Research Article
BibTex RIS Cite

Major, Trace and Rare Earth Elements Mobility During the Formation of the Koşuburnu (Bayramiç-Çanakkale) Bentonite Deposit

Year 2024, Issue: 60, 83 - 122, 27.12.2024
https://doi.org/10.70054/geosound.1540695

Abstract

The Koşuburnu bentonite, which belongs to the Middle-Upper Miocene aged Arıklı ignimbrite, has a stratiform-lenticular geometry formed by the alteration of rhyolitic and trchy andesitic character glassy and lithic tuffs. It contains small gravel, sand-sized altered volcanic rock fragments. The main mineral of the bentonite is dioctahedral smectite (Ca and Na montmorillonite). Other minerals include Quartz, opal-C, α cristobalite, kaolinite, mixed-layer illite-smectite (I/S), illite, feldspar, calcite, dolomite, hematite, halloysite, strontiatinite, gypsum, and pyrite. During the formation of Koşuburnu bentonite, elemental mobility occurred due to progressive alteration resulting in enrichment of MgO, Al2O3, Cs, Hf, Nb, Ta, Th, Y, Zn, light rare earth elements (LREE), and heavy rare earth elements (HREE), while depletion of Fe2O3, K2O, Na2O, TiO2, Rb, Sr, and U. The highest loss occurred in Na2O, while highest enrichment occurred in Cs. Compared to the parent rock, Cs enrichment in the bentonite is 3.2 to 17 times, and MgO enrichment is 1.29 to 3.17 times relative to the felsic upper crust, indicating external sources of Mg and Cs delivery (hydrothermal). Similarly, a Zr/Hf ratio greater than chondritic value (36.6) reflects hydrothermal alteration (37.33). High Th/U ratios (5.68 to 50.30) and losses of U and V in bentonite samples occured due to the effects of meteoric water-assisted Mg-poor, Fe-rich hydrothermal solutions, reflecting the initial stage of alteration. LREE and HREE enrichments to varying degrees are attributed to local physico-chemical changes in the alteration environment and compositional differences in the parent rock (rhyolitic-trachyandesitic).

References

  • Abedini, A., Calagari A.A., and Akbari M., 2011. Geochemistry and genesis of Mehredjan bentonite deposit, southeast of Khoor, Isfehan province. Journal of Geopersian, 1/1, 47-58.
  • Aja, S.U., 1998. The sorption of rare earth element, Nd to kaolinite at 25 °C. Clays Clay Minerals. 46, 103–109. Akbulut, A., 1989. A.R.40041 numaralı Koşuburnu (Bayramiç-Çanakkale) bentonit yatağı maden jeolojisi raporu. MTA Rapor No: 8928, Ankara.
  • Altaner, P., and Grim, R.E., 1990. Mineralogy, chemistry and diagenesis of tuffs in the Sucker Creek Formation (Miocene), Eastern Oregon Stephen. Clays and Clay Minerals, 38/6, 561-572.
  • Anderson, M.D., and Reynolds, C.R., 1966. Umiat bentonite: An unusual montmorillonite from Umiat, Alaska. The American Mineralogist, 51, 1443-1456.
  • Badurina, L., and Segvic, B., 2022. Assessing trace-element mobility during alteration of rhyolite tephra from the Dinaride Lake System using glass-phase and clay-separate laser ablation inductively coupled plasma mass spectrometry. Clay Minerals, 57, 1–6.
  • Bau, M., 1991. Rare-earth element mobility during hydrothermal and metamorphic fluid- rock interaction and the significance of the oxidation state of europium. Chemical Geology, 93 (3–4), 219–230.
  • Bebout, G.E., Bebout, A.E., and Graham, C.M., 2007. Cycling of B, Li, and LILE (K, Cs, Rb, Ba, Sr) into subduction zones: SIMS evidence from micas in high-P/T metasedimentary rocks. Chemical Geology, 239, 284–304.
  • Belousova, E., Griffin, W., O’Reilly, S.Y., and Fisher, N., 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol.143, 602–622.
  • Belousov, P.E., and Krupskaya, V.V. 2019. Bentonite clays of Russia and neighboring countries. Georesursy Georesources, 21(3), 79-90.
  • Brindley, G.W., and Brown, G., 1980. Crystal Structures of Clay Minerals and their Identification” (in: Brindley, G. W. ve Brown, G., Eds,) X-Ray Diffraction Procedures for Clay Mineral Identification, 305-360, Mineralogical Society, London.
