Research Article
BibTex RIS Cite

Comparison and Evaluation of Open-Source Panel Method Codes against Commercial Codes

Year 2022, Issue: 221, 86 - 108, 30.06.2022
https://doi.org/10.54926/gdt.1106386

Abstract

This work provides a benchmark study regarding the open-source panel method codes of two floating wind turbine platforms. HAMS, NEMOH, and WAMIT are compared in terms of their results, computational performance, user-friendliness, and, flexibility. WAMIT’s data is sourced from previous publications for the OC3 Hywind Spar and OC4 DeepCWind Semisubmersible. These reference values are compared to NEMOH and HAMS for the main parameters representing the movement of the structure: wave excitation forces, added mass values, and potential damping. Both of the open source panel method codes were quite successful in the concept of a simple one-piece spar float rather than a multibody semi-submersible in terms of NRMS values. Overall, the most close results were obtained from the surge for added mass, and the most unfavorable results were from radiation damping in the heave. NEMOH brings ineligible results for pitch on both platforms. Neglecting the pitch axis results of NEMOH, both codes showed parallel and reasonably close results to WAMIT. The study aims to help researchers to choose a free open-source alternative to a validated commercial code.

References

  • [1] Shin, H., Kim, B., Dam, P. T. & Jung, K. Motion of OC4 5MW Semi-Submersible Offshore Wind Turbine in Irregular Waves. Volume 8: Ocean Renewable Energy, American Society of Mechanical Engineers, 2013. Doi: 10.1115/OMAE2013-10463.
  • [2] Heronemus, W., E. Pollution-Free Energy from Offshore Winds. 8th Annual Conference and Exposition Marine Technology Society, 1972.
  • [3] Musial, W., Butterfield, S. & Boone, A. Feasibility of Floating Platform Systems for Wind Turbines. 42nd AIAA Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, 2004. Doi:10.2514/6.2004-1007.
  • [4] Andersen, M., Hindhede, D. & Lauridsen, J. Influence of Model Simplifications Excitation Force. Surge for a Floating Foundation for Offshore Wind Turbines. Energies, 8, 2015.
  • [5] IRENA. Renewable Energy Technologies: Cost Analysis Series, 2012. Accessed on 05.20.2021 [Online]. Available: https://www.irena.org/- /media/Files/IRENA/Agency/Publication/2012/RE_Technologies_Cost_Analysis-WIND_POWER.pdf.
  • [6] Campos, A., Molins, C., Gironella, X. & Trubat, P. Spar concrete monolithic design for offshore wind turbines. Proceedings of the Institution of Civil Engineers - Maritime Engineering, 169, 2016. Proceedings of the 2nd International Congress on Ship and Marine Technology. Ed.: Alkan A.D., Ölmez H. and Demirel Y.D. 16-18 September 2021, Yıldız Teknik Üniversitesi, İstanbul. e-ISBN: 978-605-01-0713-5 46
  • [7] Butterfield, S., Musial, W. & Jonkman, J. Overview of Offshore Wind Technology. Chinese Renewable Energy Industry Association Wind Power Shanghai Conference, 2007.
  • [8] Cordle, A. & Jonkman, J. State of the Art in Floating Wind Turbine Design Tools. 21st International Offshore and Polar Engineering Conference, 2011.
  • [9] Butterfield, S., Musial, W., Jonkman, J. & Sclavounos, P. Engineering Challenges for Floating Offshore Wind Turbines. Copenhagen Offshore Wind Conference, 2007.
  • [10] Olondriz, J., Elorza, I., Trojaola, I., Pujana, A. & Landaluze, J. On the effects of basic platform design characteristics on floating offshore wind turbine control and their mitigation. Journal of Physics: Conference Series, 753, 2016.
