Derleme
BibTex RIS Kaynak Göster

DInSAR ve MT-DInSAR Teknolojileri ile Afet Erken Uyarı, Tespit, İzleme ve Yönetimi

Yıl 2025, Cilt: 10 Sayı: 2, 251 - 273
https://doi.org/10.29128/geomatik.1601101

Öz

Günümüzde, afetlerin engellenmesi veya hızlı müdahale edilmesi amacıyla afet erken uyarı, tespit, izleme ve yönetme üzerine birçok bilimsel çalışma yapılmaktadır. 21. yy ile beraber bu çalışmalarda, uzaktan algılama teknolojilerinden elde edilen verilerin kullanımı vazgeçilmez hale gelmiştir. Özellikle son on yılda, yüksek çözünürlük ve geniş kapsama alanı kabiliyetine sahip bazı uydulara ait verilerin ücretsiz sunulması ve insansız hava aracı teknolojisinde yaşanan gelişmeler afet erken uyarı, tespit, izleme ve yönetme faaliyetlerinde uzaktan algılama verilerinin daha efektif kullanımını beraberinde getirmiştir. Bu doğrultuda kullanılan uzaktan algılama teknolojilerinin başında interferometrik yapay açıklıklı radar (InSAR) gelmektedir. Yapay açıklıklı radar (SAR) teknolojisinin üç boyutlu (3B) tasvir yöntemi olan InSAR, hedef alanda yüksek kalitede dijital yüzey modellerinin ve deformasyon haritalarının üretimine olanak verir. InSAR, deprem, heyelan, tasman, volkanik aktivite vb. afetlerin merkez üssü, etki miktarı ve yayılım alanı gibi önemli metrikleri hızlı elde edebilme imkanı sunmaktadır. InSAR teknolojisi ile afet tespit, izleme ve yönetim çalışmalarında diferansiyel InSAR (DInSAR) ve çok zamanlı DInSAR (MT-DInSAR) yöntemleri kullanılmaktadır. MT-DInSAR yönteminin en sık tercih edilenleri ise kısa baz uzunluğu altkümesi (SBAS), sürekli saçıcılar interferometrisi (PSI) ve SAR tomografi (TomoSAR)’dır. Bu derlemede, afet izleme çalışmalarında kullanılan InSAR teknikleri ele alınmış ve literatürde deprem, heyelan, tasman, volkanik aktivite ve sel konularında yapılmış önemli çalışmalarda InSAR kullanım gerekçeleri ve ulaşılan sonuçlar sunulmuştur.

Kaynakça

  • Akgül, M. A. (2018). Sentetik açıklıklı radar verilerinin taşkın çalışmalarında kullanılması: Berdan Ovası Taşkını. Geomatik, 3(2), 154-162.
  • Alcántara-Ayala, I. (2002). Geomorphology, natural hazards, vulnerability and prevention of natural disasters in developing countries. Geomorphology, 47(2-4), 107-124.
  • Alimuddin, I., Bayuaji, L., Sumantyo, J. T. S., & Kuze, H. (2011). Surface deformation monitoring of Miyakejima volcano using DInSAR technique of ALOS PALSAR images. IEEE International Geoscience and Remote Sensing Symposium, 24-29 July 2011, Vancouver, BC, Canada, 1615-1618.
  • Altunel, A. O. (2023). The effect of DEM resolution on topographic wetness index calculation and visualization: An insight to the hidden danger unraveled in Bozkurt in August, 2021. International Journal of Engineering and Geosciences, 8(2), 165-172.
  • slan, G., Foumelis, M., Raucoules, D., De Michele, M., Bernardie, S., & Cakir, Z. (2020). Landslide mapping and monitoring using Persistent Scatterer Interferometry (PSI) technique in the French Alps. Remote Sensing, 12(8), 1305.
  • Atzori, S., Hunstad, I., Chini, M., Salvi, S., Tolomei, C., Bignami, C., Stramondo, S., Trasatti, E., Antonioli, A., & Boschi, E. (2009). Finite fault inversion of DInSAR coseismic displacement of the 2009 L’Aquila earthquake (central Italy). Geophysical Research Letters, 36(15), 1–6.
  • Bahadır, M., Ocak, F., & Şen, H. (2024). Determination of the development of settlements above earthquake susceptibility classes in Atakum district (Samsun/Türkiye). International Journal of Engineering and Geosciences, 9(3), 390-405.
  • Bamler, R., & Hartl, P. (1998). Synthetic aperture radar interferometry. Inverse Problems, 14(4), R1.
  • Barra, A., Solari, L., Béjar-Pizarro, M., Monserrat, O., Bianchini, S., Herrera, G., Crosetto, M., Sarro, R., González-Alonso, E., Mateos, R. M., Ligüerzana, S., López, C., & Moretti, S. (2017). A methodology to detect and update active deformation areas based on Sentinel-1 SAR images. Remote Sensing, 9(10), 1002.
  • Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40(11), 2375-2383.
  • Boixart, G., Cruz, L. F., Miranda Cruz, R., Euillades, P. A., Euillades, L. D., & Battaglia, M. (2020). Source model for Sabancaya volcano constrained by DInSAR and GNSS surface deformation observation. Remote Sensing, 12(11), 1852.
  • Caló, F., Notti, D., Galve, J. P., Abdikan, S., Görüm, T., Pepe, A., & Balik Şanli, F. (2017). DInSAR-based detection of land subsidence and correlation with groundwater depletion in Konya Plain, Turkey. Remote Sensing, 9(1), 83.