  • Broxton, D.E., Bish, D.L., and Warren, R.G., 1987. Distribution and chemistry of diagenetic minerals at Yucca mountain, Nye County, Nevada. Clays and Clay Minerals 35, 89-110.
  • Caballero E., de Cisneros C.J., Huertas F.J., Huertas F., Pozzuoli A., and Linares J., 2005. Bentonites from Cabo de Gata, Almería, Spain: a mineralogical and geochemical overview. Clay Minerals, 40, 463– 480.
  • Cantrell, K.J, and Byrne, R.H., 1987. Rare earth element complexation by carbonate and oxalate ions. Geochimica et Cosmochimica Acta, 51, 597-606.
  • Chen, W., Honghui, H., Bai, T., and Jiang, S., 2017. Geochemistry of Monazite within Carbonatite Related REE Deposits. Resources, 6, 51.
  • Christidis, E.G., 2008. Do bentonites have contradictory characteristics? An attempt to answer unanswered questions. Clay Minerals, 43(4), 515-529. Christidis, E. G., and Huff, D. W., 2009. Geological Aspects and Genesis of Bentonites. Elements, 5, 93–98.
  • Christidis, G., and Dunham, A.C., 1997. Compositional variations in smectites: Part II. Alteration of acidic precursors. A case study from Milts Island, Greece. Clay Minerals, 32, 253-270.
  • Christidis, G., and Huff, D.H., 2009. Geologic aspects and genesis of bentonites. Elements 5(2), 93–98.
  • Christidis, G., Scott, P.W., and Marcopoulos, T., 1995. Origin of the bentonite deposits of Eastern Milos, Aegean, Greece. Geological, mineralogical and geochemical evidence. Clays and Clay Minerals. 43, 63-67.
  • Christidis, G., 1998. Comparative study of the mobility of major and trace elements during alteration of an andesite and a rhyolite to bentonite, in the islands of Milos and Kimolos, Aegean, Greece. Clays and Clay Minerals, 46, 379–399.
  • Coppin, F., Berger, G., Bauer, A., Castet, S., and Loubet, M., 2002. Sorption of lanthanides on smectite and kaolinite. Chemical Geology 182, 57–68.
  • Curtis, J.N., Gascooke, R.J., Johnston, R.M., and Pring, A., 2019. A review of the Classfication of Opal with Reference to Recent New Localities. Minerals. 9/299, 1-20.
  • Damby D.E., Llewellin, E.W., Horwell C,J., Williamson, B.J., Najorka, J., Cresseye, G., and Carpenter M., 2014. The a–b phase transition in volcanic cristobalite. Journal of Applied Crystallography. 1205-1215.
  • Damian, G., Damian, F., Szakács, Z., Iepure, G., and Dan A., 2021. Mineralogical and Physico-Chemical Characterization of the Ora¸su-Nou (Romania) Bentonite. Resources Minerals. 11/938, 1-19.
  • Ddani, M., Meunier, A., Zahraoui, M., Beaufort, D., El Wartiti, M., Fontaine, D., Boukili, B., and El Mahi, B., 2005. Clay mineralogy and chemical composition of bentonites from the Gourougou volcanic massif (northeast Morocco). Clays and Clay Minerals, 53, 250-267.
  • Decher, A., 1996. Bentonite der Inset Milos/Griechenland Mineralogie, Geochemie and Entstehung. Bowie ihre geotechnische Verwendung, PhD thesis,210pp.
  • Duru, M., Pehlivan, Ş., Ilgar, A., Dönmez, M., Akçay, E. A., Alan, B., Aydın, A., Erdoğan, K. ve Özer, D., 2007. 1:100.000 ölçekli Türkiye Jeoloji Haritaları, Ayvalık-İ 17 Paftası. No: 98. MTA Genel Müdürlüğü, Ankara.
  • Duru, M., Pehlivan, Ş., Okay, İ.A., Şentürk, Y. ve Kar, H., 2012. Biga Yarımadası’nın Tersiyer öncesi jeolojisi. (Biga Yarımadası’nın Genel ve Ekonomik Jeolojisi, (Eds.: Yüzer, E ve Tunay, G.), sayfa: 7-74, MTA Genel Müdürlüğü, Ankara.
