Research Article
BibTex RIS Cite

Küçük Melen İğneler Havzası’ndaki taşkınların hidrolojik modelleme yöntemiyle (HEC-HMS) belirlenmesi

Year 2025, Volume: 10 Issue: 1, 1 - 14
https://doi.org/10.29128/geomatik.1492923

Abstract

Taşkınlar, önemli afetlerdir; bu nedenle, büyüklük ve sıklıklarının doğru modellenmesi, can ve mal kaybını önlemek için disiplinli bir yaklaşımla taşkın risklerinin yönetilmesini gerektirir. Çalışmanın amacı, Batı Karadeniz Bölgesi, Düzce Şehri’nin Yığılca İlçesi’nde yer alan Küçük Melen İğneler Havzası’nda, Hidrolojik Mühendislik Merkezi Hidrolojik Modelleme Sistemi (Hydrologic Engineering Center's Hydrologic Modeling System, HEC-HMS) modeli kullanılarak yağış-akış modeli oluşturmak ve modelin kullanılabilirliğini ve güvenirliliğini göstermektir. Bu amaçla gerekli hidrolojik bilgiler, toprak grupları, arazi sınıflandırılması ve sayısal yükseklik modelinden oluşturulmuştur. Coğrafi Bilgi Sistemleri, HEC-HMS modeli ile birleştirerek yağış-akış modeli üretilmiştir. HEC-HMS yağış-akış modelinin kalibrasyon işlemi için 14–20 Temmuz 2019 tarihli bir saatlik akım değerleri kullanılmıştır. Yağış-akış modelinin doğruluğunu tespit etmek için NSE (Nash-Sutcliffe Effiency), PBIAS (Percentage of Bias) ve RMSE (Root Mean Square Error) model performans ölçümleri incelenmiştir. Çalışma, HEC-HMS modelinin taşkın akım değerlerini, pik seviyelerini ve zamanlamasını başarılı bir şekilde tahmin ettiğini göstermektedir. Model, taşkın debisi ve hız alanları gibi kritik parametreleri doğru bir şekilde tahmin ederek, taşkın modelleme çalışmalarında etkili bir araç olarak değerlendirilmektedir. Ayrıca, sonuçlar taşkın riski yönetimi ve stratejik planlama için temel veriler sunarak, etkilenen bölgelerde alınacak önlemler için önemli bir örnek teşkil etmektedir.

Thanks

Bu çalışma, Doç. Dr. Olgu AYDIN danışmanlığında 21.06.2022 tarihinde tamamlanan “Küçük Melen İğneler Havzası’ndaki taşkınların hidrolojik modelleme yöntemiyle (HEC-HMS) belirlenmesi” başlıklı yüksek lisans tezi esas alınarak hazırlanmıştır (Yüksek Lisans/Ankara Üniversitesi, Dil ve Tarih-Coğrafya Fakültesi, Ankara, Türkiye, 2022).

