Research Article
BibTex RIS Cite
Year 2019, Volume: 4 Issue: 3, 227 - 238, 01.12.2019
https://doi.org/10.29128/geomatik.544633

Abstract

References

  • Akarsu, V. (2012). Gözlem süresinin GPS Noktası hızlarının belirlenmesine olan etkisinin araştırılması, Doktora Tezi. İTÜ Fen Bilimleri Enst., İstanbul.
  • Betti, B., Biagi, L., Crespi, M., & Riguzzi, F. (1999). GPS sensitivity analysis applied to non-permanent deformation control networks. Journal of Geodesy, 73(3), 158-167.
  • Brunner, F. K. (1979). On the analysis of geodetic networks for the determination of the incremental strain tensor. Survey Review, 25(192), 56-67.
  • Dach, R., Lutz, S., Walser, P., & Fridez, P. (2015). Bernese GNSS Software Version 5.2. User manual. Astronomical Institute, University of Bern, Bern.
  • Davis, J. L., Prescott, W. H., Svarc, J. L., & Wendt, K. J. (1989). Assessment of Global Positioning System measurements for studies of crustal deformation. Journal of Geophysical Research: Solid Earth, 94(B10), 13635-13650.
  • Demir, D. O., & Dogan, U. (2014). Determination of crustal deformations based on GPS observing-session duration in Marmara region, Turkey. Advances in Space Research, 53(3), 452-462.
  • Demir, D. O. (2015). 23 Ekim 2011 (Mw=7.2) Van depreminden kaynaklanan kabuk deformasyonlarının jeodezik yöntemlerle araştırılması, Doktora Tezi. YTÜ Fen Bilimleri Enst., İstanbul.
  • Dogan, U., Demir, D. O., Cakir, Z., Ergintav, S., Ozener, H., Akoglu, A. M., ... & Reilinger, R. (2014). Postseismic deformation following the Mw 7.2, 23 October 2011 Van earthquake (Turkey): Evidence for aseismic fault reactivation. Geophysical Research Letters, 41(7), 2334-2341.
  • Dogan, U., Oz, D., & Ergintav, S. (2013). Kinematics of landslide estimated by repeated GPS measurements in the Avcilar region of Istanbul, Turkey. Studia Geophysica et Geodaetica, 57(2), 217-232.
  • Dogan, U. (2007). Accuracy analysis of relative positions of permanent GPS stations in the Marmara region, Turkey. Survey Review, 39(304), 156-165.
  • Duman, H., & Sanli, D.U. (2019). Assessment of geodetic velocities using GPS campaign measurements over long baseline lengths. Natural Hazards and Earth System Sciences, 19(3), 571-582.
  • Eckl, M. C., Snay, R. A., Soler, T., Cline, M. W., & Mader, G. L. (2001). Accuracy of GPSderived relative positions as a function of interstation distance and observing-session duration. Journal of geodesy, 75(12), 633-640.
  • Ergintav, S., Reilinger, R. E., Çakmak, R., Floyd, M., Cakir, Z., Doğan, U., ... & Özener, H. (2014). Istanbul's earthquake hot spots: Geodetic constraints on strain accumulation along faults in the Marmara seismic gap. Geophysical Research Letters, 41(16), 5783-5788.
  • Firuzabadì, D., & King, R. W. (2012). GPS precision as a function of session duration and reference frame using multi-point software. GPS solutions, 16(2), 191-196.
  • Konca, A. O., Cetin, S., Karabulut, H., Reilinger, R., Dogan, U., Ergintav, S., ... & Tari, E. (2018). The 2014, M W6. 9 North Aegean earthquake: seismic and geodetic evidence for coseismic slip on persistent asperities. Geophysical Journal International, 213(2), 1113-1120.
  • Larson, K. M., & Agnew, D. C. (1991). Application of the Global Positioning System to crustal deformation measurement: 1. Precision and accuracy. Journal of Geophysical Research: Solid Earth, 96(B10), 16547-16565.
  • Leonard, L. J., Hyndman, R. D., Mazzotti, S., Nykolaishen, L., Schmidt, M., & Hippchen, S. (2007). Current deformation in the northern Canadian Cordillera inferred from GPS measurements. Journal of Geophysical Research: Solid Earth, 112(B11).
  • Nocquet, J. M., & Calais, E. (2003). Crustal velocity field of western Europe from permanent GPS array solutions, 1996–2001. Geophysical Journal International, 154(1), 72-88.
  • Ozener, H., Arpat, E., Ergintav, S., Dogru, A., Cakmak, R., Turgut, B., & Dogan, U. (2010). Kinematics of the eastern part of the North Anatolian Fault Zone. Journal of geodynamics, 49(3-4), 141-150.
  • Ozdemir, S., & Karslıoglu, M. O. (2019). Soft clustering of GPS velocities from a homogeneous permanent network in Turkey. Journal of Geodesy, 1-25.
  • Prescott, W. H. (1976). An extension of Frank's method for obtaining crustal shear strains from survey data. Bulletin of the Seismological Society of America, 66(6), 1847-1853.
  • Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., ... & Nadariya, M. (2006). GPS constraints on continental deformation in the Africa‐Arabia‐Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth, 111(B5).
  • Sanli, D. U., & Kurumahmut, F. (2011). Accuracy of GPS positioning in the presence of large height differences. Survey Review, 43(320), 162-176.
  • Snay, R. A., Soler, T., & Eckl, M. (2002). GPS precision with carrier phase observations: does distance and/or time matter. Prof Surv, 22(10), 20-22.
  • Soler, T., Michalak, P., Weston, N. D., Snay, R. A., & Foote, R. H. (2006). Accuracy of OPUS solutions for 1-to 4-h observing sessions. GPS solutions, 10(1), 45-55.
  • Teza, G., Pesci, A., Genevois, R., & Galgaro, A. (2008). Characterization of landslide ground surface kinematics from terrestrial laser scanning and strain field computation. Geomorphology, 97(3-4), 424-437.
  • Wessel, P., Smith, W. H., Scharroo, R., Luis, J., & Wobbe, F. (2013). Generic mapping tools: improved version released. Eos, Transactions American Geophysical Union, 94(45), 409-410.
  • Williams, S. D. (2003). Offsets in global positioning system time series. Journal of Geophysical Research: Solid Earth, 108(B6).
  • Zakarevičius, A., Šliaupa, S., Paršeliūnas, E., & Stanionis, A. (2008). Geodetic network deformation based on GPS data in the Baltic Region. Geodezija ir Kartografija, 34(4), 122-126.
  • URL1:https://sideshow.jpl.nasa.gov/post/links/ZECK.html