  • Ece Ö.I., and Schroeder P.A., 2007. Clay mineralogy and chemistry of the halloysite and alunite deposits in the Turplu area, Balıkesir, Turkey. Clays and Clay Minerals, 55,18-36.
  • Elzea, J.M., Odom, I.E., and Miles, W.J., 1994. Distinguishing well ordered opal-CT and opal-C from high temperature cristobalite by X-ray diffraction. Analytica Chimica Acta, 286, 107–116.
  • Flörke, O.W., 1955. Zur Frage des Hoch-Cristobalits in Opalen, Bentoniten und Glasern. Neues Jarcbuch Miner. Mh, 217– 233.
  • Flörke, O.W., Graetsch, H., Martin, B., Röller, K., and Wirth, R., 1991. Nomenclature of micro-and non-crystalline silica minerals, based on structure and microstructure. N.Jb. Miner. Abh., 163, 19 – 42.
  • Finkelman, R.B., Dai, S., and French, D., 2019. The importance of minerals in coal as the hosts of chemical elements. A review. Int. J. Coal Geol. 212, 103-251.
  • Finlow-Bates, T., and Stumpfl, E.F., 1981. The behaviour of so-called immobile elements in hydrothermally altered rocks associated with volcanogenic submarine-exhalative ore deposits. Mineralium Deposita, 16, 319-328.
  • Förster, H,J., 1998. The chemical composition of REE-Y-Th-U-rich accessory minerals in peraluminous granites of the Erzgebirge-Fichtelgebirge region Germany. Part II: Xenotime” American Mineralogist. 83,1302–1315.
  • Gill, J.B., 1987. Early Geochemical Evolution of an Oceanic Island Arc and Backarc: Fiji and the South Fiji Basin. The Journal of Geology 95/5, 589-615.
  • Goldstein, S.J., and Jacobseny, S.B., 1988. REE in the Great Whale River estuary, northwest Quebec. Earth and Planetary Science Letters 88, 241-252
  • Graetsch, H., 1994. Structural characteristics of opaline and microcrystalline silica minerals. In: Heaney, P.J., Prewitt, C. T. and Gibbs, G. V. (eds.): Reviews in Mineralogy and Geochemistry, Silica: Physical Behaviour, Geochemistry and Materials Applications, 209 – 232.
  • Grim, R.E., and Güven, N., 1978. Bentonites. Geology, Mineralogy, Properties snd Uses”, Developments in Sedimentology, 24. Elsevier Scientific Publishing Company.
  • Güven, N., and Peace, R.W., 1975. Electron-optical investigations on montmorillonites. II. morphological variations in the intermediate members of the montmorillonite-beidellite series. Clays and Clay Minerals, 23, 187-191.
  • Hay, R.L., and Guldman, S.G., 1987. Diagenetic alteration of silicic ash in Searles Lake, California. Clays and Clay Minerals, 35, 449-457.
  • Henning, K.,H., and Störr, M., 1986. Electron Micrographs (TEM, SEM) of Clays and Clay Minerals”, Akademie-Verlag, 350 sayfa, Berlin.
  • Hodson, M.E., 2002. Experimental evidence for mobility of Zr and other trace elements in soils. Geochimica et Cosmochimica Acta. 66, 819-828.
  • Hong, H., Algeo, T.J., Fang, Q., Zhao, L., Ji, K., Yin, K., Wang, C., and Cheng, S., 2019. Facies dependence of the mineralogy and geochemistry of altered volcanic ash beds: An example from PermianTriassic transition strata in southwestern China. Earth-Science Reviews, 190, 58–88.
  • Inoue, A., Meunier, A., and Beaufort, D., 2004. Illite-smectite mixed-layer minerals in felsic voclaniclastic rocks from drill cores, Kakkonda, Japan. Clays and Clay Minerals, 52, 66–84.
  • Ishikawa Y., Sawaguchi T., Iwaya S., and Horiuchi M., 1976. Delineation of Prospecting Targets for Kuroko Deposits Based on Modes of Volcanism of Underlying Dacite and Alteration Haloes. Mining Geology, 26: 105-117.
  • Iveson, A.A., Rowe, M.C., Webster, J.D., and Neili, O.K., 2018. Amphibole-, clinopyroxene- and plagioclase melt partitioning of trace and economic metals in halogen-bearing rhyodacitic melts. Journal of Petrology, 59, 1579–1604.