References

  • Akkaya, Y. (2019). Melen Çayı Havzası’nın coğrafi potansiyeli ve sürdürülebilirlik açısından havza yönetimi. Doktora Tezi. İstanbul Üniversitesi Sosyal Bilimler Enstitüsü.
  • Altunel, A. O., & Kara, F. (2023). Tracing the culprits over the destruction of three coastal communities during a rouge rainstorm on August 2021 in north central Türkiye, Ocean & Coastal Management, 241, 106630. https://doi.org/10.1016/j.ocecoaman.2023.106630
  • Altunel, A. O. (2023). The effect of DEM resolution on topographic wetness index calculation and visualization: An insight to the hidden danger unraveled in Bozkurt in August, 2021, International Journal of Engineering and Geosciences, 8(2), 165–172. https://doi.org/10.26833/ijeg.1110560
  • Amil, T. A. (2018). Determining of different inundated land use in Salyan Plain during 2010 the Kura River flood through GIS and remote sensing tools, International Journal of Engineering and Geosciences (IJEG), 3(3), 080–086. https://doi.org/10.26833/ijeg.412348
  • Arnell, N. W., & Gosling, S. N. (2016). The impacts of climate change on river flood risk at the global scale, Climatic Change, 134, 387–401. http://doi.org/10.1007/s10584-014-1084-5
  • Barbaros, F. (2022). Batı Karadeniz Havzası yağış değişkenliklerinin entropi tabanlı bir yaklaşımla değerlendirilmesi, Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 12(1), 344–356. https://doi.org/10.17714/gumusfenbil.995514
  • Bora, E. (2016). İklim değişikliği etkileri altında risk tabanlı tasarım. Yüksek Lisans Tezi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi.
  • Brown, A., E., Zhang, L., McMahon, T. A., Western, A. W., & Vertessy, R. A. (2005). Areview of paired catchment studies for determining changes in water yield resulting from alterations in vegetation, Journal of Hydrology, 310(1–4), 28–61. https://doi.org/10.1016/j.jhydrol.2004.12.010
  • Chadli, K., Kirat, M., Laadoua, A., & El Harchaoui, N. (2016). Runoff modeling of Sebou watershed (Morocco) using SCS curve number method and geographic information system, Modelling Earth Systems and Environment, 2(158), 1–8. https://doi.org/10.1007/s40808-016-0215-6
  • Chang, H., Franczyk, J., & Kim, C. (2009). What is responsible for increasing flood risks? the case of Gangwon province, Korea, Natural Hazards, 48, 339e354. http://doi.org/10.1007/s11069-008-9266-y
  • Chau, V. N., Holland, J., Cassells, S., & Tuohy, M. (2013). Using GIS to map impacts upon agriculture from extreme floods in Vietnam, Applied Geography, 41, 65e74. https://doi.org/10.1016/j.apgeog.2013.03.014
  • Cred, U. (2020). Human Cost of Disasters. An Overview of the Last 20 Years: 2000–2019. CRED, UNDRR, Geneva.
  • Çelik, H., Şengönül, K., Akyüz, F., Altunel, O., Dağcı, M., & Esin, A. (2012). Sedimentation problems and suggested solutions of Istanbul’s drinking water dams: a case study of Alibey Dam, Journal of the Faculty of Forestry Istanbul University, 62(2), 113–127.
  • Daide, F., Afgane, R., Lahrach, A., Chaouni, A. A., Msaddek, M., & Elhasnaoui, I. (2021). Application of the HEC-HMS hydrological model in the Beht watershed (Morocco), E3S Web of Conferences, 314, 05003. https://doi.org/10.1051/e3sconf/202131405003
  • Derdour, A., Bouanani, A., & Babahamed, K. (2018). Modelling rainfall runoff relations using HEC-HMS in a semi-arid region: case study in Ain Sefra watershed, Ksour Mountains (SW Algeria), Journal of Water Land Development, 36(I–III), 45–55. http://doi.org/10.2478/jwld-2018-0005
  • Demir, V., Beden, N., & Ülke Keskin, A. (2021). Taşkın modelleme yöntemlerinin gözden geçirilmesi ve karşılaştırılması, Avrupa Bilim ve Teknoloji Dergisi, (28), 1013–1021. https://doi.org/10.31590/ejosat.1010220
  • Demir, V., & Ülke Keskin, A. (2022). Yeterince akım ölçümü olmayan nehirlerde taşkın debisinin hesaplanması ve taşkın modellemesi (Samsun, Mert Irmağı örneği), Geomatik, 7(2), 149–162. https://doi.org/10.29128/geomatik.918502
  • Demir, V., & Ülke Keskin, A. (2022). Taşkın Tehlike Haritalarının Oluşturulması (Samsun, Mert Irmağı Örneği), Türkiye Coğrafi Bilgi Sistemleri Dergisi, 4(1), 47–54. https://doi.org/10.56130/tucbis.1120501
  • Demir, V., & Ülke Keskin, A. (2022). Taşkınların ekonomik zararlarının değerlendirilmesi (Samsun-Mert Irmağı Havzası), Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi, 14(2), 663–678. https://doi.org/10.29137/umagd.1090447
  • de Salis, H. H. C., da Costa, A. M., Vianna, J. H. M., Schuler, M. A., Künne, A., Fernandes, L. F. S. & P. F. A. L. (2019). Hydrologic modeling for sustainable water resources management in urbanized karst areas, International Journal of Environmental Research and Public Health, 16(2542), 1–19. https://doi.org/10.3390/ijerph16142542
  • Duan, Q., Sorossshian, S. & Gupta, V. K. (1994). Optimal use of the SCE-UA global optimization method for calibrating watershed models, Journal of Hydrology, 158, 265–284. http://doi.org/10.1016/0022-1694(94)90057-4
  • Eisner, S., Flörke, M., Chamorro, A., & Daggupati P. (2017). An ensemble analysis of climate change impacts on streamflow seasonality across 11 large river basins, Climatic Change, 141(3), 401–417. https://doi.org/10.1007/s10584-016-1844-5
  • Erendil, M. (2003). Geological features of Anatolian Peninsula, MTA Genel Müdürlüğü Yayını, 209.
  • Gebre, S. L. (2015). Application of the HEC-HMS model for runoff simulation of Upper Blue Nile River Basin, Hydrology Current Research, 6(2), 1–8. http://doi.org/10.4172/2157-7587.1000199
