Research Article
BibTex RIS Cite

Dissolution of Uranium and Rare Earth Elements from a Low-Grade Phosphate Ore Using Different Acids

Year 2021, Volume: 54 Issue: 1, 66 - 83, 10.12.2021

Abstract

Herein, it was aimed at determining the best leaching agent for extracting uranium (U) and rare earth elements (REEs) from a low-grade phosphate ore. Before leaching tests, the beneficiation of U and REEs contents in the raw ore were investigated by using the Falcon concentrator. The U content in the preconcentrated ore increased to 1629.66 ppm from 392 ppm with a recovery of 92% and the amount of REEs was found to be 747.20 ppm. These values suggested that the preconcentrated ore can be used as REEs source due to its content. It was then dissolved in different acid mediums at a temperature of 40 °C for 2 hours to evaluate the effect of HClO4, CH3COOH, H3PO4, HCl, and HNO3 on the extraction of U and REEs. Among all leaching agents, the use of H3PO4 as the leaching agent suggested more promising results compared to others at the fixed experimental conditions. The influences of leaching temperature and acid concentration were also studied and the optimal experimental conditions to dissolve all of U and REEs from the ore are as follows: H3PO4 concentration of 4 M, temperature of 50 °C, time of 4 hours.

References

  • Amine, M., Asafar, F., Bilali, L., & Nadifiyine, M. (2019). Hydrochloric Acid Leaching Study of Rare Earth Elements from Moroccan Phosphate. Journal of Chemistry, 2019, 1-10. https://doi.org/10.1155/2019/4675276
  • Aydogan, N. A., & Kademli, M. (2019). Effect of operational conditions on Falcon concentrator performance with different particle size fractions. Particulate Science and Technology, 1-5. https://doi.org/10.1080/02726351.2019.1573867
  • Battsengel, A., Batnasan, A., Narankhuu, A., Haga, K., Watanabe, Y., & Shibayama, A. (2018). Recovery of light and heavy rare earth elements from apatite ore using sulphuric acid leaching, solvent extraction and precipitation. Hydrometallurgy, 179, 100-109. https://doi.org/10.1016/j.hydromet.2018.05.024
  • Cánovas, C. R., Chapron, S., Arrachart, G., & Pellet-Rostaing, S. (2019). Leaching of rare earth elements (REEs) and impurities from phosphogypsum: A preliminary insight for further recovery of critical raw materials. Journal of Cleaner Production, 219, 225-235. https://doi.org/10.1016/j.jclepro.2019.02.104
  • Commission, E. (2017). Study on the review of the list of critical raw materials. Publications Office of the European Union.
  • Farrokhpay, S., Filippov, L., & Fornasiero, D. (2019). Pre-concentration of nickel in laterite ores using physical separation methods. Minerals Engineering, 141. https://doi.org/10.1016/j.mineng.2019.105892
  • Filippov, L. O., Dehaine, Q., & Filippova, I. V. (2016). Rare earths (La, Ce, Nd) and rare metals (Sn, Nb, W) as by-products of kaolin production – Part 3: Processing of fines using gravity and flotation. Minerals Engineering, 95, 96-106. https://doi.org/10.1016/j.mineng.2016.06.004
  • Foucaud, Y., Dehaine, Q., Filippov, L., & Filippova, I. V. (2019). Application of falcon centrifuge as a cleaner alternative for complex tungsten ore processing. Minerals, 9(7), 448.
  • Hammas-Nasri, I., Horchani-Naifer, K., Férid, M., & Barca, D. (2016). Rare earths concentration from phosphogypsum waste by two-step leaching method. International Journal of Mineral Processing, 149, 78-83. https://doi.org/10.1016/j.minpro.2016.02.011
  • Hammas-Nasri, I., Horchani-Naifer, K., Férid, M., & Barca, D. (2019). Production of a rare earths concentrate after phosphogypsum treatment with dietary NaCl and Na2CO3 solutions. Minerals Engineering, 132, 169-174. https://doi.org/10.1016/j.mineng.2018.12.013
  • Haneklaus, N., Sun, Y., Bol, R., Lottermoser, B., & Schnug, E. (2017). To Extract, or not to Extract Uranium from Phosphate Rock, that is the Question. Environ Sci Technol, 51(2), 753-754. https://doi.org/10.1021/acs.est.6b05506
  • Kademli, M., & Aydogan, N. A. (2019). An extraction of copper from recycling plant slag by using falcon concentrator. gospodarka surowcami mineralnymi, 35.
  • Lambert, A., Anawati, J., Walawalkar, M., Tam, J., & Azimi, G. (2018). Innovative Application of Microwave Treatment for Recovering of Rare Earth Elements from Phosphogypsum. ACS Sustainable
  • Chemistry & Engineering, 6(12), 16471-16481. https://doi.org/10.1021/acssuschemeng.8b03588