  • Castaldo, R., De Novellis, V., Solaro, G., Pepe, S., Tizzani, P., De Luca, C., Bonano, M., Manunta, M., Casu, F., Zinno, I., & Lanari, R. (2017). Finite element modelling of the 2015 Gorkha earthquake through the joint exploitation of DInSAR measurements and geologic-structural information. Tectonophysics, 714, 125-132.
  • Casu, F., Elefante, S., Imperatore, P., Zinno, I., Manunta, M., De Luca, C., & Lanari, R. (2014). SBAS-DInSAR parallel processing for deformation time-series computation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(8), 3285-3296.
  • Casu, F., Manzo, M., & Lanari, R. (2006). A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data. Remote Sensing of Environment, 102(3-4), 195-210.
  • Cenni, N., Fiaschi, S., & Fabris, M. (2021). Integrated use of archival aerial photogrammetry, GNSS, and InSAR data for the monitoring of the Patigno landslide (Northern Apennines, Italy). Landslides, 18(6), 2247-2263.
  • Chaabani, C., Barbouchi, M., & Abdelfattah, R. (2020). Post-flood surface deformation analysis using P-SBAS-DInSAR Sentinel-1 processing in the north of Tunisia. IEEE International Geoscience and Remote Sensing Symposium, 26 September-02 October 2020, Waikoloa, HI, USA, 1003-1006.
  • Chen, D., Chen, H., Zhang, W., Cao, C., Zhu, K., Yuan, X., & Du, Y. (2020). Characteristics of the residual surface deformation of multiple abandoned mined-out areas based on a field investigation and SBAS-InSAR: A case study in Jilin, China. Remote Sensing, 12(22), 3752.
  • Cheng, S., Zhao, W., & Yin, Z. (2019). PS-InSAR analysis of collapsed dam and extraction of flood inundation areas in Laos using Sentinel-1 SAR images. IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference, 20-22 December 2019, Chengdu, China, 2605-2608.
  • Chuvieco, E., & Congalton, R. G. (1989). Application of remote sensing and geographic information systems to forest fire hazard mapping. Remote Sensing of Environment, 29(2), 147-159.
  • Cloude, S. R., & Papathanassiou, K. P. (1998). Polarimetric SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 36(5), 1551-1565.
  • Confuorto, P., Di Martire, D., Centolanza, G., Iglesias, R., Mallorqui, J.J., Novellino, A., Plank, S., Ramondini, M., Thuro, K., & Calcaterra, D. (2017). Post-failure evolution analysis of a rainfall-triggered landslide by multi-temporal interferometry SAR approaches integrated with geotechnical analysis. Remote Sensing of Environment, 188, 51-72.
  • Costanzo, S., Massa, G. D., Costanzo, A., Borgia, A., Raffo, A., Viggiani, G., & Versace, P. (2016). Software-defined radar system for landslides monitoring. Advances in Intelligent Systems and Computing, 445, 325-331.
  • Crippa, C., Valbuzzi, E., Frattini, P., Crosta, G. B., Spreafico, M. C., & Agliardi, F. (2021). Semi-automated regional classification of the style of activity of slow rock-slope deformations using PS InSAR and SqueeSAR velocity data. Landslides, 18(7), 2445-2463.
  • Crosetto, M., & Pasquali, P. (2008). DSM generation and deformation measurement from SAR data. In Advances in Photogrammetry, Remote Sensing and Spatial Information Sciences: 2008 ISPRS Congress Book, 175-186.
  • Crosetto, M., Monserrat, O., Iglesias, R., & Crippa, B. (2010). Persistent scatterer interferometry: potential, limits and initial C- and X-band comparison. Photogrammetric Engineering & Remote Sensing, 76(9), 1061-1069.
  • Cruden, D. M., & Varnes, D. J. (1996). Landslide types and processes. In Landslides, investigation and mitigation. Edited by A. K. Turner and R. L. Schuster. Transportation Research Board, Special Report, 247, 36-75.
  • Curlander, J. C., & McDonough, R. N. (1991). Synthetic aperture radar. Wiley, New York, NY, USA.
  • Çomut, F. C., Gürboğa, Ş., & Smail, T. (2020). Estimation of co-seismic land deformation due to Mw 7.3 2017 earthquake in Iran (12 November 2017) using Sentinel-1 DInSAR. Bulletin of the Mineral Research and Exploration, 162(162), 11-30.
  • Dai, C., Li, W., Wang, D., Lu, H., Xu, Q., & Jian, J. (2021). Active Landslide Detection Based on Sentinel-1 Data and InSAR Technology in Zhouqu County, Gansu Province, Northwest China. Journal of Earth Science, 32(5), 1092-1103.
  • De Novellis, V., Atzori, S., De Luca, C., Manzo, M., Valerio, E., Bonano, M., Cardaci, C., Castaldo, R., Di Bucci, D., Manunta, M., Onorato, G., Pepe, S., Solaro, G., Tizzani, P., Zinno, I., Neri, M., Lanari, R., & Casu, F. (2019). DInSAR analysis and analytical modeling of Mount Etna displacements: The December 2018 volcano-tectonic crisis. Geophysical Research Letters, 46(11), 5817–5827.
  • De Novellis, V., Atzori, S., Serpelloni, E., De Luca, C., Berardino, P., Bonano, M., Manunta, M., Manzo, M., Tizzani, P., Solaro, G., Pepe, S., Sansosti, E., Lanari, R., & Casu, F. (2018). The 21 August 2017 Ischia (Italy) earthquake source model inferred from seismological, GPS, and DInSAR measurements. Geophysical Research Letters, 45(5), 2193-2202.
  • Dehghani, M., Valadan Zoej, M. J., Entezam, I., Mansourian, A., & Saatchi, S. (2009). InSAR monitoring of progressive land subsidence in Neyshabour, northeast Iran. Geophysical Journal International, 178(1), 47-56.