  • Gilroy, K. L. & McCuen, R. H. (2012). A nonstationary flood frequency analysis method to adjust for future climate change and urbanization, Journal of Hydrology, 414. https://doi.org/10.1016/j.jhydrol.2011.10.009
  • Giorgi, F., Raffaele, F., & Coppola, E. (2019). The response of precipitation characteristics to global warming from climate projections, Earth System Dynamics, 10, 73–89. https://doi.org/10.5194/esd-10-73-2019
  • Gumindoga, W., Rwasoka, D. T., Nhapi, I. & Dube, T. (2017). Ungauged runoff simulation in Upper Manyame Catchment, Zimbabwe: application of the HEC-HMS model, Physics and Chemistry of the Earth, 100, 371–382. https://doi.org/10.1016/j.pce.2016.05.002
  • Gupta, H. V., Sorooshian, S. & Yapo, P. O. (1998). Toward improved calibration of hydrologic models: multiple and noncommensurable measures of information, Water Resources Research, 34(4), 751–763. http://doi.org/10.1029/97WR03495
  • Gupta, H. V., Beven, K. J., & Wagener, T. (2006). Model calibration and uncertainty estimation. Encyclopedia of Hydrological Sciences. https://doi.org/10.1002/0470848944.hsa138
  • Haddah, A. (2022). Extreme rainfall-runoff events modeling using HEC-HMS model for Oued El Hachem Watershed, Northern Algeria, Archives of Hydro-Engineering and Environmental Mechanics, 69, 45–57. http://doi.org/10.2478/heem-2022-0004
  • Hawkins, R. H., Ward, T. J., Woodward, D. E., & Van Mullem, J. A. (2008). Curve number hydrology state of the practice. The American Society of Civil Engineers. ISBN-10 ‏ : ‎0784410046
  • Ho, L., & Umitsu, M. (2011). Micro-landform classification and flood hazard assessment of the Thu Bon alluvial plain, central Vietnam via an integrated method utilizing remotely sensed data, Applied Geography, 31, 1082e1093. http://doi.org/10.1016/j.apgeog.2011.01.005
  • Hong, Y., & Adler, R. F. (2008). Estimation of global SCS curve numbers using satellite remote sensing and geospatial data, International Journal of Remote Sensing, 29(2), 471–477. https://doi.org/10.1080/01431160701264292
  • İspirli, M. N. (2019). HEC-HMS model programı kullanılarak dağlık havzalarda kar erimesine etki eden parametrelerin belirlenmesi ve Kırkgöze Çipak Havzası’nın hidrolojik modellenmesi. Yüksek Lisans Tezi. Atatürk Üniversitesi, Fen Bilimleri Enstitüsü.
  • Kaatz, J. A. (2014). Development of a HEC-HMS model to inform river gauge placement for a flood early warning system in Uganda. Master’s Thesis. Master of Engineering in Civil and Environmental Engineering at the Massachusetts Institute of Technology.
  • Kacar, T. (2017). Aras Havzası’nda HEC-HMS ile hidrolojik modelleme ve akım tahmini. Yüksek Lisans Tezi. Anadolu Üniversitesi, Fen Bilimleri Enstitüsü.
  • Kay, A. L., Davies, H. N., Bell, V. A. & Jones R. G. (2008). Comparison of uncertainity sources for climate change impacts:flood frequency in England, Climate Change, 92(1–2), 41–63. http://doi.org/10.1007/s10584-008-9471-4
  • Kazezyılmaz-Alhan, C. M., Yalçın, İ., Javanshour, K., Aytekin, M., & Gülbaz, S. (2021). A hydrological model for Ayamama watershed in Istanbul, Turkey, using HEC-HMS, Water Practice&Technology, 16(1), 154–161. https://doi.org/10.2166/wpt.2020.108
  • Kocyigit, M. B., Akay, H., & Yanmaz, A. M. (2017). Estimation of hydrologic parameters of Kocanaz Watershed by a hydrologic model, International Journal of Engineering and Applied Sciences, 9(4), 42–50. https://doi.org/10.24107/ijeas.342039
  • Kılıçer, Ü., & Özgüler H. (2002). Türkiye’de taşkın durumu, Türkiye Mühendislik Haberleri, 420–421–422, 142–144.
  • Krause, P. Boyle, D. P. & Bäse, F. (2005). Comparison of different efficiency criteria for hydrological model assessment, Advances in Geosciences, 5, 89–97. https://doi.org/10.5194/adgeo-5-89-2005
  • Manizabayo, P., Ngwijabagabo, H., Nzayisenga, I., Nzamwita, S., Amani, L., Uwitonze, E., & Gilbert, K. M. (2024). Assessment of flood susceptibility utilizing remote sensing and geographic information systems: A case studyof Mpazi sub-catchment in the city of Kigali, Advanced GIS, 4(1), 31–41. Retrieved from https://publish.mersin.edu.tr/index.php/agis/article/view/1356
  • Milly, P. C. D., Wetherald, R. T., Dunne, K. A., & Delworth, T. L. (2002). Increasing risk of great floods in a changing climate, Nature, 415, 514–517. https://doi.org/10.1038/415514a
  • Namara, W. G., Damise, T. A., & Tufa, F. G. (2020). Rainfall runoff modeling using HEC-HMS: the case of Awash Bello Sub-Catchment, Upper Awash Basin, Ethiopia, International Journal of Environment, 9(1), 68–86. https://doi.org/10.3126/ije.v9i1.27588
  • Oğuz, E., Oğuz, K., & Öztürk, K. (2022). Düzce bölgesi taşkın duyarlılık alanlarının belirlenmesi, Geomatik, 7(3), 220–234. https://doi.org/10.29128/geomatik.972343
  • Oleyiblo, J. O., & Li Z. (2010). Application of HEC-HMS for flood forecasting in Misai and Wan’an cathments in China, Water Science and Engineering, 3(1), 14–22. https://doi.org/10.3882/j.issn.1674-2370.2010.01.002
  • Omar, F. O., & Rasul, A. (2023). Assessing hydrological modeling approaches: a review of the soil conservation service curve number and the soil and water assessment tool, Advanced GIS, 3(2), 47–52. Retrieved from https://publish.mersin.edu.tr/index.php/agis/article/view/981