  • [11] E. Uzunoglu and C. Guedes Soares, “Hydrodynamic design of a free-float capable tension leg platform for a 10 MW wind turbine,” Ocean Engineering, vol. 197, Feb. 2020. Doi: 10.1016/j.oceaneng.2019.106888.
  • [12] Robertson, A. et al. Offshore Code Comparison Collaboration Continuation within IEA Wind Task 30: Phase II Results Regarding a Floating Semisubmersible Wind System. Volume 9B: Ocean Renewable Energy, American Society of Mechanical Engineers, 2014. Doi: 10.1115/OMAE2014-24040.
  • [13] Matha, D., Schlipf, M., Cordle, A., Pereira, R. & Jonkman, J. Challenges in Simulation of Aerodynamics, Hydrodynamics, and Mooring-Line Dynamics of Floating Offshore Wind Turbines. 21st Offshore and Polar Engineering Conference Maui, Hawaii, 2011.
  • [14] Lawson, M., Yu, Y., Ruehl, K. & Michelen, C. IMPROVING AND VALIDATING THE WEC-‐SIM WAVE ENERGY CONVERTER MODELING CODE. 3rd Marine Energy Technology Symposium, 2015.
  • [15] Bhinder, M. A., Babarit, A., Gentaz, L. & Ferrant, P. Potential time-domain model with viscous correction and CFD analysis of a generic surging floating wave energy converter. International Journal of Marine Energy, 10, 2015.
  • [16] Henderson, A. R. et al. Feasibility Study of Floating Windfarms in Shallow Offshore Sites. Wind Engineering, 27, 2003.
  • [17] Lee, K. Responses of floating wind turbines to wind and wave excitation. MS Thesis Massachusetts Institute of Technology, Dept. of Ocean Engineering, 2005.
  • [18] Vijay, K. G., Karmakar, D., Uzunoglu, E. & Guedes Soares, C. Performance of barge-type floaters for floating wind turbine. Progress in Renewable Energies Offshore (ed. Guedes Soares, C.) CRC Press, 2016. Doi: 10.1201/9781315229256.
  • [19] Wayman, E. N., Sclavounos, P. D., Butterfield, S., Jonkman, J. & Musial, W. Coupled Dynamic Modelling of Floating Wind Turbine Systems. Offshore Technology Conference, Offshore Technology Conference, 2006. Doi: 10.4043/18287-MS.
  • [20] Sclavounos, P., Tracy, C. & Lee, S. Floating Offshore Wind Turbines: Responses in a Seastate Pareto Optimal Designs and Economic Assessment. Volume 6: Nick Newman Symposium on Marine Hydrodynamics; Yoshida and Maeda Special Symposium on Ocean Space Utilization; Special Symposium on Offshore Renewable Energy, ASMEDC, 2008. Doi: 10.1115/OMAE2008-57056.
  • [21] Uzunoglu. E. & Guedes Soares C. A system for the hydrodynamic design of tension leg platforms of floating wind turbines. Ocean Engineering, vol. 171, pp. 78–92, 2019. Doi: 10.1016/J.OCEANENG.2018.10.052.
  • [22] Robertson, A. N. et al. OC5 Project Phase II: Validation of Global Loads of the DeepCwind Floating Semisubmersible Wind Turbine. Energy Procedia, 137, 2017.
  • [23] Jonkman, J. & Musial, W. Offshore Code Comparison Collaboration (OC3) for IEA Wind Task 23 Offshore Wind Technology and Deployment. NREL/TP-5000-48191, 2010. Doi: 10.2172/1004009.
  • [24] Leroy, V., Gilloteaux, J.-C., Philippe, M., Babarit, A. & Ferrant, P. Development of a Simulation Tool Coupling Hydrodynamics and Unsteady Aerodynamics to Study Floating Wind Turbines. Volume 10: Ocean Renewable Energy, American Society of Mechanical Engineers, 2017. Doi: 10.1115/OMAE2017-61203.
  • [25] Murray, J. & Barone, M. The Development of CACTUS, a Wind and Marine Turbine Performance Simulation Code. 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, American Institute of Aeronautics and Astronautics, 2011. Doi:10.2514/6.2011-147. Proceedings of the 2nd International Congress on Ship and Marine Technology. Ed.: Alkan A.D., Ölmez H. and Demirel Y.D. 16-18 September 2021, Yıldız Teknik Üniversitesi, İstanbul. e-ISBN: 978-605-01-0713-5 47
