Research Article
BibTex RIS Cite

Non-dimensional Hydrodynamic Coefficients Determination of a Derived-Submarine Bare Hull Form

Year 2023, Issue: 223, 79 - 91, 24.08.2023
https://doi.org/10.54926/gdt.1308809

Abstract

The hull of the marine vehicle can be optimized based on the target one or more purposes. One of the most frequent purposes is the form optimization to obtain the most suitable form in terms of resistance. When it comes to energy efficiency, optimizing the vessel's form in terms of resistance means less fuel consumption. However, it is thought that the effect of the optimized form on other dynamics in the marine vehicle should also be investigated. Resistance coefficients were obtained for this purpose by constructing various bow and stern forms for a simple submarine form. The resistance coefficients of both the submarine and the form derived from this submarine were validated again in this study since different software programs were used in the previous study. These dimensionless resistance coefficients obtained for various velocities were compared to each other and the experimental data. Furthermore, the static drift analyses are performed to obtain the sway force and yaw moment at various attack angles. The dimensionless hydrodynamic coefficients, such as Y_v' and N_v’, have been calculated with fitting a curve to the values of sway forces and yaw moments. The non-dimensional hydrodynamic coefficients differences calculated for the submarine and derived bare hull are close to each other when compared in terms of maneuvering derivatives.

References

  • Budak,G. and Beji, S., 2016. Computational Resistance Analyses of a Generic Submarine Hull Form and Its Geometric Variants. Journal of Ocean Technology 11 (2), 2016.
  • Celik, I.B., Ghia, U., Roache, P.J., Freitas, C.J., Coleman, H., Raad P.E., 2008. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluid Eng., 130 (7) (2008), pp. 78001-78004, 10.1115/1.2960953
  • Delen, C., Can, U. and Bal, S., 2021. Prediction of Resistance and Self-Propulsion Characteristics of a Full-Scale Naval Ship by CFD-Based GEOSIM Method. Journal of Ship Research. 65. 346-361.
  • Delen, C. and Kinaci, O. K., 2023. Direct CFD simulations of standard maneuvering tests for DARPA Suboff. Ocean Engineering, Volume 276, 114202.
  • Dogrul, A., 2022. Numerical prediction of scale effects on the propulsion performance of Joubert BB2 submarine. Brodogradnja: Teorija i praksa brodogradnje i pomorske tehnike, 73(2), 17-42. https://doi.org/10.21278/brod73202.
  • Duman, S., Sezen, S. and Bal, S., 2018. Propeller Effects on Maneuvering of a Submerged Body. 3rd International Meeting - Progress in Propeller Cavitation and its Consequences: Experimental and Computational Methods for Predictions 15th – 16th November 2018, Istanbul, Turkey.
  • Efremov, D.V., Milanov, E.M., 2019. Hydrodynamics of DARPA SUBOFF submarine at shallowly immersion conditions. The Int. J. Marine Navigat. Safety Sea Transport, 13 (2), 337–342.
  • Kahramanoglu, E., 2021. The Effect of Forward Speed on Sway Force and Yaw Moment for Planing Hulls. GMO Journal of Ship and Marine Technology, Volume 220, December 2021.
  • Kahramanoglu, E., 2023. Numerical investigation of the scale effect on the horizontal maneuvering derivatives of an underwater vehicle. Ocean Engineering, Volume 272, 113883.
  • Kinaci, O. K., Gokce, M. K., Alkan, A. D., Kukner, A., 2018. On Self-Propulsion Assessment of Marine Vehicles. Brodogradnja: Teorija i praksa brodogradnje i pomorske tehnike, 69(4), 29–51.https://doi.org/10.21278/brod69403.
  • Lin, Y.H., Tseng, S.H., Chen, Y.H., 2018. The experimental study on maneuvering derivatives of a submerged body SUBOFF by implementing the Planar Motion Mechanism tests. Ocean Eng., 170, 120–135.
  • Lungu, A., 2020. Numerical Simulation of the Resistance and Self-Populsion Model Tests. Journal of Offshore Mechanics and Arctic Engineering 142(2):1-37, DOI: 10.1115/1.4045332
  • Lungu, A., 2022. A DES-based study of the flow around the self-propelled DARPA Suboff working in deep immersion and beneath the free-surface. Ocean Engineering, Volume 244, 2022, 110358.
  • Marshallsay, P. G. and Eriksson, A. M., 2012. Use of Computational Fluid Dynamics as a Tool to Assess the Hydrodynamic Performance of a Submarine. 18th Australasian Fluid Mechanics Conference, 3-7 December 2012, Launceston, Australia.
  • Richardson, L. F., 1910. The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam. Philos. Trans. R. Soc. Lond., vol. 210, 307-357.
  • Roddy, R. F., 1990. Investigation of the Stability and Control Characteristics of Several Configurations of the DARPA Suboff Model (DTRC Model 5470) from Captive- Model Experiments. Ship Hydromechanics Department Departmental Report, David Taylor Research Center, Departmental Report DTRC/SHD-1298-08, Sep. 1990.
  • Sezen, S, Delen, C., Dogrul, A. and Atlar, M., 2021. An investigation of scale effects on the self-propulsion characteristics of a submarine. Applied Ocean Research. 113. 10.1016/j.apor.2021.102728.
  • Sezen, S., Dogrul, A., Delen, C. and Bal, S., 2018. Investigation of self-propulsion of DARPA Suboff by RANS method. Ocean Engineering. 150. 258-271. 10.1016/j.oceaneng.2017.12.051.
  • Wilcox, D. C., 2016. Turbulence Modeling for CFD, third ed. DCW Industries, La Canada, California.
  • Yoon, H., 2009. Phase- Averaged Stereo-PIV Flow Field and Force/Moment/Motion Measurements for Surface Combatant in PMM maneuvers. Doctoral Thesis in Mechanical Engineering in the Graduate College of The University of Iowa, December 2009.