GNSS Gözlem Süresine Bağlı Deformasyon Parametrelerinin Kestirimi

Year 2019, Volume: 4 Issue: 3, 227 - 238, 01.12.2019
https://doi.org/10.29128/geomatik.544633

Abstract

Bu çalışmada, GNSS ölçme süresinin deformasyon parametreleri (yer değiştirme, hız ve gerinim parametreleri) üzerindeki etkisinin araştırılması ve buna bağlı olarak doğruluk ölçütlerinin belirlenmesi amaçlanmıştır. Bu amaç kapsamında, TUSAGA-Aktif ağına ait 11 GNSS istasyonunun 2012.63 – 2017.63 yılları arasındaki 6 periyot gözlem verisi ölçme süresine (4, 6, 8, 12, 24 saat) bağlı olarak Bernese v5.2 yazılımı ile ITRF-08 referans sisteminde değerlendirilip istasyonlara ilişkin deformasyon parametreleri belirlenmiştir.
24 saat gözlem süresinden elde edilen deformasyon parametreleri doğru kabul edilerek, diğer gözlem sürelerinden elde edilen sonuçların doğruluk analizleri yapılmıştır. Elde edilen sonuçlar incelendiğinde, istasyonların yer değiştirme vektörlerinin ve hızlarının büyüklük ve yön bakımından uyumlu olduğu, 24 saat gözlem süresinden elde edilen hızlar ile 12 saat gözlem süresinden elde edilen hızlar arasındaki farkların istatistiksel olarak anlamsız iken, 4, 6 ve 8 saat gözlem sürelerinden elde edilen hızlar arasındaki farkların istatistiksel olarak anlamlı olduğu belirlenmiştir.
Ayrıca, farklı GNSS gözlem sürelerine (4, 6, 8, 12 saat) bağlı olarak elde edilen 2-boyutlu gerinim parametreleri 24 saatlik gözlem süresinden elde edilen parametreler ile karşılaştırılarak, GNSS gözlem süresinin gerinim parametreleri üzerindeki etkisi araştırılmış ve sonuçların doğruluk performanslarıyla ilgili analizler paylaşılmıştır.