  • Jiang, S.Y., Wang, R.C., Xu, X.S., and Zhao, K.D., 2005. Mobility of high field strength elements (HFSE) in magmatic, metamorphic, and submarine-hydrothermal systems. Phys. Chem. Earth, 30, 1020–1029. Jones, J.B., and Segnit, E.R., 1971. The nature of opal I. Nomenclature and constituent phases. Journal of the Geological Society of Australia, 18, 57– 68.
  • Kanazawa, Y., and Kamitani, M., 2006. Rare earth minerals and resources in the world. Journal of Alloys and Compounds 408, 1339–1343
  • Karakaya, M.Ç., Karakaya, N., and Küpeli, Ş., 2011. Mineralogical and geochemical properties of Na-and Ca-bentonites of Ordu (NE Turkey). Clays and Clay Minerals. 59/1, 75-94.
  • Kılıç, M., Küçükefe, Ş., Avşar, M., Sarı, R., Vural, A., ve Pehlivan, N., 2004. Kısacık (Ayvacık-Çanakkale) Au sahasının jeolojisi ve jeokimyasına ait ilk veriler. 57. Türkiye Jeoloji Kurultayı Bildiri Özleri. Sayfa 100. Ankara.
  • Kılıç, M., Sarı, R., Avşar, M. ve Küçükefe, Ş., 2009. Kısacık (Ayvacık-Çanakkale) altın sahası maden jeolojisi raporu. MTA Genel Müdürlüğü, Ankara.
  • Kiipli, T., Hints, R., Kallaste, T., Verš, E., and Voolma, M., 2017. Immobile and mobile elements during the transition of volcanic ash to bentonite – an example from the early Palaeozoic sedimentary section of the Baltic basin. Sedimentary Geology, 347, 148–159.
  • Konya, J., Nagy, N.M., and Nemes, Z., 2005. The effect of mineral composition on the sorption of cesium ions on geological formations. Journal of Colloid and Interface Science. 290/2, 350-356.
  • Köster, H.M., 2018. Tracing fluids involved in the formation of bentonite deposits”, Technische Universitat München Ingenieurfakultät, PhD Thesis.
  • Kundal, N.S., Chowdhary, N., and Kumar, S., 2022. Geochemistry of bentonitized tuff band of outer NW Himalaya, Jammu and Kashmir, India. Indian Academy of Sciences. J. Earth Syst. Sci.,131:110.
  • Large R.R., Gemmell J.B., Paulick H., and Huston D.L., 2001. The alteration box plot: A simple approach to understanding the relationship between alteration mineralogy and litho geochemistry associated with volcanic hosted massive sulfide deposits. Economic Geology, 96, 957-971.
  • Lewis, A.J., Palmer, M.A., Sturchio, N.C., and Kemp, A.J., 1997. The rare earth element geochemistry of acid-sulphate and acid-sulphate-chloride geothermal systems from Yellowstone National Park, Wyoming, USA. Geochimica et Cosmochimica Acta. 61, 695-706.
  • Liao, Z., Hu, W., Cao, J., Wang, X., Yao, S., Wu, H., Wan, Y., 2016. Heterogeneous volcanism across the Permian–Triassic Boundary in South China and implications for the Latest Permian Mass Extinction: New evidence from volcanic ash layers in the Lower Yangtze Region. Journal of Asian Earth Sciences 127, 197-210.
  • Lipin, B.R., and McKay, G.A., 1989. Geochemistry and Mineralogy of Rare Earth Elements. The Mineralogical Society of America, Washington, D.C., 278pp
  • Loughnan, F.C., 1969. Chemical Weathering of the Silicate Minerals” American Elsevier Publication. Lopez, J.M.G., Bauluz, B., Nieto, C.F. and Oliete, A.Y., 2005. Factors controlling the trace elements distribution in fine grained rocks: The Albian Kaolinite rich deposits of the Oliete Basin (NE Spain). Chemical Geology. 214, 1–19.
  • Malek-Mahmoodi, F., Khalili, M., and Mirlohi, A., 2013. The origin of the Bentonite deposits of Tashtab Mountains (Central Iran) Geological, Geochemical, and Stable Isotope evidences. Journal of Geopercian 3/2, 73-86. Marschall, H.R., Dohmen, R., and Ludwig, T., 2013. Diffusion-induced fractionation of niobium and tantalum during continental crust formation. Earth Planet. Sci. Lett., 375, 361–371.