  • Dong, J., Zhang, L., Tang, M., Liao, M., Xu, Q., Gong, J., & Ao, M. (2018). Mapping landslide surface displacements with time series SAR interferometry by combining persistent and distributed scatterers: A case study of Jiaju landslide in Danba, China. Remote Sensing of Environment, 205, 180-198.
  • Dong, L., & Shan, J. (2013). A comprehensive review of earthquake-induced building damage detection with remote sensing techniques. ISPRS Journal of Photogrammetry and Remote Sensing, 84, 85-99.
  • Elnashai, A., & Di Sarno, L. (2008). Fundamentals of earthquake engineering. New York, Wiley.
  • EM-DAT, (2021). EM-DAT: The OFDA/CRED International Disaster Database, Université Catholique de Louvain, Brussels, Belgium.
  • Eraslan, S., Hatipoğlu, İ. K., Ocak, F., Işık, F., & Zeybek, H. İ. (2024). 6 Şubat 2023 Kahramanmaraş depremlerinde yıkılan binalar ile zemin ilişkisinin incelenmesi ve depremde yıkıma uğrama riski analizi. Geomatik, 9(2), 207-226.
  • Ferretti, A., Fumagalli, A., Novali, F., Prati, C., Rocca, F., & Rucci, A. (2011). A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Transactions on Geoscience and Remote Sensing, 49(9), 3460-3470.
  • Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8-20.
  • Fornaro, G., Reale, D., Di Maio, C., Gioia, D., Schiattarella, M., & Vassallo, R. (2019). Monitoring of urban landslides with very high resolution data: the case study of Latronico. IEEE International Geoscience and Remote Sensing Symposium, 28 July-02 August 2019, Yokohama, Japan, 2092-2094.
  • Freed, A. M. (2005). Earthquake triggering by static, dynamic, and postseismic stress transfer. Annual Review of Earth and Planetary Sciences, 33, 335-367.
  • Fruneau, B., Achache, J., & Delacourt, C. (1996). Observation and modelling of the Saint-Etienne-de-Tinée landslide using SAR interferometry. Tectonophysics, 265(3-4), 181-190.
  • Gabriel, A. K., Goldstein, R. M., & Zebker, H. A. (1989). Mapping small elevation changes over large areas: Differential radar interferometry. Journal of Geophysical Research: Solid Earth, 94(B7), 9183-9191.
  • Galloway, D. L., & Burbey, T. J. (2011). Regional land subsidence accompanying groundwater extraction. Hydrogeology Journal, 19(8), 1459-1486.
  • Galloway, D. L., Jones, D. R., & Ingebritsen, S. E. (1999). Land subsidence in the United States. US Geological Survey, Circular 1182.
  • Gao, G., San, L. H., & Zhu, Y. (2021). Flood inundation analysis in Penang Island (Malaysia) based on InSAR maps of land subsidence and local sea level scenarios. Water, 13(11), 1518.
  • García-Davalillo, J. C., Herrera, G., Notti, D., Strozzi, T., & Álvarez-Fernández, I. (2014). DInSAR analysis of ALOS PALSAR images for the assessment of very slow landslides: the Tena Valley case study. Landslides, 11(2), 225-246.
  • Gee, D., Sowter, A., Novellino, A., Marsh, S., & Gluyas, J. (2016). Monitoring land motion due to natural gas extraction: Validation of the Intermittent SBAS (ISBAS) DInSAR algorithm over gas fields of North Holland, the Netherlands. Marine and Petroleum Geology, 77, 1338-1354.
  • Glaze, L. S., & Baloga, S. M. (2003). DEM flow path prediction algorithm for geologic mass movements. Environmental & Engineering Geoscience, 9(3), 225-240.
  • Goel, K., Parizzi, A., & Adam, N. (2011). Salt mining induced subsidence mapping of Lueneburg (Germany) using PSI and SBAS techniques exploiting ERS and TerraSAR-X data. In Proc. FRINGE Workshop, 19–23 September 2011, Frascati, Italy.
  • Goto, A. (1999). A new model for volcanic earthquake at Unzen Volcano: Melt rupture model. Geophysical Research Letters, 26(16), 2541-2544.
  • Grzovic, M., & Ghulam, A. (2015). Evaluation of land subsidence from underground coal mining using TimeSAR (SBAS and PSI) in Springfield, Illinois, USA. Natural Hazards, 79(3), 1739-1751.
  • Guha-Sapir, D., & Vos, F. (2011). Earthquakes, an epidemiological perspective on patterns and trends. In R. Spence, E. So, & C. Scawthorn (Eds.), Human casualties in earthquakes: Progress in modelling and mitigation, Springer, 14–29.
  • Gull, A., Liaqut, A., & Mahmood, S. (2023). Landslide risk assessment using geo-spatial technique: A study of District Abbottabad, Khyber Pakhtunkhwa, Pakistan. Advanced Geomatics, 3(2), 47–55.
  • Guzzetti, F., Cardinali, M., Reichenbach, P., & Carrara, A. (2000). Comparing landslide maps: A case study in the Upper Tiber River Basin, Central Italy. Environmental Management, 25(3), 247-263.
  • Guzzetti, F., Manunta, M., Ardizzone, F., Pepe, A., Cardinali, M., Zeni, G., Reichenbach, P., & Lanari, R. (2009). Analysis of ground deformation detected using the SBAS-DInSAR technique in Umbria, Central Italy. Pure and Applied Geophysics, 166(8–9), 1425–1459.
  • Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., & Chang, K. T. (2012). Landslide inventory maps: New tools for an old problem. Earth-Science Reviews, 112(1-2), 42-66.
