Research Article
BibTex RIS Cite

Sefer planlamasında gemilerin karbon ayak izinin azaltılması: Atlantik Geçişi örneği

Year 2024, Issue: 225, 107 - 117, 30.06.2024
https://doi.org/10.54926/gdt.1458845

Abstract

Sefer planlaması sırasında hem güvenliğin hem de yakıt tasarrufunun sağlanması açısından en verimli gemi rotalarının belirlenmesi büyük önem taşımaktadır. Büyük Daire Seyri(GC) ve Hava durumu yönlendirmesi (WR), denizciler tarafından okyanus geçişleri için kullanılan en yaygın iki yöntemdir. GC seyri, uzun mesafelerde daha kısa rotaları takip ederek zamandan ve yakıttan tasarruf etme potansiyeliyle bilinir; ancak daha yüksek enlemlerde seyredilmesi nedeniyle gemileri olumsuz hava koşullarına ve deniz durumlarına maruz bırakabilir. Öte yandan, hava durumu yönlendirmesi, potansiyel olarak daha uzun da olsa daha güvenli rotaları belirlemek için pilot haritaları ve meteorolojik verileri entegre ederek sert hava koşullarıyla ilişkili riskleri en aza indirir. Bu çalışma, belirli bir zaman diliminde batıya doğru Atlantik Okyanusu seferi yapan handy-size bir tankerin rota planlamasına odaklanmaktadır. Çalışmanın temel amacı bu iki yöntemin etkinliğini değerlendirmektir. GC rota bileşenleri küresel trigonometri denklemleri kullanılarak hesaplanırken, hava durumu rota planlaması pilot haritaları ve meteorolojik veriler kullanılarak belirlendi. Transas Köprüüstü Simülatöründe (NTPRO 4000) çevresel koşullar simüle edildi ve test edildi. Sonuçlar, WR yönteminin GC'ye göre %21,3 daha yüksek enerji verimliliği sağladığını ortaya koymaktadır. Bu araştırmadan elde edilen bilgiler, ticari gemilerin operasyonel verimliliğinin ve güvenlik standartlarının artırılmasına önemli ölçüde katkıda bulunuyor.

References

  • Chen, C., Chen, Y., Bian, S., Li, H., & Liu, Q. (2019, February). Great Circle Route and Its Plotting on Chart Projection. In IOP Conference Series: Earth and Environmental Science (Vol. 234, No. 1, p. 012038). IOP Publishing.
  • Simonsen, M. H., Larsson, E., Mao, W., & Ringsberg, J. W. (2015, May). State-of-the-art within ship weather routing. In International Conference on Offshore Mechanics and Arctic Engineering (Vol. 56499, p. V003T02A053). American Society of Mechanical Engineers.
  • Skoglund, L., Kuttenkeuler, J., Rosén, A., & Ovegård, E. (2015). A comparative study of deterministic and ensemble weather forecasts for weather routing. Journal of Marine Science and Technology, 20(3), 429-441.
  • Perera, L. P., & Soares, C. G. (2017). Weather routing and safe ship handling in the future of shipping. Ocean Engineering, 130, 684-695.
  • Kytariolou, A., & Themelis, N. (2022). Ship routing optimisation based on forecasted weather data and considering safety criteria. The Journal of Navigation, 75(6), 1310-1331.
  • Walther, L., Rizvanolli, A., Wendebourg, M., & Jahn, C. (2016). Modeling and optimization algorithms in ship weather routing. International journal of e-navigation and maritime economy, 4, 31-45.
  • Zhao, W., Wang, H., Geng, J., Hu, W., Zhang, Z., & Zhang, G. (2022). Multi-objective weather routing algorithm for ships based on hybrid particle swarm optimization. Journal of Ocean University of China, 21(1), 28-38.
  • Zis, T. P., Psaraftis, H. N., & Ding, L. (2020). Ship weather routing: A taxonomy and survey. Ocean Engineering, 213, 107697.
  • Życzkowski, M., Szłapczyńska, J., & Szłapczyński, R. (2019). Review of weather forecast services for ship routing purposes. Polish Maritime Research, 26(4), 80-89.
  • Wang, H. B., Li, X. G., Li, P. F., Veremey, E. I., & Sotnikova, M. V. (2018). Application of real-coded genetic algorithm in ship weather routing. The Journal of Navigation, 71(4), 989-1010.
  • Baric, M., Brčić, D., Kosor, M., & Jelic, R. (2021). An Axiom of True Courses Calculation in Great Circle Navigation. Journal of marine science and engineering, 9(6), 603.
  • Hsieh, T. H., Meng, Q., Han, B., Wang, S., & Wu, X. (2023). Optimization of Waypoints on the Great Circle Route Based on Genetic Algorithm and Fuzzy Logic. Journal of Marine Science and Engineering, 11(2), 358.
  • Tseng, W. K., Guo, J. L., & Liu, C. P. (2013). A comparison of great circle, great ellipse, and geodesic sailing. Journal of Marine Science and Technology, 21(3), 7.
  • Hsu, T. P., Chen, C. L., & Hsieh, T. H. (2017). A graphical method for great circle routes. Polish Maritime Research, 24(1), 12-21.
  • Iphar, C., & Jousselme, A. L. (2023). A geometry-based fuzzy approach for long-term association of vessels to maritime routes. Ocean Engineering, 281, 114755.
  • Bowditch, N. (1977). American Practical Navigator, Vol. I, Defense Mapping Agency Hydrographic Center.
  • Miller, A. R., Moskowitz, I. S., & Simmen, J. (1991). Traveling on the curved earth. Navigation, 38(1), 71-78.
  • Earle, M. A. (2005). Vector solutions for great circle navigation. The Journal of navigation, 58(3), 451-457.
  • Earle, M. A. (2006). Sphere to spheroid comparisons. The Journal of navigation, 59(3), 491-496.
  • Kobayashi, E., Hashimoto, H., Taniguchi, Y., & Yoneda, S. (2015, October). Advanced optimized weather routing for an ocean-going vessel. In 2015 International Association of Institutes of Navigation World Congress (IAIN) (pp. 1-8). IEEE.
  • Pennino, S., Gaglione, S., Innac, A., Piscopo, V., & Scamardella, A. (2020). Development of a new ship adaptive weather routing model based on seakeeping analysis and optimization. Journal of Marine Science and Engineering, 8(4), 270.
  • Wang, H., Mao, W., & Eriksson, L. (2020). Efficiency of a voluntary speed reduction algorithm for a ship’s great circle sailing. TransNav, International Journal on Marine Navigation and Safety od Sea Transportation, 14(2), 301-308.
  • Lin, Y. H., Fang, M. C., & Yeung, R. W. (2013). The optimization of ship weather-routing algorithm based on the composite influence of multi-dynamic elements. Applied Ocean Research, 43, 184-194.
  • IMO. (1999). International Maritime Organization resolution MEPC.1/Circ.684 “Guidelines for voluntary use of the ship energy effıciency operational indicator (EEOI)”, 17 August 2009.