  • [26] Combourieu, A., Philippe, M., Rongère, F. & Babarit, A. InWave: A New Flexible Design Tool Dedicated to Wave Energy Converters. Volume 9B: Ocean Renewable Energy, American Society of Mechanical Engineers, 2014. Doi: 10.1115/OMAE2014-24564.
  • [27] Penalba, M., Kelly, T. & Ringwood, J. Using NEMOH for Modelling Wave Energy Converters: A Comparative Study with WAMIT. 12th European Wave and Tidal Energy Conference Cork, Ireland, 2017.
  • [28] Parisella, G. & Gourlay, T. Comparison of open-source code Nemoh with Wamit for cargo ship motions in shallow water. 2016-23, CMST, Curtin University, 2016.
  • [29] Verbrugghe, T. et al. A Comparison Study of a Generic Coupling Methodology for Modelling Wake Effects of Wave Energy Converter Arrays. Energies, 10(11), 1697, 2017. Doi: 10.3390/en10111697.
  • [30] Fernandez, G. V., Balitsky, P., Stratigaki, V. & Troch, P. Coupling Methodology for Studying the Far Field Effects of Wave Energy Converter Arrays over a Varying Bathymetry. Energies, 11(11), 2899, 2018. Doi: 10.3390/en11112899.
  • [31] Bhinder, M. A. & Murphy, J. Evaluation of the Viscous Drag for a Domed Cylindrical Moored Wave Energy Converter. Marine Science and Engineering, 7, 2019.
  • [32] Schubert, B. W., Robertson, W. S. P., Cazzolato, B. S. & Ghayesh, M. H. Linear and nonlinear hydrodynamic models for dynamics of a submerged point absorber wave energy converter. Ocean Engineering, 197, 106828. 2020.
  • [33] Antonutti, R., Peyrard, C., Johanning, L., Incecik, A. & Ingram, D. The effects of wind-induced inclination on the dynamics of semi-submersible floating wind turbines in the time domain. Renewable Energy, 88, 2016.
  • [34] Zhou et al. Numerical Modelling of Dynamic Responses of a Floating Offshore Wind Turbine Subject to Focused Waves. Energies, 12, 2019.
  • [35] Kohlmann, L. A frequency-dependent drag coefficient on the motion response of a hybrid STC wind-wave energy converter. 2019.
  • [36] Armesto, J. A. et al. Numerical and Experimental Study of a Multi-Use Platform. Volume 6: Ocean Space Utilization; Ocean Renewable Energy, American Society of Mechanical Engineers, 2016. Doi: 10.1115/OMAE2016-54427.
  • [37] Gonzalez Jimenez, M. A hydrodynamic analysis of three floating offshore wind-wave energy converters differing in the floating stability principle. MS Thesis Delft University of Technology Delft, Netherlands, 2020.
  • [38] Doss, A. Impact of box type floating breakwater on motion response of hydrodynamically coupled floating platforms downstream. MS Thesis Delft University of Technology Delft, Netherlands, 2020.
  • [39] Roessling, A. & Ringwood, J. Finite order approximations to radiation forces for wave energy applications. 1st International Conference on Renewable Energies Offshore, 6771, 2014.
  • [40] Hughes, J., Williams, A. & Masters, I. A blind test on floats in extreme waves using a transient potential flow model. Proceedings of the Institution of Civil Engineers - Engineering and Computational Mechanics 173, 2020.
  • [41] Andersson, E. Application of the open-source code Nemoh for modelling of added mass and damping in ship motion simulations. MS Thesis KTH Royal Institute of Technology Stockholm, Sweden, 2018.
  • [42] Kim, Y. & Kim, J.-H. Benchmark study on motions and loads of a 6750-TEU containership. Ocean Engineering, 119, 2016.