References

  • Akarsu, V. (2012). Gözlem süresinin GPS Noktası hızlarının belirlenmesine olan etkisinin araştırılması, Doktora Tezi. İTÜ Fen Bilimleri Enst., İstanbul.
  • Betti, B., Biagi, L., Crespi, M., & Riguzzi, F. (1999). GPS sensitivity analysis applied to non-permanent deformation control networks. Journal of Geodesy, 73(3), 158-167.
  • Brunner, F. K. (1979). On the analysis of geodetic networks for the determination of the incremental strain tensor. Survey Review, 25(192), 56-67.
  • Dach, R., Lutz, S., Walser, P., & Fridez, P. (2015). Bernese GNSS Software Version 5.2. User manual. Astronomical Institute, University of Bern, Bern.
  • Davis, J. L., Prescott, W. H., Svarc, J. L., & Wendt, K. J. (1989). Assessment of Global Positioning System measurements for studies of crustal deformation. Journal of Geophysical Research: Solid Earth, 94(B10), 13635-13650.
  • Demir, D. O., & Dogan, U. (2014). Determination of crustal deformations based on GPS observing-session duration in Marmara region, Turkey. Advances in Space Research, 53(3), 452-462.
  • Demir, D. O. (2015). 23 Ekim 2011 (Mw=7.2) Van depreminden kaynaklanan kabuk deformasyonlarının jeodezik yöntemlerle araştırılması, Doktora Tezi. YTÜ Fen Bilimleri Enst., İstanbul.
  • Dogan, U., Demir, D. O., Cakir, Z., Ergintav, S., Ozener, H., Akoglu, A. M., ... & Reilinger, R. (2014). Postseismic deformation following the Mw 7.2, 23 October 2011 Van earthquake (Turkey): Evidence for aseismic fault reactivation. Geophysical Research Letters, 41(7), 2334-2341.
  • Dogan, U., Oz, D., & Ergintav, S. (2013). Kinematics of landslide estimated by repeated GPS measurements in the Avcilar region of Istanbul, Turkey. Studia Geophysica et Geodaetica, 57(2), 217-232.
  • Dogan, U. (2007). Accuracy analysis of relative positions of permanent GPS stations in the Marmara region, Turkey. Survey Review, 39(304), 156-165.
  • Duman, H., & Sanli, D.U. (2019). Assessment of geodetic velocities using GPS campaign measurements over long baseline lengths. Natural Hazards and Earth System Sciences, 19(3), 571-582.
  • Eckl, M. C., Snay, R. A., Soler, T., Cline, M. W., & Mader, G. L. (2001). Accuracy of GPSderived relative positions as a function of interstation distance and observing-session duration. Journal of geodesy, 75(12), 633-640.
  • Ergintav, S., Reilinger, R. E., Çakmak, R., Floyd, M., Cakir, Z., Doğan, U., ... & Özener, H. (2014). Istanbul's earthquake hot spots: Geodetic constraints on strain accumulation along faults in the Marmara seismic gap. Geophysical Research Letters, 41(16), 5783-5788.
  • Firuzabadì, D., & King, R. W. (2012). GPS precision as a function of session duration and reference frame using multi-point software. GPS solutions, 16(2), 191-196.
  • Konca, A. O., Cetin, S., Karabulut, H., Reilinger, R., Dogan, U., Ergintav, S., ... & Tari, E. (2018). The 2014, M W6. 9 North Aegean earthquake: seismic and geodetic evidence for coseismic slip on persistent asperities. Geophysical Journal International, 213(2), 1113-1120.
  • Larson, K. M., & Agnew, D. C. (1991). Application of the Global Positioning System to crustal deformation measurement: 1. Precision and accuracy. Journal of Geophysical Research: Solid Earth, 96(B10), 16547-16565.
  • Leonard, L. J., Hyndman, R. D., Mazzotti, S., Nykolaishen, L., Schmidt, M., & Hippchen, S. (2007). Current deformation in the northern Canadian Cordillera inferred from GPS measurements. Journal of Geophysical Research: Solid Earth, 112(B11).
  • Nocquet, J. M., & Calais, E. (2003). Crustal velocity field of western Europe from permanent GPS array solutions, 1996–2001. Geophysical Journal International, 154(1), 72-88.
  • Ozener, H., Arpat, E., Ergintav, S., Dogru, A., Cakmak, R., Turgut, B., & Dogan, U. (2010). Kinematics of the eastern part of the North Anatolian Fault Zone. Journal of geodynamics, 49(3-4), 141-150.
  • Ozdemir, S., & Karslıoglu, M. O. (2019). Soft clustering of GPS velocities from a homogeneous permanent network in Turkey. Journal of Geodesy, 1-25.
  • Prescott, W. H. (1976). An extension of Frank's method for obtaining crustal shear strains from survey data. Bulletin of the Seismological Society of America, 66(6), 1847-1853.
  • Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., ... & Nadariya, M. (2006). GPS constraints on continental deformation in the Africa‐Arabia‐Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth, 111(B5).
  • Sanli, D. U., & Kurumahmut, F. (2011). Accuracy of GPS positioning in the presence of large height differences. Survey Review, 43(320), 162-176.
  • Snay, R. A., Soler, T., & Eckl, M. (2002). GPS precision with carrier phase observations: does distance and/or time matter. Prof Surv, 22(10), 20-22.
  • Soler, T., Michalak, P., Weston, N. D., Snay, R. A., & Foote, R. H. (2006). Accuracy of OPUS solutions for 1-to 4-h observing sessions. GPS solutions, 10(1), 45-55.
  • Teza, G., Pesci, A., Genevois, R., & Galgaro, A. (2008). Characterization of landslide ground surface kinematics from terrestrial laser scanning and strain field computation. Geomorphology, 97(3-4), 424-437.
  • Wessel, P., Smith, W. H., Scharroo, R., Luis, J., & Wobbe, F. (2013). Generic mapping tools: improved version released. Eos, Transactions American Geophysical Union, 94(45), 409-410.
  • Williams, S. D. (2003). Offsets in global positioning system time series. Journal of Geophysical Research: Solid Earth, 108(B6).
  • Zakarevičius, A., Šliaupa, S., Paršeliūnas, E., & Stanionis, A. (2008). Geodetic network deformation based on GPS data in the Baltic Region. Geodezija ir Kartografija, 34(4), 122-126.
  • URL1:https://sideshow.jpl.nasa.gov/post/links/ZECK.html
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Fuat Kaya 0000-0002-7167-6601