Reducing Carbon Footprint of Ships in Voyage Planning: A Case Study of Atlantic Passage

Year 2024, Issue: 225, 107 - 117, 30.06.2024
https://doi.org/10.54926/gdt.1458845

Abstract

Determining the most efficient ship routes is crucial for ensuring both safety and fuel savings during voyage planning. Great circle Navigation (GC) and weather routing (WR) are the two most common methods used by navigators for ocean crossings. GC Navigation is renowned for its potential to save time and fuel by following shorter routes over long distances; however, it may expose vessels to adverse weather conditions and sea states due to navigating at higher latitudes. On the other hand, weather routing integrates pilot charts and meteorological data to identify safer routes, albeit potentially longer, minimizing risks associated with rough weather. This study focuses on route planning for a handy-sized tanker contracting a westbound Atlantic ocean voyage within a specific timeframe. The main objective of the study is to evaluate the efficacy of these two methods. The GC route components were computed using spherical trigonometry equations, while weather routing planning relied on pilot charts and meteorological data. Environmental conditions were simulated and tested in the Transas Full Mission Simulator (NTPRO 4000). The results reveal that the WR method provides 21.3% higher energy efficiency than GC. The insights derived from this research contribute significantly to enhancing the operational efficiency and safety standards of commercial vessels.