  • McLennan, M.S., 1989. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary prcesses. In (Lipin, B.R., and McKay, G.A., eds.) Geochemistry and Mineralogy of Rare Earth Elements, The Mineralogical Society of America, 169-196
  • Motoki, S.E., Siche, T.V., Dean P.M., and Motoki, K.F., 2015. Geochemical behaviour of trace elements during fractional crystallization and crustal assimilation of the felsic alkaline magmas of the state of Rio de Janeiro, Brazil. Annals of the Brazilian Academy of Sciences. 87/4, 1959-1979.
  • Muchangos, A.C., 2000. Mineralogy and geochemistry of bauxite and bentonite deposits from Mozambique. Geologica Ultraiectina Mededelingen van de Faculteit Aardwetenschappen Universiteit Utrecht No. 192, PhD Thesis, 110 pp.
  • Muchangos, A.C., 2006. The mobility of rare-earth and other elements in the process of alteration of rhyolitic rocks to bentonite (Lebombo Volcanic Mountainous Chain, Mozambique). Journal of Geochemical Exploration 88, 300–303.
  • Murata, K.J., and Nakata, J.K., 1974. Cristobalite stage in the diagenesis of diatomaceous shales, Temblor Range, California. Journal of Geology Research, USGS 30, 567– 572.
  • Namayandeh, A., Modabeberi, S., and Lopez-Galindo, A., 2020. Trace and rare earth element distribution and mobility during diagenetic alteration of volcanic ash to bentonite in Eastern Iranian bentonite deposits. Clays and Clay Minerals, Vol. 68, No. 1:50–66.
  • Nesbitt, H.W., 1979. Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature, 279, 206.
  • Nesbitt, H.W., Markovics, G., and Price R.C., 1980. Chemical processes affacting alkalis alkaline earths during continental weathering. Geochimica et Cosmochimica Acta. 44, 1659-1666.
  • Nesbitt, H.W., and Young, G.M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715–717.
  • Ni, S.J., and Jin, J.F., 1992. The mixing and boiling of hydrothermal solution of uraniu deposit and the geological interpretation” Journal of Chengdu College of Geology,4.
  • Othman, D., Melegy A., and Abdelhalima, A., 2022. Stratigraphy, Geochemical and Mineralogical Characterization of Lower Miocene Smectitic clay deposits, case: South El-Hammam, Egypt. Egypt Journal of Chemistry. Vol. 65, No. SI: 13B, pp. 59-72.
  • Pandarinatha, K., Dulskib, P., Torres-Alvaradoa, I.S., Verma, S.P., 2008. Element mobility during the hydrothermal alteration of rhyolitic rocks of the Los Azufres geothermal field, Mexico. Geothermics. 37, 53–72.
  • Raymond, L.P., and Fleischer, M., 1968. Geochemistry of Niobium and Tantalum. Geological survey professional paper 612. Washington.
  • Renock, D., Landis, J.D., and Sharma, M., 2016. Reductive weathering of black shale and release of barium during hydraulic fracturing. Applied Geochemistry, 65, 73-86.
  • Rudnick, R.L., 1992. Xenoliths samples of the lower continental crust. In (Fountain, D., Arculus, R. and Kay, R.W., eds.) Continental Lower Crust, Elsevier, Amsterdam. 269-316.
  • Rudnick, R.L., and Gao, S., 2003. Composition of the continental crust. In: Holland, H.D. and Turekian, K.K. (eds), Treatise on Geochemistry, Vol. 3. Pergamon, Oxford, 1–64.
  • Short, A.S., 1989. Chemical transport of uranium and thorium in Alligator Rivers Uranium Prvince, Northern Territory, Australia. The University of Wollongong. Deparment of Chemistr. Phd Thesis, 301 pp
  • Siritongkham N., Srichan, W., Khositanont, S., and Limtrakun, P., 2020. Mineralogy, geochemistry and genesis of bentonite deposits in Lam Narai volcanic belts, Lop Buri province, central Thailand. Applied Sciences. 2:946.
  • Skirrow, R.G., Jaireth, S., Huston, D., Bastrakov, E., Schofield, A., van der Wielen, S. E., and Barnicoat., A., 2009. Uranium mineral systems: Processes, exploration criteria and a new deposit framework. Geoscience Australia, 2009/20, 38p.
