Solar radyasyon (SR), enerji dönüşümü, yeşil bina konsepti, meteoroloji, küresel iklim değişikliği, tarım ve hayvancılık ile ilgili çalışmalar için önemli bir parametredir. Solar radyasyonun belirlenebilmesi için gereken alıcıların tüm noktalar için temin edilememesinden dolayı bu parametrenin çeşitli yöntemlerle tahmin edilmesi gerekmektedir. Bu çalışmada, Türkiye’nin 3600 grid noktasının 2004-2021 yıllarına ait yıllık ortalama solar radyasyon değerleri (kWsa/m²) kullanılarak ülke çapında farklı test noktaları için solar radyasyon tahmini gerçekleştirilmiştir. Solar radyasyon değerleri, çok değişkenli uyarlanabilir regresyon eğrileri (MARS) ve en küçük kareler destek vektör regresyonu (LSSVR) olmak üzere 2 farklı makine öğrenmesi tekniği kullanılarak MATLAB platformunda tahmin edilmiştir. Solar radyasyon haritaları için ise ters mesafe ağırlıklı enterpolasyon tekniği kullanılmıştır. Tahmin edilen veriler ArcMap ortamında haritalandırılmıştır. Solar radyasyon, komşu ölçüm grid noktalarına ait konum bilgileri kullanılarak tahmin edilmiştir. Modellerde kullanılan veriler, Meteoroloji Genel Müdürlüğü’nden (MGM) temin edilmiş uydu tabanlı model olan heliospheric optical satellite model (HELIOSAT) verileridir. Farklı kombinasyonlar kullanılarak test noktalarından elde edilen SR tahminleri gözlenen verilerle karşılaştırılmıştır. Bu karşılaştırmalarda, karekök ortalama karesel hata, ortalama mutlak hata, ortalama mutlak bağıl hata, Nash-Sutcliffe modeli verimlilik katsayısı ve determinasyon katsayısı yöntemleri kullanılmıştır. Tahmin edilen SR değerlerine ait gidiş, saçılma grafikleri, Taylor ve Violin diyagramları oluşturulmuştur. Ayrıca Kruskal-Wallis testi ile Wilcoxon testi uygulanmıştır. Makine öğrenmesi yöntemlerinden LSSVR çok başarılı tahmin sonuçları vermiştir. Böylece, makine öğrenme algoritmalarının literatürde yer alan kabul görmüş geleneksel yöntemlere göre daha kolay ve alternatif bir yöntem olabileceği gösterilmiştir.
KTO Karatay Üniversitesi
10042305
Yazarlar desteklerinden dolayı KTO Karatay Üniversitesine teşekkür etmektedir. Bu makale, 10042305 numaralı KTO Karatay Üniversitesi Bilimsel Araştırma Projesi (BAP) desteğiyle yapılmıştır. Proje kodu: 10042305
Birincil Dil | Türkçe |
---|---|
Konular | Coğrafi Bilgi Sistemleri ve Mekansal Veri Modelleme |
Bölüm | Makaleler |
Yazarlar | |
Proje Numarası | 10042305 |
Erken Görünüm Tarihi | 5 Şubat 2024 |
Yayımlanma Tarihi | 15 Nisan 2024 |
Gönderilme Tarihi | 11 Ekim 2023 |
Kabul Tarihi | 20 Kasım 2023 |
Yayımlandığı Sayı | Yıl 2024 |