  • Orman ve Su İşleri Bakanlığı. (2017). Taşkın yönetimi, Orman ve Su İşleri Bakanlığı, Su Yönetimi Genel Müdürlüğü.
  • Peker, İ. B., Gülbaz, S., Demir, V., Orhan, O., & Beden, N. (2024). Integration of HEC-RAS and HEC-HMS with GIS in flood modeling and flood hazard mapping, Sustainability, 16(3), 1–18. https://doi.org/10.3390/su16031226
  • Ponce, V. M., & Hawkins, R. H. (1996). Runoff curve number:has it reached maturity?, Journal of Hydrologic Engineering, 1(1), 11–19. http://doi.org/10.1061/(ASCE)10840699(1996)1:1(11)
  • Pui, A., Lal, A., & Sharma, A. (2011). How does the interdecadal Pacific oscillation affect design floods in Australia?, Water Resources Research, 47(5). http://doi.org/10.1029/2010WR009420
  • Ranjan, S., & Singh, V. (2022). HEC-HMS based rainfall-runoff model for Punpun river basin, Water Practice&Technology, 17(5), 986–1001. https://doi.org/10.2166/wpt.2022.033
  • Sahu, S. K. (2016). Application of HEC-HMS model for runoff simulation. Bachelor’s Thesis. Department of Civil Engineering National Institute of Technology.
  • Sankarasubramanian, A., & Upmanu, L. (2003). Flood quantiles in a changing climate:seasonal forecasts and causal relations, Water Resources Research, 39(5), 1134. http://doi.org/10.1029/2002WR001593
  • Saplıoğlu, K., & Çoban, E. (2013). Karadeniz bölgesi yağış serilerinin trend analizi. VII. Ulusal Hidroloji Kongresi, Süleyman Demirel Üniversitesi, Isparta.
  • Shrestha, M., Acharya, S. C., & Shrestha, P. K. (2017). Bias correction of climate models for hydrological modelling-are simple methods still useful?, Meteorological Applications, 24, 531–539. http://doi.org/10.1002/met.1655
  • Sok, K., & Oeurng, C. (2016). Application of HEC-HMS model to assess streamflow and water resources availability in stung sangker catchment of Mekong’ Tonle Sap Lake Basin in Cambodia, Preprints, 2016120136, https://doi.org/10.20944/preprints201612.0136.v1.
  • Soulis, K. X., Valiantzas, J. D., Dercas, N., & Londra, P. A. (2009). Investigation of the direct runoff generation mechanism for the analysis of the SCS-CN method applicability to a partial area experimental watershed, Hydrology and Earth System Sciences, 13(5), 605–615. http://doi.org/10.5194/hess-13-605-2009
  • Şengün, M. (2006). Anadolu’nun kenet kuşakları ve jeolojik evrimine irdelemeli ve eleştirel bir bakış, Maden Tetkik ve Arama Dergisi, 133, 1–26.
  • Tan, W. J., Khor, J. F., Ling, L., & Huang, F. (2018). Exploratory research of new curve number system, International Conference on Civil and Environmental Engineering. https://doi.org/10.1051/e3sconf/20186507005
  • Tassew, B. G., Belete, M. A., & Miegel, K. (2019). Application of HEC-HMS model for flow simulation in the lake Tana Basin: the case of Gilgel Abay Catchment, Upper Blue Nile Basin, Ethiopia, Hydrology, 6(1), 1–21. https://doi.org/10.3390/hydrology6010021
  • Tokgöz, S., & Partal, T. (2020). Karadeniz Bölgesinde yıllık yağış ve sıcaklık verilerinin yenilikçi şen ve mann-kendall yöntemleri ile trend analizi, Journal of the Institute of Science and Technology, 10(2), 1107–1118. https://doi.org/10.21597/jist.633368
  • Torabi, S. A., Sedghi, H., Porhemmat, J., & Babazadeh, H. (2018). The simulation of flood hydrograph in natural and urban basins, Open Journal of Geology, 8, 641–646. http://doi.org/10.4236/ojg.2018.87037
  • te Linde, A. H., Aerts, J. C. J. H., Bakker, A. M. R., & Kwadijk, J. C. J. (2010). Simulating low-probability peak discharges for the Rhine basin using resampled climate modeling data, Water Resources Research, 46(3), 1–19. https://doi.org/10.1029/2009WR007707
  • Waseem, M., Mani, N., Andiego, G., & Usman, M. (2017). A review of criteria of fit for hydrological models, International Research Journal of Engineering and Technology (IRJET), 4(11), 1765–1772.
  • Winsemius, H. C., Aerts, J. C. J. H., van Beek, L. P. H., Bierkens, M. F. P., Bouwman, A., Jongman, B., Kwadijk, J. C. J., Ligtvoet, W., Lucas, P. L., van Vuuren, D. P., & Ward, P. J. (2016). Global drivers of future river flood risk, Nature Climate Change, 6, 381–385. https://doi.org/10.1038/nclimate2893
  • Versiani, B. R., de Melo Franco Carneiro, R., Amaral, I. R., & Finzi Quintão, C. M. (2009). Maximum flood regionalization in large basins: study case of the Alto São Francisco region-Minas Gerais, Brazil, Hydrological Processes, 23(22), 3201–3206. http://doi.org/10.1002/hyp.7399
  • Yılmaz, C. B., Demir, V., Sevimli, M. F., Demir, F., & Yakar, M. (2021). Trend analysis of temperature and precipitation in Mediterraneanregion, Advanced GIS, 1(1), 15–21. Retrieved from https://publish.mersin.edu.tr/index.php/agis/article/view/60
  • Younis, S. M. Z., & Ammar, A. (2018). Quantification of impact of changes in land use-land cover on hydrology in the upper Indus Basin, Pakistan, The Egyptian Journal of Remote Sensing and Space Sciences, 21(3), 255–263. http://doi.org/10.1016/j.ejrs.2017.11.001
  • Yu, X., & Zhang, J. (2023). The Application and applicability of HEC-HMS model in flood simulation under the condition of river basin urbanization, Water, 15(12), 1–14. https://doi.org/10.3390/w15122249
  • URL-1: https://data.apps.fao.org/map/catalog/srv/eng/catalog.search#/metadata/446ed430-8383-11db-b9b2-000d939bc5d8
  • URL-2: https://earthexplorer.usgs.gov
  • URL-3: https://land.copernicus.eu/en/products/corine-land-cover
Year 2025, Volume: 10 Issue: 1, 1 - 14
https://doi.org/10.29128/geomatik.1492923