  • Haghshenas Haghighi, M., & Motagh, M. (2016). Assessment of ground surface displacement in Taihape landslide, New Zealand, with C-and X-band SAR interferometry. New Zealand Journal of Geology and Geophysics, 59(1), 136-146.
  • Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H., & Kanae, S. (2013). Global flood risk under climate change. Nature Climate Change, 3(9), 816-821.
  • Ho Tong Minh, D., & Ngo, Y. N. (2017). TomoSAR platform supports for Sentinel-1 TOPS persistent scatterers interferometry. International Geoscience and Remote Sensing Symposium, 23-28 July 2017, Fort Worth, TX, USA, 1680-1683.
  • Hong, Y., Adler, R., & Huffman, G. (2006). Evaluation of the potential of NASA multi‐satellite precipitation analysis in global landslide hazard assessment. Geophysical Research Letters, 33(22), 1-17.
  • Hooper, A. (2008). A multi‐temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophysical Research Letters, 35(16), L16302.
  • Hooper, A., & Zebker, H. A. (2007). Phase unwrapping in three dimensions with application to InSAR time series. JOSA A, 24(9), 2737-2747.
  • Hooper, A., Zebker, H., Segall, P., & Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical Research Letters, 31(23), L23611.
  • Hossain, F., & Anagnostou, E. N. (2004). Assessment of current passive-microwave- and infrared-based satellite rainfall remote sensing for flood prediction. Journal of Geophysical Research: Atmospheres, 109(D7), 1–14.
  • Hu, R. L., Yue, Z. Q., Wang, L. U., & Wang, S. J. (2004). Review on current status and challenging issues of land subsidence in China. Engineering Geology, 76(1-2), 65-77.
  • Huang Lin, C., Liu, D., & Liu, G. (2019). Landslide detection in La Paz City (Bolivia) based on time series analysis of InSAR data. International Journal of Remote Sensing, 40(17), 6775-6795.
  • Huang, C., Xia, H., & Hu, J. (2019). Surface deformation monitoring in coal mine area based on PSI. IEEE Access, 7, 29672-29678.
  • Iqbal, A., & Mahmood, S. (2023). GLOF hazard assessment using geospatial techniques in Hunza Nagar, Gilgit Baltistan, Pakistan. Advanced Geomatics, 3(2), 40–46.
  • Ishitsuka, K., Prats-Iraola, P., & Nannini, M. (2015). ALOS/PALSAR and TerraSAR-X persistent scatterer interferometry around Tokyo: interferometric phase evaluation and validation. IEEE International Geoscience and Remote Sensing Symposium, 26-31 July 2015, Milan, Italy, 1421-1424.
  • Jamil, M., Mahmood, S., Hussain, S., & Saad, M. (2024). Assessing the impact of drought on groundwater resources using geospatial techniques in Balochistan Province, Pakistan. Advanced Remote Sensing, 4(1), 11-27.
  • Jebur, M. N., Pradhan, B., & Tehrany, M. S. (2015). Using ALOS PALSAR derived high-resolution DInSAR to detect slow-moving landslides in tropical forest: Cameron Highlands, Malaysia. Geomatics, Natural Hazards and Risk, 6(8), 741-759.
  • Kadı, F., & Yılmaz, O. S. (2024). Determination of alternative forest road routes using produced landslide susceptibility maps: A case study of Tonya (Trabzon), Türkiye. International Journal of Engineering and Geosciences, 9(2), 147-164.
  • Kalia, A. C. (2018). Classification of landslide activity on a regional scale using persistent scatterer interferometry at the moselle valley (Germany). Remote Sensing, 10(12), 1880.
  • Klemas, V. (2015). Remote sensing of floods and flood-prone areas: an overview. Journal of Coastal Research, 31(4), 1005-1013.
  • Krishnan, P. S., Kim, D. J., & Jung, J. (2018). Land subsidence monitoring in the Kathmandu Basin, before and after MW 7.8 Gorkha earthquake, Nepal by SBAS-DInSAR technique. IEEE International Geoscience and Remote Sensing Symposium, 22-27 July 2018, Valencia, Spain, 525-528.
  • Lanari, R., Mora, O., Manunta, M., Mallorquí, J. J., Berardino, P., & Sansosti, E. (2004). A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 42(7), 1377-1386.
  • Lindell, M. K., & Prater, C. S. (2003). Assessing community impacts of natural disasters. Natural Hazards Review, 4(4), 176-185.
  • Liu, D., Shao, Y., Liu, Z., Riedel, B., Sowter, A., Niemeier, W., & Bian, Z. (2014). Evaluation of InSAR and TomoSAR for monitoring deformations caused by mining in a mountainous area with high resolution satellite-based SAR. Remote Sensing, 6(2), 1476-1495.
  • Liu, P., Li, Z., Hoey, T., Kincal, C., Zhang, J., Zeng, Q., & Muller, J. P. (2013). Using advanced InSAR time series techniques to monitor landslide movements in Badong of the Three Gorges region, China. International Journal of Applied Earth Observation and Geoinformation, 21, 253-264.
  • Loayza, N. V., Olaberria, E., Rigolini, J., & Christiaensen, L. (2012). Natural disasters and growth: Going beyond the averages. World Development, 40(7), 1317-1336.
  • Lombardini, F. (2005). Differential tomography: A new framework for SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 43(1), 37-44.
  • Lu, P., Casagli, N., Catani, F., & Tofani, V. (2012). Persistent Scatterers Interferometry Hotspot and Cluster Analysis (PSI-HCA) for detection of extremely slow-moving landslides. International Journal of Remote Sensing, 33(2), 466-489.
