaw angular moment were used. The depths were selected as 1.1D, 2.2D, 3.3D and 6D, here D is submarine diameter. The maneuvering derivatives were obtained by performing systematic analyzes with the computational fluid dynamics method. Necessary validation studies were also carried out in computational analyzes. In computational fluid dynamics analysis, longitudinal and lateral force derivatives, and yaw moment derivatives were determined and X0, Xv, Xd, Xẟ, Yv, Yr, Yẟ, Nv, Nr ve Nẟ terms were computed in the linear model. A hydrodynamic model was generated with these coefficients. The horizontal stability was then determined with the effects of different depths by using this hydrodynamic model. It has been found that the submarine model has horizontal stability when cruising close to the free water surface and loses its horizontal stability for water depths greater than 4.6D.

References

  • Amiri, M. M., Sphaier, S. H., Vitola, A. M., Esperança, P. T., (2019). URANS investigation of the interaction between the free surface and a shallowly submerged underwater vehicle at steady drift, Applied Ocean Research, no. 84, p. 192–205.
  • Ashok, A., & Smits, A. J. (2013). The turbulent wake of a submarine model in pitch and yaw. Begel House Inc.
  • Bettle, M.C., Gerber, A.G., Watt, G.D., (2009). Unsteady analysis of the six DOF motion of a buoyantly rising submarine, Computers & Fluids, no. 38, pp. 1833-1849,.
  • Chase, N. (2012). Simulations of the DARPA Suboff submarine including self-propulsion with the E1619 propeller. IOWA UNIV IOWA CITY.
  • Duman, S. and Bal, S., (2017). Prediction of the turning and zig-zag maneuvering performance of a surface combatant with URANS, Ocean Systems Engineering, An International Journal, Vol. 7, No: 4, pp:435-460,.
  • Duman, S. and Bal, S., (2021). Prediction of the Acceleration and Stopping Manoeuvres of a Bare Hull Surface Combatant by Closed-Form Solutions and CFD”, Ocean Engineering, 235, 109428,.
  • Efremov. D. V., Milanov, E.M., (2019). Hydrodynamics of DARPA SUBOFF Submarine at Shallowly Immersion Conditions, TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Cilt.1 Vol.13,, no. No.2, pp. 337-342,.
  • Foroushani J.A., Sabzpooshani M., (2021). Applied Ocean Research, cilt 108,.
  • Fossen T. I., (1994). Guidance and Control of Ocean Vehicles, New York: John Wiley and Sons.,
  • Groves, N.C., Huang, T. T., Chang, M. S., (1989). Geometric characteristics of DARPA SUBOFF models, DTRC/SHD-1298-01, Bethesda,.
  • Inoune, S., Hirano M., and Kijima, K., Hydrodynamic Derivatıves On Ship Manoeuvring,
  • Kirikbas, O., Kinaci, O.K. and Bal, S., (2021). Sualtı Araçlarının Manevra Karakteristiklerinin Değerlendirilmesi-I: Manevra Analizlerinde Kullanılan Yaklaşımlar, GMO Journal of Ship and Marine Technology, The Turkish Chamber of Naval Architects and Marine Engineers, No: 219, June 2021, pp: 6-58.
  • Kirikbas, O., Bal, S. and Baykal, M.A., (2021). Comparison of the Rules of Classification Societies (IACS Members) in the Area of Submersible Maneuvering, European Journal of Science and Technology, Special Issue 28, November 2021, pp: 178-183.
  • Kirikbas, O., Kinaci, O.K. and Bal, S., (2021). Sualtı Araçlarının Manevra Karakteristiklerinin Değerlendirilmesi-II: Akışkan Sınırlarının Etkileri, GMO Journal of Ship and Marine Technology, The Turkish Chamber of Naval Architects and Marine Engineers, No: 220, December 2021, pp: 135-174.
  • Li, Y., Ye, J., Wu, J., Zhang, T., (2019). The Hydrodynamic Noise Suppression of a Scaled,» Marine Science and Engineering, cilt 7, no. 68, pp. 1-27,.
  • Racine, B. J., & Paterson, E. G., (2005). CFD-based method for simulation of marine- vehicle maneuvering. In 35th AIAA Fluid Dynamics Conference and Exhibit, Toronto, Ontario Canada.
  • Ray A., Singh, S. N., Seshadri, V., (2009). Evaluation of Linear and Nonlinear Hydrodynamic Coefficients of Underwater Vehicles Using CFD,» ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering,.
  • Roddy, R., (1990). «Investigation of the Stability and Control Characteristics of Several Configurations of the Darpa Suboff Model (DTRC Model 5470) from Captive – Model Experiments, DTMB Techn. Report DTRC/SHD‐ 1298‐08, Bethesda, USA,.
  • Sakaki, A., Kerdabadi, S., (2020). Experimental and numerical determination of the hydrodynamic coefficients of an autonomous underwater vehicle., cilt 10.17402/427, pp. 124-135, 2020.
  • Sezen, S., Dogrul, A., Delen, C. and Bal, S., (2018). Investigation of Self-Propulsion of DARPA SUBOFF by RANS Method, Ocean Engineering, Vol. 150, pp: 258-271, 2018.
  • Sukas, O.F., Kinaci, O.K. and Bal, S., (2021). Asymmetric Ship Maneuvering Due to Twisted Rudder Using System-Based and Direct CFD Approaches”, Applied Ocean Research, 108, 102529,.
There are 21 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Furkan Çavdar 0000-0003-3245-5432

Şakir Bal 0000-0001-8688-8482

Publication Date June 30, 2022
Published in Issue Year 2022 Issue: 221

Cite

APA Çavdar, F., & Bal, Ş. (2022). An Investigation of Hydrodynamic Maneuvering Derivatives and Horizontal Stability of Darpa Suboff Depending on Depth. Gemi Ve Deniz Teknolojisi(221), 42-58. https://doi.org/10.54926/gdt.1084413