  • [43] Liu, Y. et al. A reliable open-source package for performance evaluation of floating renewable energy systems in coastal and offshore regions. Energy Conversion and Management, 174, 516–536, 2018.
  • [44] Liu, Y. HAMS: A Frequency-Domain Pre-processor for Wave-Structure Interactions—Theory, Development, and Application. Marine Science and Engineering, 7, 2019.
  • [45] Liu, Y. A brief manual for running HAMS. Accessed on 05.28.2021 [online] Available: https://github.com/YingyiLiu/HAMS/tree/master/Manual.
  • [46] Zhao, D., Han, N., Goh, E., Cater, J. & Reinecke, A. Offshore wind turbine aerodynamics modelling and measurements. Wind Turbines and Aerodynamics Energy Harvesters, Elsevier, 2019. Doi:10.1016/B978-0-12- 817135-6.00005-3. Proceedings of the 2nd International Congress on Ship and Marine Technology. Ed.: Alkan A.D., Ölmez H. and Demirel Y.D. 16-18 September 2021, Yıldız Teknik Üniversitesi, İstanbul. e-ISBN: 978-605-01-0713-5 48
  • [47] Chakrabarti, S. K. Hydrodynamics of offshore structures: Mathematical theory and its applications in structures. Springer-Verlag New York Inc., New York, NY, 1987.
  • [48] van der Tempel, J., Diepeveen, N. F. B., de Vries, W. E. & Cerda Salzmann, D. Offshore environmental loads and wind turbine design: impact of wind, wave, currents and ice. Wind Energy Systems, Elsevier, 2011. Doi:10.1533/9780857090638.4.463.
  • [49] Fitzgerald, C. J. Nonlinear Potential Flow Models. Numerical Modelling of Wave Energy Converters, Elsevier, 2016. Doi:10.1016/B978-0-12-803210-7.00005-0.
  • [50] Wang, W., Kamath, A., Martin, T., Pákozdi, C. & Bihs, H. A Comparison of Different Wave Modelling Techniques in an Open-Source Hydrodynamic Framework. Marine Science and Engineering, 8, 2020.
  • [51] Morison, J. R., Johnson, J. W. & Schaaf, S. A. The Force Exerted by Surface Waves on Piles. Petroleum Technology, 2, 1950.
  • [52] Patel, M. H. Offshore engineering. Mechanical Engineer’s Reference Book, Elsevier, 1994. Doi:10.1016/B978- 0-7506-1195-4.50018-X.
  • [53] Fang, H. & Duan, M. The Environment and Environmental Load of Offshore Oil Engineering. Offshore Operation Facilities, Elsevier, 2014. Doi:10.1016/B978-0-12-396977-4.00001-9.
  • [54] WAMIT Inc. WAMIT User Manual, V7.4, 2006.
  • [55] Babarit, A. & Delhommeau, G. Theoretical and numerical aspects of the open source BEM solver NEMOH. 11th European Wave and Tidal Energy Conference (EWTEC2015), Nantes, France, 2015.
  • [56] Bergdahl, L. Wave-Induced Loads and Ship Motions. MS Thesis Chalmers University of Technology G6teborg, Sweden, 2009. [57] Jonkman, J. & Buhl, M. FAST User’s Guide. NREL/TP-500-38230, 2005.
  • [58] Jonkman, J. Definition of the Floating System for Phase IV of OC3. NREL/TP-500-47535, 2010. Doi: 10.2172/979456.
  • [59] Uzunoglu, E. & Guedes Soares, C. Hydrodynamic design of a free-float capable tension leg platform for a 10 MW wind turbine. Ocean Engineering, 197, 2020.
  • [60] Jafaryeganeh, H., Rodrigues, J. M. & Guedes Soares, C. Influence of mesh refinement on the motions predicted by a panel code. Maritime Technology and Engineering (ed. Guedes Soares, C.) Taylor & Francis Group, 2014.
  • [61] Ko, K. H., Park, T., Kim, K. H., Kim, Y. & Yoon, D. H. Development of panel generation system for seakeeping analysis. CAD Computer-Aided Design, 43, 848–862, 2011. [62] Uzunoglu, E. & Soares, C. Influence of bracings on the hydrodynamic modelling of a semi-submersible offshore wind turbine platform. Renewable Energies Offshore, CRC Press, 2015. Doi: 10.1201/b18973-106.