Abstract

References

  • Akkaya, Y. (2019). Melen Çayı Havzası’nın coğrafi potansiyeli ve sürdürülebilirlik açısından havza yönetimi. Doktora Tezi. İstanbul Üniversitesi Sosyal Bilimler Enstitüsü.
  • Altunel, A. O., & Kara, F. (2023). Tracing the culprits over the destruction of three coastal communities during a rouge rainstorm on August 2021 in north central Türkiye, Ocean & Coastal Management, 241, 106630. https://doi.org/10.1016/j.ocecoaman.2023.106630
  • Altunel, A. O. (2023). The effect of DEM resolution on topographic wetness index calculation and visualization: An insight to the hidden danger unraveled in Bozkurt in August, 2021, International Journal of Engineering and Geosciences, 8(2), 165–172. https://doi.org/10.26833/ijeg.1110560
  • Amil, T. A. (2018). Determining of different inundated land use in Salyan Plain during 2010 the Kura River flood through GIS and remote sensing tools, International Journal of Engineering and Geosciences (IJEG), 3(3), 080–086. https://doi.org/10.26833/ijeg.412348
  • Arnell, N. W., & Gosling, S. N. (2016). The impacts of climate change on river flood risk at the global scale, Climatic Change, 134, 387–401. http://doi.org/10.1007/s10584-014-1084-5
  • Barbaros, F. (2022). Batı Karadeniz Havzası yağış değişkenliklerinin entropi tabanlı bir yaklaşımla değerlendirilmesi, Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 12(1), 344–356. https://doi.org/10.17714/gumusfenbil.995514
  • Bora, E. (2016). İklim değişikliği etkileri altında risk tabanlı tasarım. Yüksek Lisans Tezi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi.
  • Brown, A., E., Zhang, L., McMahon, T. A., Western, A. W., & Vertessy, R. A. (2005). Areview of paired catchment studies for determining changes in water yield resulting from alterations in vegetation, Journal of Hydrology, 310(1–4), 28–61. https://doi.org/10.1016/j.jhydrol.2004.12.010
  • Chadli, K., Kirat, M., Laadoua, A., & El Harchaoui, N. (2016). Runoff modeling of Sebou watershed (Morocco) using SCS curve number method and geographic information system, Modelling Earth Systems and Environment, 2(158), 1–8. https://doi.org/10.1007/s40808-016-0215-6
  • Chang, H., Franczyk, J., & Kim, C. (2009). What is responsible for increasing flood risks? the case of Gangwon province, Korea, Natural Hazards, 48, 339e354. http://doi.org/10.1007/s11069-008-9266-y
  • Chau, V. N., Holland, J., Cassells, S., & Tuohy, M. (2013). Using GIS to map impacts upon agriculture from extreme floods in Vietnam, Applied Geography, 41, 65e74. https://doi.org/10.1016/j.apgeog.2013.03.014
  • Cred, U. (2020). Human Cost of Disasters. An Overview of the Last 20 Years: 2000–2019. CRED, UNDRR, Geneva.
  • Çelik, H., Şengönül, K., Akyüz, F., Altunel, O., Dağcı, M., & Esin, A. (2012). Sedimentation problems and suggested solutions of Istanbul’s drinking water dams: a case study of Alibey Dam, Journal of the Faculty of Forestry Istanbul University, 62(2), 113–127.
  • Daide, F., Afgane, R., Lahrach, A., Chaouni, A. A., Msaddek, M., & Elhasnaoui, I. (2021). Application of the HEC-HMS hydrological model in the Beht watershed (Morocco), E3S Web of Conferences, 314, 05003. https://doi.org/10.1051/e3sconf/202131405003
  • Derdour, A., Bouanani, A., & Babahamed, K. (2018). Modelling rainfall runoff relations using HEC-HMS in a semi-arid region: case study in Ain Sefra watershed, Ksour Mountains (SW Algeria), Journal of Water Land Development, 36(I–III), 45–55. http://doi.org/10.2478/jwld-2018-0005
  • Demir, V., Beden, N., & Ülke Keskin, A. (2021). Taşkın modelleme yöntemlerinin gözden geçirilmesi ve karşılaştırılması, Avrupa Bilim ve Teknoloji Dergisi, (28), 1013–1021. https://doi.org/10.31590/ejosat.1010220
  • Demir, V., & Ülke Keskin, A. (2022). Yeterince akım ölçümü olmayan nehirlerde taşkın debisinin hesaplanması ve taşkın modellemesi (Samsun, Mert Irmağı örneği), Geomatik, 7(2), 149–162. https://doi.org/10.29128/geomatik.918502
  • Demir, V., & Ülke Keskin, A. (2022). Taşkın Tehlike Haritalarının Oluşturulması (Samsun, Mert Irmağı Örneği), Türkiye Coğrafi Bilgi Sistemleri Dergisi, 4(1), 47–54. https://doi.org/10.56130/tucbis.1120501
  • Demir, V., & Ülke Keskin, A. (2022). Taşkınların ekonomik zararlarının değerlendirilmesi (Samsun-Mert Irmağı Havzası), Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi, 14(2), 663–678. https://doi.org/10.29137/umagd.1090447
  • de Salis, H. H. C., da Costa, A. M., Vianna, J. H. M., Schuler, M. A., Künne, A., Fernandes, L. F. S. & P. F. A. L. (2019). Hydrologic modeling for sustainable water resources management in urbanized karst areas, International Journal of Environmental Research and Public Health, 16(2542), 1–19. https://doi.org/10.3390/ijerph16142542
  • Duan, Q., Sorossshian, S. & Gupta, V. K. (1994). Optimal use of the SCE-UA global optimization method for calibrating watershed models, Journal of Hydrology, 158, 265–284. http://doi.org/10.1016/0022-1694(94)90057-4
  • Eisner, S., Flörke, M., Chamorro, A., & Daggupati P. (2017). An ensemble analysis of climate change impacts on streamflow seasonality across 11 large river basins, Climatic Change, 141(3), 401–417. https://doi.org/10.1007/s10584-016-1844-5
  • Erendil, M. (2003). Geological features of Anatolian Peninsula, MTA Genel Müdürlüğü Yayını, 209.