Denizaltı Gövdesinden Türetilen Bir Formun Boyutsuz Hidrodinamik Katsayılarının Belirlenmesi

Year 2023, Issue: 223, 79 - 91, 24.08.2023
https://doi.org/10.54926/gdt.1308809

Abstract

Bir deniz aracının gövde formu, bir veya birden fazla amaç için optimize edilebilir. Özellikle geminin akışkan kaynaklı direnç değerinin azaltılması amacıyla en uygun formu elde etmek temel amaçlardan biridir. Çünkü, enerji verimliliği söz konusu olduğunda, geminin formunu direnç açısından optimize etmek, daha az yakıt tüketimi anlamına gelmektedir. Bu amaçla daha önceki çalışmada yalın bir denizaltı formu ve bu denizaltının baş ve kıç formlarında çeşitli değişiklikler yapılarak elde edilen yeni denizaltı formları kıyaslanmıştı. Fakat, direnç açısından optimize edilen formun deniz aracındaki diğer dinamiklere etkisinin de araştırılması gerektiği düşünülmektedir. Bu sebeple, önceki çalışmada türetilen formlar arasında direnç açısından en uygun form ile denizaltı modeli farklı yazılım programları kullanıldığı için manevra açısından bir değerlendirme yapılması düşünülmüştür. Fakat önceki çalışmada hesaplamalar için kullanılan program bu çalışmadan kullanılan programdan farklı olduğu için ilgili denizaltı formlarının boyutsuz direnç katsayıları bu çalışmada tekrar elde edilmiştir. Çeşitli hızlar için elde edilen bu boyutsuz direnç katsayıları birbirleriyle ve deneysel verilerle karşılaştırılmıştır. Çalışmanın ana amacı manevra açısından denizaltı formlarını kıyaslamak olduğu için çeşitli baş açıları için kuvvet ve moment değerleri elde edilmiştir. Böylece elde edilen değerlerden faydalanılarak her iki denizaltı yalın formuna ait Yv', Yvvv', Nv' ve Nvvv' boyutsuz hidrodinamik katsayıları hesaplanmıştır. Böylece hem denizaltı yalın gövdesinin hem de bu denizaltından türetilmiş yeni formun manevra açısından değerlendirilebilmesi mümkün olacaktır.