  • Liang, H., Zhang, P., Jin, Z., & DePaoli, D. (2017). Rare-earth leaching from Florida phosphate rock in wet-process phosphoric acid production. Minerals & Metallurgical Processing, 34(3), 146-153. https://doi.org/10.19150/mmp.7615
  • Liang, H., Zhang, P., Jin, Z., & DePaoli, D. (2018). Rare Earth and Phosphorus Leaching from a Flotation Tailings of Florida Phosphate Rock. Minerals, 8(9). https://doi.org/10.3390/min8090416
  • López, L., Castro, L. N., Scasso, R. A., Grancea, L., Tulsidas, H., & Haneklaus, N. (2019). Uranium supply potential from phosphate rocks for Argentina's nuclear power fleet. Resources Policy, 62, 397-404. https://doi.org/10.1016/j.resourpol.2019.04.008
  • M. Abd El-Mottaleb, M. F. Cheira, Gamal A. H. Gouda, & Ahmed, A. S. A. (2016). Leaching of Rare Earth Elements from Egpytian Western Desert Phosphate Rocks using HCl. Chemistry of Advanced Materials (CAM), 1(1), 33-40.
  • Nie, D., Xue, A., Zhu, M., Zhang, Y., & Cao, J. (2019). Separation and recovery of associated rare earths from the Zhijin phosphorite using hydrochloric acid. Journal of Rare Earths, 37(4), 443-450. https://doi.org/10.1016/j.jre.2018.08.006
  • Paschalidou, P., & Pashalidis, I. (2019). Recovery of uranium from phosphate rock with EDTA-mediated dissolution and cation exchange. Hydrometallurgy, 189. https://doi.org/10.1016/j.hydromet.2019.105118
  • Rychkov, V. N., Kirillov, E. V., Kirillov, S. V., Semenishchev, V. S., Bunkov, G. M., Botalov, M. S., Smyshlyaev, D. V., & Malyshev, A. S. (2018). Recovery of rare earth elements from phosphogypsum. Journal of Cleaner Production, 196, 674-681. https://doi.org/10.1016/j.jclepro.2018.06.114
  • Seredin, V. V., & Dai, S. (2012). Coal deposits as potential alternative sources for lanthanides and yttrium. International Journal of Coal Geology, 94, 67-93. https://doi.org/10.1016/j.coal.2011.11.001
  • Shlewit, H. (2010). Treatment of phosphate rocks with hydrochloric acid. Journal of Radioanalytical and Nuclear Chemistry, 287(1), 49-54. https://doi.org/10.1007/s10967-010-0687-1
  • Singh, D. K., Mondal, S., & Chakravartty, J. K. (2016). Recovery of Uranium from Phosphoric Acid: A Review. Solvent Extraction and Ion Exchange, 34(3), 201-225. https://doi.org/10.1080/07366299.2016.1169142
  • Soltani, F., Abdollahy, M., Petersen, J., Ram, R., Javad Koleini, S. M., & Moradkhani, D. (2019). Leaching and recovery of phosphate and rare earth elements from an iron-rich fluorapatite concentrate:
  • Part II: Selective leaching of calcium and phosphate and acid baking of the residue. Hydrometallurgy, 184, 29-38. https://doi.org/10.1016/j.hydromet.2018.12.024
  • Steiner, G., Geissler, B., & Haneklaus, N. (2020). Making Uranium Recovery from Phosphates Great Again? Environ Sci Technol, 54(3), 1287-1289. https://doi.org/10.1021/acs.est.9b07859
  • Stone, K., Bandara, A. M. T. S., Senanayake, G., & Jayasekera, S. (2016). Processing of rare earth phosphate concentrates: A comparative study of pre-leaching with perchloric, hydrochloric, nitric and phosphoric acids and deportment of minor/major elements. Hydrometallurgy, 163, 137-147. https://doi.org/10.1016/j.hydromet.2016.03.014
  • Tulsidas, H., Gabriel, S., Kiegiel, K., & Haneklaus, N. (2019). Uranium resources in EU phosphate rock imports. Resources Policy, 61, 151-156. https://doi.org/10.1016/j.resourpol.2019.02.012 Ulrich, A. E., Schnug, E., Prasser, H. M., & Frossard, E. (2014). Uranium endowments in phosphate rock. Sci Total Environ, 478, 226-234. https://doi.org/10.1016/j.scitotenv.2014.01.069
  • Walawalkar, M., Nichol, C. K., & Azimi, G. (2016). Process investigation of the acid leaching of rare earth elements from phosphogypsum using HCl, HNO3, and H2SO4. Hydrometallurgy, 166, 195-204. https://doi.org/10.1016/j.hydromet.2016.06.008
  • Wang, X., Sun, Z., Liu, Y., Min, X., Guo, Y., Li, P., & Zheng, Z. (2019). Effect of particle size on uranium bioleaching in column reactors from a low-grade uranium ore. Bioresour Technol, 281, 66-71. https://doi.org/10.1016/j.biortech.2019.02.065
  • Wu, S., Zhao, L., Wang, L., Huang, X., Zhang, Y., Feng, Z., & Cui, D. (2019). Simultaneous recovery of rare earth elements and phosphorus from phosphate rock by phosphoric acid leaching and selective precipitation: Towards green process. Journal of Rare Earths, 37(6), 652-658. https://doi.org/10.1016/j.jre.2018.09.012
  • Z.H. İsmail, Abu Elgoud, F. Abdel Hai, Ibraheem O. Ali, M. S. Gasser, & Ally, H. F. (2015). Leaching of some lanthanides from phosphogypsum fertilizers by mineral acids. Arab Journal of Nuclear Science and Applications, 48(2), 37-50.
Year 2021, Volume: 54 Issue: 1, 66 - 83, 10.12.2021