  • Gebre, S. L. (2015). Application of the HEC-HMS model for runoff simulation of Upper Blue Nile River Basin, Hydrology Current Research, 6(2), 1–8. http://doi.org/10.4172/2157-7587.1000199
  • Gilroy, K. L. & McCuen, R. H. (2012). A nonstationary flood frequency analysis method to adjust for future climate change and urbanization, Journal of Hydrology, 414. https://doi.org/10.1016/j.jhydrol.2011.10.009
  • Giorgi, F., Raffaele, F., & Coppola, E. (2019). The response of precipitation characteristics to global warming from climate projections, Earth System Dynamics, 10, 73–89. https://doi.org/10.5194/esd-10-73-2019
  • Gumindoga, W., Rwasoka, D. T., Nhapi, I. & Dube, T. (2017). Ungauged runoff simulation in Upper Manyame Catchment, Zimbabwe: application of the HEC-HMS model, Physics and Chemistry of the Earth, 100, 371–382. https://doi.org/10.1016/j.pce.2016.05.002
  • Gupta, H. V., Sorooshian, S. & Yapo, P. O. (1998). Toward improved calibration of hydrologic models: multiple and noncommensurable measures of information, Water Resources Research, 34(4), 751–763. http://doi.org/10.1029/97WR03495
  • Gupta, H. V., Beven, K. J., & Wagener, T. (2006). Model calibration and uncertainty estimation. Encyclopedia of Hydrological Sciences. https://doi.org/10.1002/0470848944.hsa138
  • Haddah, A. (2022). Extreme rainfall-runoff events modeling using HEC-HMS model for Oued El Hachem Watershed, Northern Algeria, Archives of Hydro-Engineering and Environmental Mechanics, 69, 45–57. http://doi.org/10.2478/heem-2022-0004
  • Hawkins, R. H., Ward, T. J., Woodward, D. E., & Van Mullem, J. A. (2008). Curve number hydrology state of the practice. The American Society of Civil Engineers. ISBN-10 ‏ : ‎0784410046
  • Ho, L., & Umitsu, M. (2011). Micro-landform classification and flood hazard assessment of the Thu Bon alluvial plain, central Vietnam via an integrated method utilizing remotely sensed data, Applied Geography, 31, 1082e1093. http://doi.org/10.1016/j.apgeog.2011.01.005
  • Hong, Y., & Adler, R. F. (2008). Estimation of global SCS curve numbers using satellite remote sensing and geospatial data, International Journal of Remote Sensing, 29(2), 471–477. https://doi.org/10.1080/01431160701264292
  • İspirli, M. N. (2019). HEC-HMS model programı kullanılarak dağlık havzalarda kar erimesine etki eden parametrelerin belirlenmesi ve Kırkgöze Çipak Havzası’nın hidrolojik modellenmesi. Yüksek Lisans Tezi. Atatürk Üniversitesi, Fen Bilimleri Enstitüsü.
  • Kaatz, J. A. (2014). Development of a HEC-HMS model to inform river gauge placement for a flood early warning system in Uganda. Master’s Thesis. Master of Engineering in Civil and Environmental Engineering at the Massachusetts Institute of Technology.
  • Kacar, T. (2017). Aras Havzası’nda HEC-HMS ile hidrolojik modelleme ve akım tahmini. Yüksek Lisans Tezi. Anadolu Üniversitesi, Fen Bilimleri Enstitüsü.
  • Kay, A. L., Davies, H. N., Bell, V. A. & Jones R. G. (2008). Comparison of uncertainity sources for climate change impacts:flood frequency in England, Climate Change, 92(1–2), 41–63. http://doi.org/10.1007/s10584-008-9471-4
  • Kazezyılmaz-Alhan, C. M., Yalçın, İ., Javanshour, K., Aytekin, M., & Gülbaz, S. (2021). A hydrological model for Ayamama watershed in Istanbul, Turkey, using HEC-HMS, Water Practice&Technology, 16(1), 154–161. https://doi.org/10.2166/wpt.2020.108
  • Kocyigit, M. B., Akay, H., & Yanmaz, A. M. (2017). Estimation of hydrologic parameters of Kocanaz Watershed by a hydrologic model, International Journal of Engineering and Applied Sciences, 9(4), 42–50. https://doi.org/10.24107/ijeas.342039
  • Kılıçer, Ü., & Özgüler H. (2002). Türkiye’de taşkın durumu, Türkiye Mühendislik Haberleri, 420–421–422, 142–144.
  • Krause, P. Boyle, D. P. & Bäse, F. (2005). Comparison of different efficiency criteria for hydrological model assessment, Advances in Geosciences, 5, 89–97. https://doi.org/10.5194/adgeo-5-89-2005
  • Manizabayo, P., Ngwijabagabo, H., Nzayisenga, I., Nzamwita, S., Amani, L., Uwitonze, E., & Gilbert, K. M. (2024). Assessment of flood susceptibility utilizing remote sensing and geographic information systems: A case studyof Mpazi sub-catchment in the city of Kigali, Advanced GIS, 4(1), 31–41. Retrieved from https://publish.mersin.edu.tr/index.php/agis/article/view/1356
  • Milly, P. C. D., Wetherald, R. T., Dunne, K. A., & Delworth, T. L. (2002). Increasing risk of great floods in a changing climate, Nature, 415, 514–517. https://doi.org/10.1038/415514a
  • Namara, W. G., Damise, T. A., & Tufa, F. G. (2020). Rainfall runoff modeling using HEC-HMS: the case of Awash Bello Sub-Catchment, Upper Awash Basin, Ethiopia, International Journal of Environment, 9(1), 68–86. https://doi.org/10.3126/ije.v9i1.27588
  • Oğuz, E., Oğuz, K., & Öztürk, K. (2022). Düzce bölgesi taşkın duyarlılık alanlarının belirlenmesi, Geomatik, 7(3), 220–234. https://doi.org/10.29128/geomatik.972343
  • Oleyiblo, J. O., & Li Z. (2010). Application of HEC-HMS for flood forecasting in Misai and Wan’an cathments in China, Water Science and Engineering, 3(1), 14–22. https://doi.org/10.3882/j.issn.1674-2370.2010.01.002
  • Omar, F. O., & Rasul, A. (2023). Assessing hydrological modeling approaches: a review of the soil conservation service curve number and the soil and water assessment tool, Advanced GIS, 3(2), 47–52. Retrieved from https://publish.mersin.edu.tr/index.php/agis/article/view/981