  • Lu, Z., Patrick, M., Fielding, E. J., & Trautwein, C. (2003). Lava volume from the 1997 eruption of Okmok volcano, Alaska, estimated from spaceborne and airborne interferometric synthetic aperture radar. IEEE Trans. Geosci. Remote Sens., 41(6), 1428-1436.
  • Luo, Q., Perissin, D., Lin, H., Zhang, Y., & Wang, W. (2014). Subsidence monitoring of Tianjin suburbs by TerraSAR-X persistent scatterers interferometry. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(5), 1642-1650.
  • Luo, X., Wang, C., Long, Y., & Yi, Z. (2020). Analysis of the decadal kinematic characteristics of the Daguangbao Landslide using multiplatform time series InSAR observations after the Wenchuan Earthquake. Journal of Geophysical Research: Solid Earth, 125(12).
  • Mantovani, F., Soeters, R., & Van Westen, C. J. (1996). Remote sensing techniques for landslide studies and hazard zonation in Europe. Geomorphology, 15(3-4), 213-225.
  • Martins, B. H., Suzuki, M., Yastika, P. E., & Shimizu, N. (2020). Ground surface deformation detection in complex landslide area—bobonaro, Timor-Leste—using SBAS DInSAR, UAV photogrammetry, and field observations. Geosciences, 10(6), 245.
  • Massonnet, D., & Feigl, K. L. (1998). Radar interferometry and its application to changes in the Earth's surface. Reviews of Geophysics, 36(4), 441-500.
  • Mehrabi, A. (2021). Monitoring the Iran Pol-e-Dokhtar flood extent and detecting its induced ground displacement using Sentinel-1 imagery techniques. Natural Hazards, 105(3), 2603–2617.
  • Meisina, C., Zucca, F., Notti, D., Colombo, A., Cucchi, A., Savio, G., Giannico, C., & Bianchi, M. (2008). Geological interpretation of PSInSAR data at regional scale. Sensors, 8(11), 7469–7492.
  • Metternicht, G., Hurni, L., & Gogu, R. (2005). Remote sensing of landslides: An analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments. Remote Sensing of Environment, 98(2-3), 284-303.
  • Mirzaee, S., Motagh, M., Akbari, B., Wetzel, H. U., & Roessner, S. (2017). Evaluating three InSAR time-series methods to assess creep motion, case study: Masouleh landslide in north Iran. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 4(1/W1), 223-228.
  • Moreira, A., Prats-Iraola, P., Younis, M., Krieger, G., Hajnsek, I., & Papathanassiou, K. P. (2013). A tutorial on synthetic aperture radar. IEEE Geoscience and Remote Sensing Magazine, 1(1), 6-43.
  • Noor, S., Mahmood, S., & Habib, W. (2024). Risk assessment of Attabad Lake outburst flooding using an integrated hydrological and geo-spatial approach. Advanced Geomatics, 4(1), 57–67.
  • Novellino, A., Cigna, F., Sowter, A., Ramondini, M., & Calcaterra, D. (2017). Exploitation of the Intermittent SBAS (ISBAS) algorithm with COSMO-SkyMed data for landslide inventory mapping in north-western Sicily, Italy. Geomorphology, 280, 153-166.
  • Nurtyawan, R., & Yulanda, M. F. (2020). Lombok earthquakes using DInSAR techniques based on Sentinel 1A data (case study: Lombok, West Nusa Tenggara). In IOP Conference Series: Earth and Environmental Science, (500)1, 012065.
  • Pastor, J. L., Tomás, R., Lettieri, L., Riquelme, A., Cano, M., Infante, D., Ramondini, M., & Di Martire, D. (2019). Multi-source data integration to investigate a deep-seated landslide affecting a bridge. Remote Sensing, 11(16), 1878.
  • Paul, B. K. (2011). Environmental hazards and disasters: Contexts, perspectives, and management. John Wiley & Sons.
  • Pawluszek-Filipiak, K., Borkowski, A., & Motagh, M. (2021). Multi-temporal landslide activity investigation by spaceborne SAR interferometry: The case study of the Polish Carpathians. Remote Sensing Applications: Society and Environment, 24, 100629.
  • Pulvirenti, L., Chini, M., & Pierdicca, N. (2021). InSAR multitemporal data over persistent scatterers to detect floodwater in urban areas: A case study in Beletweyne, Somalia. Remote Sensing, 13(1), 37.
  • Putri, R. F., Wibirama, S., Alimuddin, I., Kuze, H., & Sumantyo, J. T. S. (2013). Monitoring and analysis of landslide hazard using dinsar technique applied to ALOS PALSAR imagery: A case study in Kayangan catchment area, Yogyakarta, Indonesia. Journal of Urban and Environmental Engineering, 7(2), 308-323.
  • Razi, P., Sumantyo, J. T. S., Perissin, D., Kuze, H., Chua, M. Y., & Panggabean, G. F. (2018). 3D land mapping and land deformation monitoring using persistent scatterer interferometry (PSI) ALOS PALSAR: Validated by geodetic GPS and UAV. IEEE Access, 6, 12395-12404.
  • Rehdanz, K., Welsch, H., Narita, D., & Okubo, T. (2015). Well-being effects of a major natural disaster: The case of Fukushima. Journal of Economic Behavior & Organization, 116, 500-517.
  • Reigber, A., & Moreira, A. (2000). First demonstration of airborne SAR tomography using multibaseline L-band data. IEEE Transactions on Geoscience and Remote Sensing, 38(5), 2142-2152.
  • Roa, Y., Rosell, P., Solarte, A., Euillades, L., Carballo, F., García, S., & Euillades, P. (2021). First assessment of the interferometric capabilities of SAOCOM-1A: New results over the Domuyo Volcano, Neuquén, Argentina. Journal of South American Earth Sciences, 106, 102882.