Abstract

References

  • Amine, M., Asafar, F., Bilali, L., & Nadifiyine, M. (2019). Hydrochloric Acid Leaching Study of Rare Earth Elements from Moroccan Phosphate. Journal of Chemistry, 2019, 1-10. https://doi.org/10.1155/2019/4675276
  • Aydogan, N. A., & Kademli, M. (2019). Effect of operational conditions on Falcon concentrator performance with different particle size fractions. Particulate Science and Technology, 1-5. https://doi.org/10.1080/02726351.2019.1573867
  • Battsengel, A., Batnasan, A., Narankhuu, A., Haga, K., Watanabe, Y., & Shibayama, A. (2018). Recovery of light and heavy rare earth elements from apatite ore using sulphuric acid leaching, solvent extraction and precipitation. Hydrometallurgy, 179, 100-109. https://doi.org/10.1016/j.hydromet.2018.05.024
  • Cánovas, C. R., Chapron, S., Arrachart, G., & Pellet-Rostaing, S. (2019). Leaching of rare earth elements (REEs) and impurities from phosphogypsum: A preliminary insight for further recovery of critical raw materials. Journal of Cleaner Production, 219, 225-235. https://doi.org/10.1016/j.jclepro.2019.02.104
  • Commission, E. (2017). Study on the review of the list of critical raw materials. Publications Office of the European Union.
  • Farrokhpay, S., Filippov, L., & Fornasiero, D. (2019). Pre-concentration of nickel in laterite ores using physical separation methods. Minerals Engineering, 141. https://doi.org/10.1016/j.mineng.2019.105892
  • Filippov, L. O., Dehaine, Q., & Filippova, I. V. (2016). Rare earths (La, Ce, Nd) and rare metals (Sn, Nb, W) as by-products of kaolin production – Part 3: Processing of fines using gravity and flotation. Minerals Engineering, 95, 96-106. https://doi.org/10.1016/j.mineng.2016.06.004
  • Foucaud, Y., Dehaine, Q., Filippov, L., & Filippova, I. V. (2019). Application of falcon centrifuge as a cleaner alternative for complex tungsten ore processing. Minerals, 9(7), 448.
  • Hammas-Nasri, I., Horchani-Naifer, K., Férid, M., & Barca, D. (2016). Rare earths concentration from phosphogypsum waste by two-step leaching method. International Journal of Mineral Processing, 149, 78-83. https://doi.org/10.1016/j.minpro.2016.02.011
  • Hammas-Nasri, I., Horchani-Naifer, K., Férid, M., & Barca, D. (2019). Production of a rare earths concentrate after phosphogypsum treatment with dietary NaCl and Na2CO3 solutions. Minerals Engineering, 132, 169-174. https://doi.org/10.1016/j.mineng.2018.12.013
  • Haneklaus, N., Sun, Y., Bol, R., Lottermoser, B., & Schnug, E. (2017). To Extract, or not to Extract Uranium from Phosphate Rock, that is the Question. Environ Sci Technol, 51(2), 753-754. https://doi.org/10.1021/acs.est.6b05506
  • Kademli, M., & Aydogan, N. A. (2019). An extraction of copper from recycling plant slag by using falcon concentrator. gospodarka surowcami mineralnymi, 35.
  • Lambert, A., Anawati, J., Walawalkar, M., Tam, J., & Azimi, G. (2018). Innovative Application of Microwave Treatment for Recovering of Rare Earth Elements from Phosphogypsum. ACS Sustainable
  • Chemistry & Engineering, 6(12), 16471-16481. https://doi.org/10.1021/acssuschemeng.8b03588
  • Liang, H., Zhang, P., Jin, Z., & DePaoli, D. (2017). Rare-earth leaching from Florida phosphate rock in wet-process phosphoric acid production. Minerals & Metallurgical Processing, 34(3), 146-153. https://doi.org/10.19150/mmp.7615
  • Liang, H., Zhang, P., Jin, Z., & DePaoli, D. (2018). Rare Earth and Phosphorus Leaching from a Flotation Tailings of Florida Phosphate Rock. Minerals, 8(9). https://doi.org/10.3390/min8090416
  • López, L., Castro, L. N., Scasso, R. A., Grancea, L., Tulsidas, H., & Haneklaus, N. (2019). Uranium supply potential from phosphate rocks for Argentina's nuclear power fleet. Resources Policy, 62, 397-404. https://doi.org/10.1016/j.resourpol.2019.04.008