Açık Kaynaklı Panel Yöntemi Kodlarının Ticari Kod ile Karşılaştırılması ve Değerlendirilmesi

Year 2022, Issue: 221, 86 - 108, 30.06.2022
https://doi.org/10.54926/gdt.1106386

Abstract

Bu çalışmada, iki yüzer rüzgâr türbini platformu üzerinden açık kaynaklı panel yöntemi kodlarına dair bir kıyaslama çalışması sunulmuştur. HAMS, NEMOH ve WAMIT; sonuçları, hesaplama performansları, kullanım kolaylıkları ve esneklikleri açısından karşılaştırılmıştır. OC3 Hywind Spar ve OC4 DeepCWind Semisubmersible yüzer platformları için WAMIT verileri önceki yayınlardan alınmış olup yapının hareketini temsil eden şu ana parametreler NEMOH ve HAMS değerleri ile karşılaştırılmıştır: yapıya etkiyen dalga kuvvetleri, katma kütle değerleri ve potansiyel sönüm değerleri. Her iki açık kaynak panel yöntemi kodu da, NRMS değerleri baz alınarak, çok elemanlı olan Semisubmersible platformdan ziyade, basit bir tek parça spar platform konseptinde daha başarılı olmuştur. Genel olarak, en yakın sonuçlar, katma kütle için ileri-geri öteleme yönünden; en olumsuz sonuçlar ise, dalıp-çıkma yönündeki radyasyon sönümlenmesinden elde edilmiştir. NEMOH, her iki platformda da baş-kıç vurmada uygun bulunamayacak sonuçlar vermiştir. NEMOH'un bu baş-kıç vurma sonuçları ihmal edilirse, her iki kod da WAMIT'e paralel ve makul derecede yakın sonuçlar vermiştir. Bu çalışmanın amacı, geçerliliği kabul edilmiş bir ticari koda alternatif olarak, araştırmacıların ücretsiz bir açık kaynak kodu seçebilmelerine yardımcı olmaktır.