  • Rosi, A., Tofani, V., Agostini, A., Tanteri, L., Stefanelli, C. T., Catani, F., & Casagli, N. (2016). Subsidence mapping at regional scale using persistent scatters interferometry (PSI): The case of Tuscany region (Italy). International Journal of Applied Earth Observation and Geoinformation, 52, 328-337.
  • Rosi, A., Tofani, V., Tanteri, L., Tacconi Stefanelli, C., Agostini, A., Catani, F., & Casagli, N. (2018). The new landslide inventory of Tuscany (Italy) updated with PS-InSAR: geomorphological features and landslide distribution. Landslides, 15(1), 5-19.
  • Salvi, S., Atzori, S., Tolomei, C., Antonioli, A., Trasatti, E., Merryman Boncori, J. P., Pezzo, G., Coletta, A., & Zoffoli, S. (2012). Results from InSAR monitoring of the 2010-2011 New Zealand seismic sequence: EA detection and earthquake triggering. IEEE International Geoscience and Remote Sensing Symposium, 22-27 July 2012, Munich, Germany, 3544–3547.
  • Sandwell, D. T., Myer, D., Mellors, R., Shimada, M., Brooks, B., & Foster, J. (2008). Accuracy and resolution of ALOS interferometry: Vector deformation maps of the Father's Day intrusion at Kilauea. IEEE Transactions on Geoscience and Remote Sensing, 46(11), 3524-3534.
  • Sanyal, J., & Lu, X. X. (2004). Application of remote sensing in flood management with special reference to monsoon Asia: a review. Natural Hazards, 33(2), 283-301.
  • Scaioni, M., Longoni, L., Melillo, V., & Papini, M. (2014). Remote sensing for landslide investigations: An overview of recent achievements and perspectives. Remote Sensing, 6(10), 9600-9652.
  • Schilling, S. P. (1998). LAHARZ: GIS programs for automated mapping of lahar-inundation hazard zones. US Geological Survey Open-File Report 98-638, 79.
  • Schwab, A. K., Sandler, D., & Brower, D. J. (2016). Hazard mitigation and preparedness: An introductory text for emergency management and planning professionals. CRC Press, 2nd edn.
  • Schweier, C., Markus, M., & Steinle, E. (2004). Simulation of earthquake caused building damages for the development of fast reconnaissance techniques. Natural Hazards and Earth System Sciences, 4(2), 285-293.
  • Sefercik, U. G., & Dana, I. (2012). Crucial points of interferometric processing for DEM generation using high resolution SAR data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38, 289-296.
  • Sefercik, U. G., Buyuksalih, G., & Atalay, C. (2020). DSM generation with bistatic TanDEM-X InSAR pairs and quality validation in inclined topographies and various land cover classes. Arabian Journal of Geosciences, 13, 1-15.
  • Sefercik, U. G., Nazar, M., & Gorken, M. (2024). Coherence analysis of small baseline subset displacement model types in deformation monitoring. 45th Asian Conference on Remote Sensing, 17-21 November 2024, Colombo, Sri Lanka, 1-14.
  • SESWG (Solid Earth Science Working Group) Report, (2002). Living on a Restless Planet. S. C. Solomon, Chair, NASA Jet Propulsion Laboratory, Report JPL 400-1040, November.
  • Shirani, K., & Pasandi, M. (2021). Landslide monitoring and the inventory map validation by ensemble DInSAR processing of ASAR and PALSAR images (Case study: Doab-Samsami Basin in Chaharmahal and Bakhtiari Province, Iran). Geotechnical and Geological Engineering, 39(2), 1201-1222.
  • Silvia, B., Francesca, C., Sandro, M., & Nicola, C. (2013). Monitoring landslide-induced displacements with TerraSAR-X persistent scatterer interferometry (PSI): Gimigliano case study in Calabria region (Italy). International Journal of Geosciences, 4(10), 1467-1482.
  • Sowter, A., Bateson, L., Strange, P., Ambrose, K., & Syafiudin, M. F. (2013). DInSAR estimation of land motion using intermittent coherence with application to the South Derbyshire and Leicestershire coalfields. Remote Sensing Letters, 4(10), 979-987.
  • Sreejith, K. M., Agrawal, R., Agram, P., & Rajawat, A. S. (2020). Surface deformation of the Barren Island volcano, Andaman Sea (2007–2017) constrained by InSAR measurements: Evidence for shallow magma reservoir and lava field subsidence. Journal of Volcanology and Geothermal Research, 407, 107107.
  • Stevens, N. F., Manville, V., & Heron, D. W. (2003). The sensitivity of a volcanic flow model to digital elevation model accuracy: experiments with digitised map contours and interferometric SAR at Ruapehu and Taranaki volcanoes, New Zealand. Journal of Volcanology and Geothermal Research, 119(1-4), 89-105.
  • Stramondo, S., Chini, M., Bignami, C., Salvi, S., & Atzori, S. (2010). X-, C-, and L-band DInSAR investigation of the April 6, 2009, Abruzzi earthquake. IEEE Geoscience and Remote Sensing Letters, 8(1), 49-53.
  • Strozzi, T., Wegmuller, U., Tosi, L., Bitelli, G., & Spreckels, V. (2001). Land subsidence monitoring with differential SAR interferometry. Photogrammetric Engineering and Remote Sensing, 67(11), 1261-1270.
  • Suresh, D., & Yarrakula, K. (2020). InSAR based deformation mapping of earthquake using Sentinel 1A imagery. Geocarto International, 35(5), 559-568.