  • M. Abd El-Mottaleb, M. F. Cheira, Gamal A. H. Gouda, & Ahmed, A. S. A. (2016). Leaching of Rare Earth Elements from Egpytian Western Desert Phosphate Rocks using HCl. Chemistry of Advanced Materials (CAM), 1(1), 33-40.
  • Nie, D., Xue, A., Zhu, M., Zhang, Y., & Cao, J. (2019). Separation and recovery of associated rare earths from the Zhijin phosphorite using hydrochloric acid. Journal of Rare Earths, 37(4), 443-450. https://doi.org/10.1016/j.jre.2018.08.006
  • Paschalidou, P., & Pashalidis, I. (2019). Recovery of uranium from phosphate rock with EDTA-mediated dissolution and cation exchange. Hydrometallurgy, 189. https://doi.org/10.1016/j.hydromet.2019.105118
  • Rychkov, V. N., Kirillov, E. V., Kirillov, S. V., Semenishchev, V. S., Bunkov, G. M., Botalov, M. S., Smyshlyaev, D. V., & Malyshev, A. S. (2018). Recovery of rare earth elements from phosphogypsum. Journal of Cleaner Production, 196, 674-681. https://doi.org/10.1016/j.jclepro.2018.06.114
  • Seredin, V. V., & Dai, S. (2012). Coal deposits as potential alternative sources for lanthanides and yttrium. International Journal of Coal Geology, 94, 67-93. https://doi.org/10.1016/j.coal.2011.11.001
  • Shlewit, H. (2010). Treatment of phosphate rocks with hydrochloric acid. Journal of Radioanalytical and Nuclear Chemistry, 287(1), 49-54. https://doi.org/10.1007/s10967-010-0687-1
  • Singh, D. K., Mondal, S., & Chakravartty, J. K. (2016). Recovery of Uranium from Phosphoric Acid: A Review. Solvent Extraction and Ion Exchange, 34(3), 201-225. https://doi.org/10.1080/07366299.2016.1169142
  • Soltani, F., Abdollahy, M., Petersen, J., Ram, R., Javad Koleini, S. M., & Moradkhani, D. (2019). Leaching and recovery of phosphate and rare earth elements from an iron-rich fluorapatite concentrate:
  • Part II: Selective leaching of calcium and phosphate and acid baking of the residue. Hydrometallurgy, 184, 29-38. https://doi.org/10.1016/j.hydromet.2018.12.024
  • Steiner, G., Geissler, B., & Haneklaus, N. (2020). Making Uranium Recovery from Phosphates Great Again? Environ Sci Technol, 54(3), 1287-1289. https://doi.org/10.1021/acs.est.9b07859
  • Stone, K., Bandara, A. M. T. S., Senanayake, G., & Jayasekera, S. (2016). Processing of rare earth phosphate concentrates: A comparative study of pre-leaching with perchloric, hydrochloric, nitric and phosphoric acids and deportment of minor/major elements. Hydrometallurgy, 163, 137-147. https://doi.org/10.1016/j.hydromet.2016.03.014
  • Tulsidas, H., Gabriel, S., Kiegiel, K., & Haneklaus, N. (2019). Uranium resources in EU phosphate rock imports. Resources Policy, 61, 151-156. https://doi.org/10.1016/j.resourpol.2019.02.012 Ulrich, A. E., Schnug, E., Prasser, H. M., & Frossard, E. (2014). Uranium endowments in phosphate rock. Sci Total Environ, 478, 226-234. https://doi.org/10.1016/j.scitotenv.2014.01.069
  • Walawalkar, M., Nichol, C. K., & Azimi, G. (2016). Process investigation of the acid leaching of rare earth elements from phosphogypsum using HCl, HNO3, and H2SO4. Hydrometallurgy, 166, 195-204. https://doi.org/10.1016/j.hydromet.2016.06.008
  • Wang, X., Sun, Z., Liu, Y., Min, X., Guo, Y., Li, P., & Zheng, Z. (2019). Effect of particle size on uranium bioleaching in column reactors from a low-grade uranium ore. Bioresour Technol, 281, 66-71. https://doi.org/10.1016/j.biortech.2019.02.065
  • Wu, S., Zhao, L., Wang, L., Huang, X., Zhang, Y., Feng, Z., & Cui, D. (2019). Simultaneous recovery of rare earth elements and phosphorus from phosphate rock by phosphoric acid leaching and selective precipitation: Towards green process. Journal of Rare Earths, 37(6), 652-658. https://doi.org/10.1016/j.jre.2018.09.012
  • Z.H. İsmail, Abu Elgoud, F. Abdel Hai, Ibraheem O. Ali, M. S. Gasser, & Ally, H. F. (2015). Leaching of some lanthanides from phosphogypsum fertilizers by mineral acids. Arab Journal of Nuclear Science and Applications, 48(2), 37-50.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Mining Engineering
Journal Section Research Articles
Authors