  • Orman ve Su İşleri Bakanlığı. (2017). Taşkın yönetimi, Orman ve Su İşleri Bakanlığı, Su Yönetimi Genel Müdürlüğü.
  • Peker, İ. B., Gülbaz, S., Demir, V., Orhan, O., & Beden, N. (2024). Integration of HEC-RAS and HEC-HMS with GIS in flood modeling and flood hazard mapping, Sustainability, 16(3), 1–18. https://doi.org/10.3390/su16031226
  • Ponce, V. M., & Hawkins, R. H. (1996). Runoff curve number:has it reached maturity?, Journal of Hydrologic Engineering, 1(1), 11–19. http://doi.org/10.1061/(ASCE)10840699(1996)1:1(11)
  • Pui, A., Lal, A., & Sharma, A. (2011). How does the interdecadal Pacific oscillation affect design floods in Australia?, Water Resources Research, 47(5). http://doi.org/10.1029/2010WR009420
  • Ranjan, S., & Singh, V. (2022). HEC-HMS based rainfall-runoff model for Punpun river basin, Water Practice&Technology, 17(5), 986–1001. https://doi.org/10.2166/wpt.2022.033
  • Sahu, S. K. (2016). Application of HEC-HMS model for runoff simulation. Bachelor’s Thesis. Department of Civil Engineering National Institute of Technology.
  • Sankarasubramanian, A., & Upmanu, L. (2003). Flood quantiles in a changing climate:seasonal forecasts and causal relations, Water Resources Research, 39(5), 1134. http://doi.org/10.1029/2002WR001593
  • Saplıoğlu, K., & Çoban, E. (2013). Karadeniz bölgesi yağış serilerinin trend analizi. VII. Ulusal Hidroloji Kongresi, Süleyman Demirel Üniversitesi, Isparta.
  • Shrestha, M., Acharya, S. C., & Shrestha, P. K. (2017). Bias correction of climate models for hydrological modelling-are simple methods still useful?, Meteorological Applications, 24, 531–539. http://doi.org/10.1002/met.1655
  • Sok, K., & Oeurng, C. (2016). Application of HEC-HMS model to assess streamflow and water resources availability in stung sangker catchment of Mekong’ Tonle Sap Lake Basin in Cambodia, Preprints, 2016120136, https://doi.org/10.20944/preprints201612.0136.v1.
  • Soulis, K. X., Valiantzas, J. D., Dercas, N., & Londra, P. A. (2009). Investigation of the direct runoff generation mechanism for the analysis of the SCS-CN method applicability to a partial area experimental watershed, Hydrology and Earth System Sciences, 13(5), 605–615. http://doi.org/10.5194/hess-13-605-2009
  • Şengün, M. (2006). Anadolu’nun kenet kuşakları ve jeolojik evrimine irdelemeli ve eleştirel bir bakış, Maden Tetkik ve Arama Dergisi, 133, 1–26.
  • Tan, W. J., Khor, J. F., Ling, L., & Huang, F. (2018). Exploratory research of new curve number system, International Conference on Civil and Environmental Engineering. https://doi.org/10.1051/e3sconf/20186507005
  • Tassew, B. G., Belete, M. A., & Miegel, K. (2019). Application of HEC-HMS model for flow simulation in the lake Tana Basin: the case of Gilgel Abay Catchment, Upper Blue Nile Basin, Ethiopia, Hydrology, 6(1), 1–21. https://doi.org/10.3390/hydrology6010021
  • Tokgöz, S., & Partal, T. (2020). Karadeniz Bölgesinde yıllık yağış ve sıcaklık verilerinin yenilikçi şen ve mann-kendall yöntemleri ile trend analizi, Journal of the Institute of Science and Technology, 10(2), 1107–1118. https://doi.org/10.21597/jist.633368
  • Torabi, S. A., Sedghi, H., Porhemmat, J., & Babazadeh, H. (2018). The simulation of flood hydrograph in natural and urban basins, Open Journal of Geology, 8, 641–646. http://doi.org/10.4236/ojg.2018.87037
  • te Linde, A. H., Aerts, J. C. J. H., Bakker, A. M. R., & Kwadijk, J. C. J. (2010). Simulating low-probability peak discharges for the Rhine basin using resampled climate modeling data, Water Resources Research, 46(3), 1–19. https://doi.org/10.1029/2009WR007707
  • Waseem, M., Mani, N., Andiego, G., & Usman, M. (2017). A review of criteria of fit for hydrological models, International Research Journal of Engineering and Technology (IRJET), 4(11), 1765–1772.
  • Winsemius, H. C., Aerts, J. C. J. H., van Beek, L. P. H., Bierkens, M. F. P., Bouwman, A., Jongman, B., Kwadijk, J. C. J., Ligtvoet, W., Lucas, P. L., van Vuuren, D. P., & Ward, P. J. (2016). Global drivers of future river flood risk, Nature Climate Change, 6, 381–385. https://doi.org/10.1038/nclimate2893
  • Versiani, B. R., de Melo Franco Carneiro, R., Amaral, I. R., & Finzi Quintão, C. M. (2009). Maximum flood regionalization in large basins: study case of the Alto São Francisco region-Minas Gerais, Brazil, Hydrological Processes, 23(22), 3201–3206. http://doi.org/10.1002/hyp.7399
  • Yılmaz, C. B., Demir, V., Sevimli, M. F., Demir, F., & Yakar, M. (2021). Trend analysis of temperature and precipitation in Mediterraneanregion, Advanced GIS, 1(1), 15–21. Retrieved from https://publish.mersin.edu.tr/index.php/agis/article/view/60
  • Younis, S. M. Z., & Ammar, A. (2018). Quantification of impact of changes in land use-land cover on hydrology in the upper Indus Basin, Pakistan, The Egyptian Journal of Remote Sensing and Space Sciences, 21(3), 255–263. http://doi.org/10.1016/j.ejrs.2017.11.001
  • Yu, X., & Zhang, J. (2023). The Application and applicability of HEC-HMS model in flood simulation under the condition of river basin urbanization, Water, 15(12), 1–14. https://doi.org/10.3390/w15122249
  • URL-1: https://data.apps.fao.org/map/catalog/srv/eng/catalog.search#/metadata/446ed430-8383-11db-b9b2-000d939bc5d8
  • URL-2: https://earthexplorer.usgs.gov
  • URL-3: https://land.copernicus.eu/en/products/corine-land-cover
There are 73 citations in total.