  • Syahreza, S., Saepuloh, A., & Lateh, H. (2018). Combining the Sentinel-1A/B DinSAR Interferometry to Detect Deformation Associated with Pidie Jaya Earthquake. Journal of Physics: Conference Series, 1120(1), 012021.
  • Tang, W., Motagh, M., & Zhan, W. (2020). Monitoring active open-pit mine stability in the Rhenish coalfields of Germany using a coherence-based SBAS method. International Journal of Applied Earth Observation and Geoinformation, 93, 102217.
  • Tessari, G., Puliero, S., Beccaro, L., Giardino, A., Floris, M., Marzoli, A., Ogushi, F., & Pasquali, P. (2019). Multi-temporal DInSAR techniques to monitor the activity of Aso And Sakurajima Volcanoes, Japan. IEEE International Geoscience and Remote Sensing Symposium, 28 July-02 August 2019, Yokohama, Japan, 9338–9341.
  • Tiwari, A., Narayan, A. B., Dwivedi, R., Dikshit, O., & Nagarajan, B. (2020). Monitoring of landslide activity at the Sirobagarh landslide, Uttarakhand, India, using LiDAR, SAR interferometry and geodetic surveys. Geocarto International, 35(5), 535-558.
  • Tofani, V., Raspini, F., Catani, F., & Casagli, N. (2013). Persistent Scatterer Interferometry (PSI) technique for landslide characterization and monitoring. Remote Sensing, 5(3), 1045-1065.
  • Tomás, R., Romero, R., Mulas, J., Marturià, J. J., Mallorquí, J. J., López-Sánchez, J. M., Herrera, G., Gutiérrez, F., González, P. J., Fernández, J., Duque, S., Concha-Dimas, A., Cocksley, G., Castañeda, C., Carrasco, D., & Blanco, P. (2014). Radar interferometry techniques for the study of ground subsidence phenomena: a review of practical issues through cases in Spain. Environmental Earth Sciences, 71(1), 163-181.
  • Toya, H., & Skidmore, M. (2007). Economic development and the impacts of natural disasters. Economics Letters, 94(1), 20-25.
  • Tralli, D. M., Blom, R. G., Zlotnicki, V., Donnellan, A., & Evans, D. L. (2005). Satellite remote sensing of earthquake, volcano, flood, landslide and coastal inundation hazards. ISPRS Journal of Photogrammetry and Remote Sensing, 59(4), 185-198.
  • Ulaby, F. T., Moore, R. K., & Fung, A. K. (1981). Microwave remote sensing: Active and passive. Volume 1-microwave remote sensing fundamentals and radiometry.
  • UNDRO, (1991). Mitigating natural disasters: Phenomena, effects and options: A manual for policy makers and planners. United Nations, New York.
  • UNISDR, (2009). UNISDR Terminology on Disaster Risk Reduction, United Nations Office on Disaster Risk Reduction, Geneva.
  • Usai, S. (2003). A least squares database approach for SAR interferometric data. IEEE Transactions on Geoscience and Remote Sensing, 41(4), 753-760.
  • USGS, (2004). Landslide types and processes. U.S. Geological Survey Fact Sheet 2004-3072.
  • Valerio, E., Manzo, M., Casu, F., Convertito, V., De Luca, C., Manunta, M., Monterroso, F., Lanari, R., & De Novellis, V. (2020). Seismogenic source model of the 2019, Mw 5.9, East-Azerbaijan earthquake (NW Iran) through the inversion of Sentinel-1 DInSAR measurements. Remote Sensing, 12(8), 1346.
  • Varnes, D. J. (1978). Slope movement types and processes. Special Report, 176, 11-33.
  • Wang, Y., Colby, J. D., & Mulcahy, K. A. (2002). An efficient method for mapping flood extent in a coastal floodplain using Landsat TM and DEM data. International Journal of Remote Sensing, 23(18), 3681-3696.
  • Wang, Z., Balz, T., Zhang, L., Perissin, D., & Liao, M. (2018). Using TSX/TDX pursuit monostatic SAR stacks for PS-InSAR analysis in urban areas. Remote Sensing, 11(1), 26.
  • Wangchuk, S., Bolch, T., & Robson, B. A. (2022). Monitoring glacial lake outburst flood susceptibility using Sentinel-1 SAR data, Google Earth Engine, and persistent scatterer interferometry. Remote Sensing of Environment, 271, 112910.
  • Wasowski, J., & Bovenga, F. (2014). Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: Current issues and future perspectives. Engineering Geology, 174, 103-138.
  • Xichao, H., Meng, W., Bing, H., Tianbin, Y., & Yu, J. (2020). Study on early identification of landslide hazard in mountain valley area based on InSAR and optical remote sensing technology. In IOP Conference Series: Earth and Environmental Science, 570(6), 062047.
  • Xu, B., Feng, G., Li, Z., Wang, Q., Wang, C., & Xie, R. (2016). Coastal subsidence monitoring associated with land reclamation using the point target based SBAS-InSAR method: A case study of Shenzhen, China. Remote Sensing, 8(8), 652.
  • Xue, Y. Q., Zhang, Y., Ye, S. J., Wu, J. C., & Li, Q. F. (2005). Land subsidence in China. Environmental Geology, 48(6), 713-720.
  • Yakar, M., & Dogan, Y. (2019). 3D Reconstruction of Residential Areas with SfM Photogrammetry. In Advances in Remote Sensing and Geo Informatics Applications: Proceedings of the 1st Springer Conference of the Arabian Journal of Geosciences (CAJG-1), Tunisia 2018 (pp. 73-75). Springer International Publishing.
  • Yalçın, C. (2022). DEM and GIS-based assessment of structural elements in the collision zone: Çağlayancerit, Kahramanmaraş (Türkiye). Advanced Remote Sensing, 2(2), 66-73.