  • Sodo, A., Casanova-Municchia, S., Barucca, F., Bellatreccia, G., Della Ventura, F. Butinib, M., and Riccia, A., 2016. Raman, FT-IR and XRD investigation of natural opals A. Journal of Raman Spectroscopy.
  • Sun, S.S., and McDonough, W.F., 1989. Chemical and isotope systematics of oceanic basalts; implication for mantle compositions and processes. – In: Saunders, A. D., Nory, M. J. (eds.): Magmatism in the Ocean Basins. – Geol. Soc. Spec. Publ. 42, 313 – 345.
  • Wang, X.,J. Zhang, A. Tommasi, Z. Jing, and M. Yuan, 2021. Microstructure and seismic properties of amphibole-rich rocks from the deep crust in southern Tibet. Tectonophysics, 811.
  • Watanabe, T., Sawada, Y., Russel. J. D., McHardy, , and Wilson, M. J., 1992. The conversion of montmorillonite to interstratified halloysite-smectite by weathering in the Omi acid clay deposit, Japan. Clay Minerals. 27, 159-173. Wedepohl, K.H., 1978. Handbook of Geochemistry. Volume II, Springer, Berlin.
  • Wilson, M.J., 1987. A Handbook of Determinative Methods in Clay Mineralogy. Blackie and Son, London. Winchester, J.A., and Floyd, D.A., 1977. Gechemical Discrimination of Different Magma Series and their Differantiation Products Using Immobile Elements. Chemical Geology, 20, 325-343.
  • Wood, S.A., 1990a. The aqueous geochemistry of the REE’s and yttrium. 1. Review of available lowtemperature data for inorganic complexes and the inorganic REE speciation of natural waters. Chemical Geology, 82,159-186.
  • Wood, S.A., 1990b. Theoretical predictions of speciation in hydrothermal solutions at 350 ~ at saturation water vapour pressure. Chemical Geology, 88, p. 99-125.
  • Vural, A., 2006. Bayramiç (Çanakkale) ve çevresindeki altın zenginleşmelerinin araştırılması. Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, Ankara.
  • Yıldız, A., and Kuşçu, M., 2007. Mineralogy, chemistry and physical properties of bentonites from Başören, Kütahya, W. Anatolia, Turkey. Clay Minerals, 42, 399-414
  • Zielinski, R.A., 1985. Element mobility during alteration of silicic ash to kaolinite-a study of tonstein. Sedimentology, 32, 567–579.
  • Zhong, J.F., Wang, L., Wang, K.X., Liu, J.G., Zhang, Y., Lib, H., Yang, S., Chen, Y. P., Xia, F., and Pan, J.Y., 2023. Mineralogy and geochemistry of hydrothermal alteration of the Mianhuakeng uranium deposit in South China: Implications for mineralization and exploration Ore Geology Reviews, 160, 1-19.

Koşuburnu (Bayramiç-Çanakkale) Bentonit Yatağının Oluşumu Sırasında Ana, İz ve Nadir Toprak Elementlerinin Hareketliliği

Year 2024, Issue: 60, 83 - 122, 27.12.2024
https://doi.org/10.70054/geosound.1540695

Abstract

Orta-Üst Miyosen yaşlı Arıklı ignimbiritine ait riyolitik, traki-andezitik karakterli camsal ve litik tüflerin alterasyonu sonucunda oluşan Koşuburnu bentoniti, stratiform-merceksel geometriye sahiptir ve içinde küçük çakıl-kum boyutlu altere olmuş volkanik kayaç parçaları içerir. Bentonitin esas minerali dioktaedral smektit (Ca ve Na montmorillonit)’tir. Kuvars, opal-C, α-kristobalit, kaolinit, karışık tabakalı illit-smektit (I/S), illit, feldspat, kalsit, dolomit, hematit, halloysit, stronsiyanit, jips ve pirit bileşime giren diğer minerallerdir. Koşuburnu bentonitinin oluşumu sırasında, ilerleyen alterasyona bağlı olarak, element hareketliliği gerçekleşmiş ve bentonit; MgO, Al2O3, Cs, Hf, Nb, Ta, Th, Y, Zn, hafif nadir toprak elementleri (LREE) ve ağır nadir toprak elementleri (HREE) yönünden zenginleşmiş; Fe2O3, K2O, Na2O, TiO2, Rb, Sr ve U yönünden ise fakirleşmiştir. En fazla kayıp Na2O’da gerçekleşirken, en fazla zenginleşme Cs’de olmuştur. Ana kayaya göre bentonitteki 17 kat (3.2); felsik üst kabuğa göre ise 8 kat Cs ile 3.17 kat (1.29) MgO zenginleşmeleri dış kaynaklı Mg ve Cs getirimine (hidrotermal) işaret eder. Benzer olarak kondritik Zr/Hf oranından (36.6) büyük olan Zr/Hf oranı (37.33) hidrotermal değişimi yansıtmaktadır. Bentonit örneklerinde belirlenen yüksek Th/U oranları (5.68 ile 50.30), U ve V kayıpları; alterasyonun ilk evresini yansıtan meteorik su katkılı Mg’ca fakir, Fe’ce zengin hidrotermal çözeltilerin etkisi ile gerçekleşmiştir. Farklı derecelerde LREE ve HREE zenginleşmeleri, alterasyon ortamındaki yerel fiziko-kimyasal değişiklikler ve ana kayanın (riyolitik-trakiandezitik) bileşimsel farklılığından kaynaklanmıştır.