References

  • [1] Shin, H., Kim, B., Dam, P. T. & Jung, K. Motion of OC4 5MW Semi-Submersible Offshore Wind Turbine in Irregular Waves. Volume 8: Ocean Renewable Energy, American Society of Mechanical Engineers, 2013. Doi: 10.1115/OMAE2013-10463.
  • [2] Heronemus, W., E. Pollution-Free Energy from Offshore Winds. 8th Annual Conference and Exposition Marine Technology Society, 1972.
  • [3] Musial, W., Butterfield, S. & Boone, A. Feasibility of Floating Platform Systems for Wind Turbines. 42nd AIAA Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, 2004. Doi:10.2514/6.2004-1007.
  • [4] Andersen, M., Hindhede, D. & Lauridsen, J. Influence of Model Simplifications Excitation Force. Surge for a Floating Foundation for Offshore Wind Turbines. Energies, 8, 2015.
  • [5] IRENA. Renewable Energy Technologies: Cost Analysis Series, 2012. Accessed on 05.20.2021 [Online]. Available: https://www.irena.org/- /media/Files/IRENA/Agency/Publication/2012/RE_Technologies_Cost_Analysis-WIND_POWER.pdf.
  • [6] Campos, A., Molins, C., Gironella, X. & Trubat, P. Spar concrete monolithic design for offshore wind turbines. Proceedings of the Institution of Civil Engineers - Maritime Engineering, 169, 2016. Proceedings of the 2nd International Congress on Ship and Marine Technology. Ed.: Alkan A.D., Ölmez H. and Demirel Y.D. 16-18 September 2021, Yıldız Teknik Üniversitesi, İstanbul. e-ISBN: 978-605-01-0713-5 46
  • [7] Butterfield, S., Musial, W. & Jonkman, J. Overview of Offshore Wind Technology. Chinese Renewable Energy Industry Association Wind Power Shanghai Conference, 2007.
  • [8] Cordle, A. & Jonkman, J. State of the Art in Floating Wind Turbine Design Tools. 21st International Offshore and Polar Engineering Conference, 2011.
  • [9] Butterfield, S., Musial, W., Jonkman, J. & Sclavounos, P. Engineering Challenges for Floating Offshore Wind Turbines. Copenhagen Offshore Wind Conference, 2007.
  • [10] Olondriz, J., Elorza, I., Trojaola, I., Pujana, A. & Landaluze, J. On the effects of basic platform design characteristics on floating offshore wind turbine control and their mitigation. Journal of Physics: Conference Series, 753, 2016.
  • [11] E. Uzunoglu and C. Guedes Soares, “Hydrodynamic design of a free-float capable tension leg platform for a 10 MW wind turbine,” Ocean Engineering, vol. 197, Feb. 2020. Doi: 10.1016/j.oceaneng.2019.106888.
  • [12] Robertson, A. et al. Offshore Code Comparison Collaboration Continuation within IEA Wind Task 30: Phase II Results Regarding a Floating Semisubmersible Wind System. Volume 9B: Ocean Renewable Energy, American Society of Mechanical Engineers, 2014. Doi: 10.1115/OMAE2014-24040.
  • [13] Matha, D., Schlipf, M., Cordle, A., Pereira, R. & Jonkman, J. Challenges in Simulation of Aerodynamics, Hydrodynamics, and Mooring-Line Dynamics of Floating Offshore Wind Turbines. 21st Offshore and Polar Engineering Conference Maui, Hawaii, 2011.
  • [14] Lawson, M., Yu, Y., Ruehl, K. & Michelen, C. IMPROVING AND VALIDATING THE WEC-‐SIM WAVE ENERGY CONVERTER MODELING CODE. 3rd Marine Energy Technology Symposium, 2015.
  • [15] Bhinder, M. A., Babarit, A., Gentaz, L. & Ferrant, P. Potential time-domain model with viscous correction and CFD analysis of a generic surging floating wave energy converter. International Journal of Marine Energy, 10, 2015.
  • [16] Henderson, A. R. et al. Feasibility Study of Floating Windfarms in Shallow Offshore Sites. Wind Engineering, 27, 2003.
  • [17] Lee, K. Responses of floating wind turbines to wind and wave excitation. MS Thesis Massachusetts Institute of Technology, Dept. of Ocean Engineering, 2005.
  • [18] Vijay, K. G., Karmakar, D., Uzunoglu, E. & Guedes Soares, C. Performance of barge-type floaters for floating wind turbine. Progress in Renewable Energies Offshore (ed. Guedes Soares, C.) CRC Press, 2016. Doi: 10.1201/9781315229256.
  • [19] Wayman, E. N., Sclavounos, P. D., Butterfield, S., Jonkman, J. & Musial, W. Coupled Dynamic Modelling of Floating Wind Turbine Systems. Offshore Technology Conference, Offshore Technology Conference, 2006. Doi: 10.4043/18287-MS.
  • [20] Sclavounos, P., Tracy, C. & Lee, S. Floating Offshore Wind Turbines: Responses in a Seastate Pareto Optimal Designs and Economic Assessment. Volume 6: Nick Newman Symposium on Marine Hydrodynamics; Yoshida and Maeda Special Symposium on Ocean Space Utilization; Special Symposium on Offshore Renewable Energy, ASMEDC, 2008. Doi: 10.1115/OMAE2008-57056.