  • Yang, C. S., Zhang, Q., Zhao, C. Y., Wang, Q. L., & Ji, L. Y. (2014). Monitoring land subsidence and fault deformation using the small baseline subset InSAR technique: a case study in the Datong Basin, China. Journal of Geodynamics, 75, 34-40.
  • Yılmaz, O. S. (2023). Frekans oranı yöntemiyle coğrafi bilgi sistemi ortamında heyelan duyarlılık haritasının üretilmesi: Manisa, Demirci, Tekeler Köyü örneği. Geomatik, 8(1), 42-54.
  • Yun, H. W., Kim, J. R., Yoon, H., Choi, Y., & Yu, J. (2019). Seismic Surface Deformation Risks in Industrial Hubs: A Case Study from Ulsan, Korea, Using DInSAR Time Series Analysis. Remote Sensing, 11(10), 1199.
  • Zaugg, D. A., Arnold, D. V., & Jensen, M. A. (2000). Ocean surface and landslide probing with a scanning radar altimeter. International Geoscience and Remote Sensing Symposium, 24-28 July 2000, Honolulu, HI, USA, 1, 120-122.
  • Zhang, Y., Liu, Y., Jin, M., Jing, Y., Liu, Y., Liu, Y., Sun, W., Wei, J., & Chen, Y. (2019). Monitoring land subsidence in Wuhan City (China) using the SBAS-InSAR method with Radarsat-2 imagery data. Sensors, 19(3), 743.
  • Zhao, C. Y., Zhang, Q., Ding, X. L., Lu, Z., Yang, C. S., & Qi, X. M. (2009). Monitoring of land subsidence and ground fissures in Xian, China 2005–2006: Mapped by SAR interferometry. Environmental Geology, 58(7), 1533-1540.
  • Zhao, C. Y., Zhang, Q., Yang, C., & Zou, W. (2011). Integration of MODIS data and Short Baseline Subset (SBAS) technique for land subsidence monitoring in Datong, China. Journal of Geodynamics, 52(1), 16–23.
  • Zhou, L., Guo, J., Hu, J., Li, J., Xu, Y., Pan, Y., & Shi, M. (2017). Wuhan surface subsidence analysis in 2015–2016 based on Sentinel-1A data by SBAS-InSAR. Remote Sensing, 9(10), 982.
  • Zhu, X. X., & Bamler, R. (2010). Very high resolution spaceborne SAR tomography in urban environment. IEEE Transactions on Geoscience and Remote Sensing, 48(12), 4296-4308
Toplam 161 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Fotogrametri ve Uzaktan Algılama
Bölüm Araştırma Makalesi
Yazarlar

Umut Güneş Sefercik 0000-0003-2403-5956

Mertcan Nazar 0000-0002-3280-5685

Mahmut Görken 0000-0003-1895-2627

Erken Görünüm Tarihi 14 Şubat 2025
Yayımlanma Tarihi
Gönderilme Tarihi 13 Aralık 2024
Kabul Tarihi 14 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 10 Sayı: 2

Kaynak Göster

APA Sefercik, U. G., Nazar, M., & Görken, M. (2025). DInSAR ve MT-DInSAR Teknolojileri ile Afet Erken Uyarı, Tespit, İzleme ve Yönetimi. Geomatik, 10(2), 251-273. https://doi.org/10.29128/geomatik.1601101
AMA Sefercik UG, Nazar M, Görken M. DInSAR ve MT-DInSAR Teknolojileri ile Afet Erken Uyarı, Tespit, İzleme ve Yönetimi. Geomatik. Şubat 2025;10(2):251-273. doi:10.29128/geomatik.1601101
Chicago Sefercik, Umut Güneş, Mertcan Nazar, ve Mahmut Görken. “DInSAR Ve MT-DInSAR Teknolojileri Ile Afet Erken Uyarı, Tespit, İzleme Ve Yönetimi”. Geomatik 10, sy. 2 (Şubat 2025): 251-73. https://doi.org/10.29128/geomatik.1601101.
EndNote Sefercik UG, Nazar M, Görken M (01 Şubat 2025) DInSAR ve MT-DInSAR Teknolojileri ile Afet Erken Uyarı, Tespit, İzleme ve Yönetimi. Geomatik 10 2 251–273.
IEEE U. G. Sefercik, M. Nazar, ve M. Görken, “DInSAR ve MT-DInSAR Teknolojileri ile Afet Erken Uyarı, Tespit, İzleme ve Yönetimi”, Geomatik, c. 10, sy. 2, ss. 251–273, 2025, doi: 10.29128/geomatik.1601101.
ISNAD Sefercik, Umut Güneş vd. “DInSAR Ve MT-DInSAR Teknolojileri Ile Afet Erken Uyarı, Tespit, İzleme Ve Yönetimi”. Geomatik 10/2 (Şubat 2025), 251-273. https://doi.org/10.29128/geomatik.1601101.
JAMA Sefercik UG, Nazar M, Görken M. DInSAR ve MT-DInSAR Teknolojileri ile Afet Erken Uyarı, Tespit, İzleme ve Yönetimi. Geomatik. 2025;10:251–273.
MLA Sefercik, Umut Güneş vd. “DInSAR Ve MT-DInSAR Teknolojileri Ile Afet Erken Uyarı, Tespit, İzleme Ve Yönetimi”. Geomatik, c. 10, sy. 2, 2025, ss. 251-73, doi:10.29128/geomatik.1601101.
Vancouver Sefercik UG, Nazar M, Görken M. DInSAR ve MT-DInSAR Teknolojileri ile Afet Erken Uyarı, Tespit, İzleme ve Yönetimi. Geomatik. 2025;10(2):251-73.