Mahmut Altıner

Soner Top This is me

Burçin Kaymakoğlu This is me

Oktay Bayat This is me

Publication Date December 10, 2021
Published in Issue Year 2021 Volume: 54 Issue: 1

Cite

APA Altıner, M., Top, S., Kaymakoğlu, B., Bayat, O. (2021). Dissolution of Uranium and Rare Earth Elements from a Low-Grade Phosphate Ore Using Different Acids. Geosound, 54(1), 66-83.
AMA Altıner M, Top S, Kaymakoğlu B, Bayat O. Dissolution of Uranium and Rare Earth Elements from a Low-Grade Phosphate Ore Using Different Acids. Geosound. December 2021;54(1):66-83.
Chicago Altıner, Mahmut, Soner Top, Burçin Kaymakoğlu, and Oktay Bayat. “Dissolution of Uranium and Rare Earth Elements from a Low-Grade Phosphate Ore Using Different Acids”. Geosound 54, no. 1 (December 2021): 66-83.
EndNote Altıner M, Top S, Kaymakoğlu B, Bayat O (December 1, 2021) Dissolution of Uranium and Rare Earth Elements from a Low-Grade Phosphate Ore Using Different Acids. Geosound 54 1 66–83.
IEEE M. Altıner, S. Top, B. Kaymakoğlu, and O. Bayat, “Dissolution of Uranium and Rare Earth Elements from a Low-Grade Phosphate Ore Using Different Acids”, Geosound, vol. 54, no. 1, pp. 66–83, 2021.
ISNAD Altıner, Mahmut et al. “Dissolution of Uranium and Rare Earth Elements from a Low-Grade Phosphate Ore Using Different Acids”. Geosound 54/1 (December 2021), 66-83.
JAMA Altıner M, Top S, Kaymakoğlu B, Bayat O. Dissolution of Uranium and Rare Earth Elements from a Low-Grade Phosphate Ore Using Different Acids. Geosound. 2021;54:66–83.
MLA Altıner, Mahmut et al. “Dissolution of Uranium and Rare Earth Elements from a Low-Grade Phosphate Ore Using Different Acids”. Geosound, vol. 54, no. 1, 2021, pp. 66-83.
Vancouver Altıner M, Top S, Kaymakoğlu B, Bayat O. Dissolution of Uranium and Rare Earth Elements from a Low-Grade Phosphate Ore Using Different Acids. Geosound. 2021;54(1):66-83.