References

  • Budak,G. and Beji, S., 2016. Computational Resistance Analyses of a Generic Submarine Hull Form and Its Geometric Variants. Journal of Ocean Technology 11 (2), 2016.
  • Celik, I.B., Ghia, U., Roache, P.J., Freitas, C.J., Coleman, H., Raad P.E., 2008. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluid Eng., 130 (7) (2008), pp. 78001-78004, 10.1115/1.2960953
  • Delen, C., Can, U. and Bal, S., 2021. Prediction of Resistance and Self-Propulsion Characteristics of a Full-Scale Naval Ship by CFD-Based GEOSIM Method. Journal of Ship Research. 65. 346-361.
  • Delen, C. and Kinaci, O. K., 2023. Direct CFD simulations of standard maneuvering tests for DARPA Suboff. Ocean Engineering, Volume 276, 114202.
  • Dogrul, A., 2022. Numerical prediction of scale effects on the propulsion performance of Joubert BB2 submarine. Brodogradnja: Teorija i praksa brodogradnje i pomorske tehnike, 73(2), 17-42. https://doi.org/10.21278/brod73202.
  • Duman, S., Sezen, S. and Bal, S., 2018. Propeller Effects on Maneuvering of a Submerged Body. 3rd International Meeting - Progress in Propeller Cavitation and its Consequences: Experimental and Computational Methods for Predictions 15th – 16th November 2018, Istanbul, Turkey.
  • Efremov, D.V., Milanov, E.M., 2019. Hydrodynamics of DARPA SUBOFF submarine at shallowly immersion conditions. The Int. J. Marine Navigat. Safety Sea Transport, 13 (2), 337–342.
  • Kahramanoglu, E., 2021. The Effect of Forward Speed on Sway Force and Yaw Moment for Planing Hulls. GMO Journal of Ship and Marine Technology, Volume 220, December 2021.
  • Kahramanoglu, E., 2023. Numerical investigation of the scale effect on the horizontal maneuvering derivatives of an underwater vehicle. Ocean Engineering, Volume 272, 113883.
  • Kinaci, O. K., Gokce, M. K., Alkan, A. D., Kukner, A., 2018. On Self-Propulsion Assessment of Marine Vehicles. Brodogradnja: Teorija i praksa brodogradnje i pomorske tehnike, 69(4), 29–51.https://doi.org/10.21278/brod69403.
  • Lin, Y.H., Tseng, S.H., Chen, Y.H., 2018. The experimental study on maneuvering derivatives of a submerged body SUBOFF by implementing the Planar Motion Mechanism tests. Ocean Eng., 170, 120–135.
  • Lungu, A., 2020. Numerical Simulation of the Resistance and Self-Populsion Model Tests. Journal of Offshore Mechanics and Arctic Engineering 142(2):1-37, DOI: 10.1115/1.4045332
  • Lungu, A., 2022. A DES-based study of the flow around the self-propelled DARPA Suboff working in deep immersion and beneath the free-surface. Ocean Engineering, Volume 244, 2022, 110358.
  • Marshallsay, P. G. and Eriksson, A. M., 2012. Use of Computational Fluid Dynamics as a Tool to Assess the Hydrodynamic Performance of a Submarine. 18th Australasian Fluid Mechanics Conference, 3-7 December 2012, Launceston, Australia.
  • Richardson, L. F., 1910. The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam. Philos. Trans. R. Soc. Lond., vol. 210, 307-357.
  • Roddy, R. F., 1990. Investigation of the Stability and Control Characteristics of Several Configurations of the DARPA Suboff Model (DTRC Model 5470) from Captive- Model Experiments. Ship Hydromechanics Department Departmental Report, David Taylor Research Center, Departmental Report DTRC/SHD-1298-08, Sep. 1990.
  • Sezen, S, Delen, C., Dogrul, A. and Atlar, M., 2021. An investigation of scale effects on the self-propulsion characteristics of a submarine. Applied Ocean Research. 113. 10.1016/j.apor.2021.102728.
  • Sezen, S., Dogrul, A., Delen, C. and Bal, S., 2018. Investigation of self-propulsion of DARPA Suboff by RANS method. Ocean Engineering. 150. 258-271. 10.1016/j.oceaneng.2017.12.051.
  • Wilcox, D. C., 2016. Turbulence Modeling for CFD, third ed. DCW Industries, La Canada, California.
  • Yoon, H., 2009. Phase- Averaged Stereo-PIV Flow Field and Force/Moment/Motion Measurements for Surface Combatant in PMM maneuvers. Doctoral Thesis in Mechanical Engineering in the Graduate College of The University of Iowa, December 2009.
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Gökhan Budak 0000-0002-4043-9304

Publication Date August 24, 2023
Published in Issue Year 2023 Issue: 223

Cite

APA Budak, G. (2023). Non-dimensional Hydrodynamic Coefficients Determination of a Derived-Submarine Bare Hull Form. Gemi Ve Deniz Teknolojisi(223), 79-91. https://doi.org/10.54926/gdt.1308809