Details

Primary Language Turkish
Subjects Geospatial Information Systems and Geospatial Data Modelling
Journal Section Araştırma Makalesi
Authors

Tolga Ergül 0000-0003-1397-7462

Olgu Aydın 0000-0001-8220-6384

Early Pub Date November 1, 2024
Publication Date
Submission Date May 31, 2024
Acceptance Date August 7, 2024
Published in Issue Year 2025 Volume: 10 Issue: 1

Cite

APA Ergül, T., & Aydın, O. (2024). Küçük Melen İğneler Havzası’ndaki taşkınların hidrolojik modelleme yöntemiyle (HEC-HMS) belirlenmesi. Geomatik, 10(1), 1-14. https://doi.org/10.29128/geomatik.1492923
AMA Ergül T, Aydın O. Küçük Melen İğneler Havzası’ndaki taşkınların hidrolojik modelleme yöntemiyle (HEC-HMS) belirlenmesi. Geomatik. November 2024;10(1):1-14. doi:10.29128/geomatik.1492923
Chicago Ergül, Tolga, and Olgu Aydın. “Küçük Melen İğneler Havzası’ndaki taşkınların Hidrolojik Modelleme yöntemiyle (HEC-HMS) Belirlenmesi”. Geomatik 10, no. 1 (November 2024): 1-14. https://doi.org/10.29128/geomatik.1492923.
EndNote Ergül T, Aydın O (November 1, 2024) Küçük Melen İğneler Havzası’ndaki taşkınların hidrolojik modelleme yöntemiyle (HEC-HMS) belirlenmesi. Geomatik 10 1 1–14.
IEEE T. Ergül and O. Aydın, “Küçük Melen İğneler Havzası’ndaki taşkınların hidrolojik modelleme yöntemiyle (HEC-HMS) belirlenmesi”, Geomatik, vol. 10, no. 1, pp. 1–14, 2024, doi: 10.29128/geomatik.1492923.
ISNAD Ergül, Tolga - Aydın, Olgu. “Küçük Melen İğneler Havzası’ndaki taşkınların Hidrolojik Modelleme yöntemiyle (HEC-HMS) Belirlenmesi”. Geomatik 10/1 (November 2024), 1-14. https://doi.org/10.29128/geomatik.1492923.
JAMA Ergül T, Aydın O. Küçük Melen İğneler Havzası’ndaki taşkınların hidrolojik modelleme yöntemiyle (HEC-HMS) belirlenmesi. Geomatik. 2024;10:1–14.
MLA Ergül, Tolga and Olgu Aydın. “Küçük Melen İğneler Havzası’ndaki taşkınların Hidrolojik Modelleme yöntemiyle (HEC-HMS) Belirlenmesi”. Geomatik, vol. 10, no. 1, 2024, pp. 1-14, doi:10.29128/geomatik.1492923.
Vancouver Ergül T, Aydın O. Küçük Melen İğneler Havzası’ndaki taşkınların hidrolojik modelleme yöntemiyle (HEC-HMS) belirlenmesi. Geomatik. 2024;10(1):1-14.