References

  • Chen, C., Chen, Y., Bian, S., Li, H., & Liu, Q. (2019, February). Great Circle Route and Its Plotting on Chart Projection. In IOP Conference Series: Earth and Environmental Science (Vol. 234, No. 1, p. 012038). IOP Publishing.
  • Simonsen, M. H., Larsson, E., Mao, W., & Ringsberg, J. W. (2015, May). State-of-the-art within ship weather routing. In International Conference on Offshore Mechanics and Arctic Engineering (Vol. 56499, p. V003T02A053). American Society of Mechanical Engineers.
  • Skoglund, L., Kuttenkeuler, J., Rosén, A., & Ovegård, E. (2015). A comparative study of deterministic and ensemble weather forecasts for weather routing. Journal of Marine Science and Technology, 20(3), 429-441.
  • Perera, L. P., & Soares, C. G. (2017). Weather routing and safe ship handling in the future of shipping. Ocean Engineering, 130, 684-695.
  • Kytariolou, A., & Themelis, N. (2022). Ship routing optimisation based on forecasted weather data and considering safety criteria. The Journal of Navigation, 75(6), 1310-1331.
  • Walther, L., Rizvanolli, A., Wendebourg, M., & Jahn, C. (2016). Modeling and optimization algorithms in ship weather routing. International journal of e-navigation and maritime economy, 4, 31-45.
  • Zhao, W., Wang, H., Geng, J., Hu, W., Zhang, Z., & Zhang, G. (2022). Multi-objective weather routing algorithm for ships based on hybrid particle swarm optimization. Journal of Ocean University of China, 21(1), 28-38.
  • Zis, T. P., Psaraftis, H. N., & Ding, L. (2020). Ship weather routing: A taxonomy and survey. Ocean Engineering, 213, 107697.
  • Życzkowski, M., Szłapczyńska, J., & Szłapczyński, R. (2019). Review of weather forecast services for ship routing purposes. Polish Maritime Research, 26(4), 80-89.
  • Wang, H. B., Li, X. G., Li, P. F., Veremey, E. I., & Sotnikova, M. V. (2018). Application of real-coded genetic algorithm in ship weather routing. The Journal of Navigation, 71(4), 989-1010.
  • Baric, M., Brčić, D., Kosor, M., & Jelic, R. (2021). An Axiom of True Courses Calculation in Great Circle Navigation. Journal of marine science and engineering, 9(6), 603.
  • Hsieh, T. H., Meng, Q., Han, B., Wang, S., & Wu, X. (2023). Optimization of Waypoints on the Great Circle Route Based on Genetic Algorithm and Fuzzy Logic. Journal of Marine Science and Engineering, 11(2), 358.
  • Tseng, W. K., Guo, J. L., & Liu, C. P. (2013). A comparison of great circle, great ellipse, and geodesic sailing. Journal of Marine Science and Technology, 21(3), 7.
  • Hsu, T. P., Chen, C. L., & Hsieh, T. H. (2017). A graphical method for great circle routes. Polish Maritime Research, 24(1), 12-21.
  • Iphar, C., & Jousselme, A. L. (2023). A geometry-based fuzzy approach for long-term association of vessels to maritime routes. Ocean Engineering, 281, 114755.
  • Bowditch, N. (1977). American Practical Navigator, Vol. I, Defense Mapping Agency Hydrographic Center.
  • Miller, A. R., Moskowitz, I. S., & Simmen, J. (1991). Traveling on the curved earth. Navigation, 38(1), 71-78.
  • Earle, M. A. (2005). Vector solutions for great circle navigation. The Journal of navigation, 58(3), 451-457.
  • Earle, M. A. (2006). Sphere to spheroid comparisons. The Journal of navigation, 59(3), 491-496.
  • Kobayashi, E., Hashimoto, H., Taniguchi, Y., & Yoneda, S. (2015, October). Advanced optimized weather routing for an ocean-going vessel. In 2015 International Association of Institutes of Navigation World Congress (IAIN) (pp. 1-8). IEEE.
  • Pennino, S., Gaglione, S., Innac, A., Piscopo, V., & Scamardella, A. (2020). Development of a new ship adaptive weather routing model based on seakeeping analysis and optimization. Journal of Marine Science and Engineering, 8(4), 270.
  • Wang, H., Mao, W., & Eriksson, L. (2020). Efficiency of a voluntary speed reduction algorithm for a ship’s great circle sailing. TransNav, International Journal on Marine Navigation and Safety od Sea Transportation, 14(2), 301-308.
  • Lin, Y. H., Fang, M. C., & Yeung, R. W. (2013). The optimization of ship weather-routing algorithm based on the composite influence of multi-dynamic elements. Applied Ocean Research, 43, 184-194.
  • IMO. (1999). International Maritime Organization resolution MEPC.1/Circ.684 “Guidelines for voluntary use of the ship energy effıciency operational indicator (EEOI)”, 17 August 2009.
There are 24 citations in total.

Details

Primary Language English
Subjects Naval Architecture
Journal Section Araştırma Makalesi
Authors

İdris Turna 0000-0003-2517-179X

Early Pub Date June 3, 2024
Publication Date June 30, 2024
Submission Date March 25, 2024
Acceptance Date May 18, 2024
Published in Issue Year 2024 Issue: 225

Cite

APA Turna, İ. (2024). Reducing Carbon Footprint of Ships in Voyage Planning: A Case Study of Atlantic Passage. Gemi Ve Deniz Teknolojisi(225), 107-117. https://doi.org/10.54926/gdt.1458845