  • [21] Uzunoglu. E. & Guedes Soares C. A system for the hydrodynamic design of tension leg platforms of floating wind turbines. Ocean Engineering, vol. 171, pp. 78–92, 2019. Doi: 10.1016/J.OCEANENG.2018.10.052.
  • [22] Robertson, A. N. et al. OC5 Project Phase II: Validation of Global Loads of the DeepCwind Floating Semisubmersible Wind Turbine. Energy Procedia, 137, 2017.
  • [23] Jonkman, J. & Musial, W. Offshore Code Comparison Collaboration (OC3) for IEA Wind Task 23 Offshore Wind Technology and Deployment. NREL/TP-5000-48191, 2010. Doi: 10.2172/1004009.
  • [24] Leroy, V., Gilloteaux, J.-C., Philippe, M., Babarit, A. & Ferrant, P. Development of a Simulation Tool Coupling Hydrodynamics and Unsteady Aerodynamics to Study Floating Wind Turbines. Volume 10: Ocean Renewable Energy, American Society of Mechanical Engineers, 2017. Doi: 10.1115/OMAE2017-61203.
  • [25] Murray, J. & Barone, M. The Development of CACTUS, a Wind and Marine Turbine Performance Simulation Code. 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, American Institute of Aeronautics and Astronautics, 2011. Doi:10.2514/6.2011-147. Proceedings of the 2nd International Congress on Ship and Marine Technology. Ed.: Alkan A.D., Ölmez H. and Demirel Y.D. 16-18 September 2021, Yıldız Teknik Üniversitesi, İstanbul. e-ISBN: 978-605-01-0713-5 47
  • [26] Combourieu, A., Philippe, M., Rongère, F. & Babarit, A. InWave: A New Flexible Design Tool Dedicated to Wave Energy Converters. Volume 9B: Ocean Renewable Energy, American Society of Mechanical Engineers, 2014. Doi: 10.1115/OMAE2014-24564.
  • [27] Penalba, M., Kelly, T. & Ringwood, J. Using NEMOH for Modelling Wave Energy Converters: A Comparative Study with WAMIT. 12th European Wave and Tidal Energy Conference Cork, Ireland, 2017.
  • [28] Parisella, G. & Gourlay, T. Comparison of open-source code Nemoh with Wamit for cargo ship motions in shallow water. 2016-23, CMST, Curtin University, 2016.
  • [29] Verbrugghe, T. et al. A Comparison Study of a Generic Coupling Methodology for Modelling Wake Effects of Wave Energy Converter Arrays. Energies, 10(11), 1697, 2017. Doi: 10.3390/en10111697.
  • [30] Fernandez, G. V., Balitsky, P., Stratigaki, V. & Troch, P. Coupling Methodology for Studying the Far Field Effects of Wave Energy Converter Arrays over a Varying Bathymetry. Energies, 11(11), 2899, 2018. Doi: 10.3390/en11112899.
  • [31] Bhinder, M. A. & Murphy, J. Evaluation of the Viscous Drag for a Domed Cylindrical Moored Wave Energy Converter. Marine Science and Engineering, 7, 2019.
  • [32] Schubert, B. W., Robertson, W. S. P., Cazzolato, B. S. & Ghayesh, M. H. Linear and nonlinear hydrodynamic models for dynamics of a submerged point absorber wave energy converter. Ocean Engineering, 197, 106828. 2020.
  • [33] Antonutti, R., Peyrard, C., Johanning, L., Incecik, A. & Ingram, D. The effects of wind-induced inclination on the dynamics of semi-submersible floating wind turbines in the time domain. Renewable Energy, 88, 2016.
  • [34] Zhou et al. Numerical Modelling of Dynamic Responses of a Floating Offshore Wind Turbine Subject to Focused Waves. Energies, 12, 2019.
  • [35] Kohlmann, L. A frequency-dependent drag coefficient on the motion response of a hybrid STC wind-wave energy converter. 2019.
  • [36] Armesto, J. A. et al. Numerical and Experimental Study of a Multi-Use Platform. Volume 6: Ocean Space Utilization; Ocean Renewable Energy, American Society of Mechanical Engineers, 2016. Doi: 10.1115/OMAE2016-54427.
  • [37] Gonzalez Jimenez, M. A hydrodynamic analysis of three floating offshore wind-wave energy converters differing in the floating stability principle. MS Thesis Delft University of Technology Delft, Netherlands, 2020.
  • [38] Doss, A. Impact of box type floating breakwater on motion response of hydrodynamically coupled floating platforms downstream. MS Thesis Delft University of Technology Delft, Netherlands, 2020.
  • [39] Roessling, A. & Ringwood, J. Finite order approximations to radiation forces for wave energy applications. 1st International Conference on Renewable Energies Offshore, 6771, 2014.
  • [40] Hughes, J., Williams, A. & Masters, I. A blind test on floats in extreme waves using a transient potential flow model. Proceedings of the Institution of Civil Engineers - Engineering and Computational Mechanics 173, 2020.