Alpay Özdemir This is me 0000-0002-1099-2002

Deniz Demir 0000-0003-3927-6912

Uğur Doğan 0000-0003-0927-0886

Publication Date December 1, 2019
Published in Issue Year 2019 Volume: 4 Issue: 3

Cite

APA Kaya, F., Özdemir, A., Demir, D., Doğan, U. (2019). GNSS Gözlem Süresine Bağlı Deformasyon Parametrelerinin Kestirimi. Geomatik, 4(3), 227-238. https://doi.org/10.29128/geomatik.544633
AMA Kaya F, Özdemir A, Demir D, Doğan U. GNSS Gözlem Süresine Bağlı Deformasyon Parametrelerinin Kestirimi. Geomatik. December 2019;4(3):227-238. doi:10.29128/geomatik.544633
Chicago Kaya, Fuat, Alpay Özdemir, Deniz Demir, and Uğur Doğan. “GNSS Gözlem Süresine Bağlı Deformasyon Parametrelerinin Kestirimi”. Geomatik 4, no. 3 (December 2019): 227-38. https://doi.org/10.29128/geomatik.544633.
EndNote Kaya F, Özdemir A, Demir D, Doğan U (December 1, 2019) GNSS Gözlem Süresine Bağlı Deformasyon Parametrelerinin Kestirimi. Geomatik 4 3 227–238.
IEEE F. Kaya, A. Özdemir, D. Demir, and U. Doğan, “GNSS Gözlem Süresine Bağlı Deformasyon Parametrelerinin Kestirimi”, Geomatik, vol. 4, no. 3, pp. 227–238, 2019, doi: 10.29128/geomatik.544633.
ISNAD Kaya, Fuat et al. “GNSS Gözlem Süresine Bağlı Deformasyon Parametrelerinin Kestirimi”. Geomatik 4/3 (December 2019), 227-238. https://doi.org/10.29128/geomatik.544633.
JAMA Kaya F, Özdemir A, Demir D, Doğan U. GNSS Gözlem Süresine Bağlı Deformasyon Parametrelerinin Kestirimi. Geomatik. 2019;4:227–238.
MLA Kaya, Fuat et al. “GNSS Gözlem Süresine Bağlı Deformasyon Parametrelerinin Kestirimi”. Geomatik, vol. 4, no. 3, 2019, pp. 227-38, doi:10.29128/geomatik.544633.
Vancouver Kaya F, Özdemir A, Demir D, Doğan U. GNSS Gözlem Süresine Bağlı Deformasyon Parametrelerinin Kestirimi. Geomatik. 2019;4(3):227-38.