  • [41] Andersson, E. Application of the open-source code Nemoh for modelling of added mass and damping in ship motion simulations. MS Thesis KTH Royal Institute of Technology Stockholm, Sweden, 2018.
  • [42] Kim, Y. & Kim, J.-H. Benchmark study on motions and loads of a 6750-TEU containership. Ocean Engineering, 119, 2016.
  • [43] Liu, Y. et al. A reliable open-source package for performance evaluation of floating renewable energy systems in coastal and offshore regions. Energy Conversion and Management, 174, 516–536, 2018.
  • [44] Liu, Y. HAMS: A Frequency-Domain Pre-processor for Wave-Structure Interactions—Theory, Development, and Application. Marine Science and Engineering, 7, 2019.
  • [45] Liu, Y. A brief manual for running HAMS. Accessed on 05.28.2021 [online] Available: https://github.com/YingyiLiu/HAMS/tree/master/Manual.
  • [46] Zhao, D., Han, N., Goh, E., Cater, J. & Reinecke, A. Offshore wind turbine aerodynamics modelling and measurements. Wind Turbines and Aerodynamics Energy Harvesters, Elsevier, 2019. Doi:10.1016/B978-0-12- 817135-6.00005-3. Proceedings of the 2nd International Congress on Ship and Marine Technology. Ed.: Alkan A.D., Ölmez H. and Demirel Y.D. 16-18 September 2021, Yıldız Teknik Üniversitesi, İstanbul. e-ISBN: 978-605-01-0713-5 48
  • [47] Chakrabarti, S. K. Hydrodynamics of offshore structures: Mathematical theory and its applications in structures. Springer-Verlag New York Inc., New York, NY, 1987.
  • [48] van der Tempel, J., Diepeveen, N. F. B., de Vries, W. E. & Cerda Salzmann, D. Offshore environmental loads and wind turbine design: impact of wind, wave, currents and ice. Wind Energy Systems, Elsevier, 2011. Doi:10.1533/9780857090638.4.463.
  • [49] Fitzgerald, C. J. Nonlinear Potential Flow Models. Numerical Modelling of Wave Energy Converters, Elsevier, 2016. Doi:10.1016/B978-0-12-803210-7.00005-0.
  • [50] Wang, W., Kamath, A., Martin, T., Pákozdi, C. & Bihs, H. A Comparison of Different Wave Modelling Techniques in an Open-Source Hydrodynamic Framework. Marine Science and Engineering, 8, 2020.
  • [51] Morison, J. R., Johnson, J. W. & Schaaf, S. A. The Force Exerted by Surface Waves on Piles. Petroleum Technology, 2, 1950.
  • [52] Patel, M. H. Offshore engineering. Mechanical Engineer’s Reference Book, Elsevier, 1994. Doi:10.1016/B978- 0-7506-1195-4.50018-X.
  • [53] Fang, H. & Duan, M. The Environment and Environmental Load of Offshore Oil Engineering. Offshore Operation Facilities, Elsevier, 2014. Doi:10.1016/B978-0-12-396977-4.00001-9.
  • [54] WAMIT Inc. WAMIT User Manual, V7.4, 2006.
  • [55] Babarit, A. & Delhommeau, G. Theoretical and numerical aspects of the open source BEM solver NEMOH. 11th European Wave and Tidal Energy Conference (EWTEC2015), Nantes, France, 2015.
  • [56] Bergdahl, L. Wave-Induced Loads and Ship Motions. MS Thesis Chalmers University of Technology G6teborg, Sweden, 2009. [57] Jonkman, J. & Buhl, M. FAST User’s Guide. NREL/TP-500-38230, 2005.
  • [58] Jonkman, J. Definition of the Floating System for Phase IV of OC3. NREL/TP-500-47535, 2010. Doi: 10.2172/979456.
  • [59] Uzunoglu, E. & Guedes Soares, C. Hydrodynamic design of a free-float capable tension leg platform for a 10 MW wind turbine. Ocean Engineering, 197, 2020.
  • [60] Jafaryeganeh, H., Rodrigues, J. M. & Guedes Soares, C. Influence of mesh refinement on the motions predicted by a panel code. Maritime Technology and Engineering (ed. Guedes Soares, C.) Taylor & Francis Group, 2014.
  • [61] Ko, K. H., Park, T., Kim, K. H., Kim, Y. & Yoon, D. H. Development of panel generation system for seakeeping analysis. CAD Computer-Aided Design, 43, 848–862, 2011. [62] Uzunoglu, E. & Soares, C. Influence of bracings on the hydrodynamic modelling of a semi-submersible offshore wind turbine platform. Renewable Energies Offshore, CRC Press, 2015. Doi: 10.1201/b18973-106.
There are 60 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Muhammed Uçar This is me 0000-0001-6062-7532

Emre Uzunoğlu This is me 0000-0001-6880-197X

Elif Oğuz 0000-0003-3574-9436

Publication Date June 30, 2022
Published in Issue Year 2022 Issue: 221

Cite

APA Uçar, M., Uzunoğlu, E., & Oğuz, E. (2022). Comparison and Evaluation of Open-Source Panel Method Codes against Commercial Codes. Gemi Ve Deniz Teknolojisi(221), 86-108. https://doi.org/10.54926/gdt.1106386