References

  • Abedini, A., Calagari A.A., and Akbari M., 2011. Geochemistry and genesis of Mehredjan bentonite deposit, southeast of Khoor, Isfehan province. Journal of Geopersian, 1/1, 47-58.
  • Aja, S.U., 1998. The sorption of rare earth element, Nd to kaolinite at 25 °C. Clays Clay Minerals. 46, 103–109. Akbulut, A., 1989. A.R.40041 numaralı Koşuburnu (Bayramiç-Çanakkale) bentonit yatağı maden jeolojisi raporu. MTA Rapor No: 8928, Ankara.
  • Altaner, P., and Grim, R.E., 1990. Mineralogy, chemistry and diagenesis of tuffs in the Sucker Creek Formation (Miocene), Eastern Oregon Stephen. Clays and Clay Minerals, 38/6, 561-572.
  • Anderson, M.D., and Reynolds, C.R., 1966. Umiat bentonite: An unusual montmorillonite from Umiat, Alaska. The American Mineralogist, 51, 1443-1456.
  • Badurina, L., and Segvic, B., 2022. Assessing trace-element mobility during alteration of rhyolite tephra from the Dinaride Lake System using glass-phase and clay-separate laser ablation inductively coupled plasma mass spectrometry. Clay Minerals, 57, 1–6.
  • Bau, M., 1991. Rare-earth element mobility during hydrothermal and metamorphic fluid- rock interaction and the significance of the oxidation state of europium. Chemical Geology, 93 (3–4), 219–230.
  • Bebout, G.E., Bebout, A.E., and Graham, C.M., 2007. Cycling of B, Li, and LILE (K, Cs, Rb, Ba, Sr) into subduction zones: SIMS evidence from micas in high-P/T metasedimentary rocks. Chemical Geology, 239, 284–304.
  • Belousova, E., Griffin, W., O’Reilly, S.Y., and Fisher, N., 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol.143, 602–622.
  • Belousov, P.E., and Krupskaya, V.V. 2019. Bentonite clays of Russia and neighboring countries. Georesursy Georesources, 21(3), 79-90.
  • Brindley, G.W., and Brown, G., 1980. Crystal Structures of Clay Minerals and their Identification” (in: Brindley, G. W. ve Brown, G., Eds,) X-Ray Diffraction Procedures for Clay Mineral Identification, 305-360, Mineralogical Society, London.
  • Broxton, D.E., Bish, D.L., and Warren, R.G., 1987. Distribution and chemistry of diagenetic minerals at Yucca mountain, Nye County, Nevada. Clays and Clay Minerals 35, 89-110.
  • Caballero E., de Cisneros C.J., Huertas F.J., Huertas F., Pozzuoli A., and Linares J., 2005. Bentonites from Cabo de Gata, Almería, Spain: a mineralogical and geochemical overview. Clay Minerals, 40, 463– 480.
  • Cantrell, K.J, and Byrne, R.H., 1987. Rare earth element complexation by carbonate and oxalate ions. Geochimica et Cosmochimica Acta, 51, 597-606.
  • Chen, W., Honghui, H., Bai, T., and Jiang, S., 2017. Geochemistry of Monazite within Carbonatite Related REE Deposits. Resources, 6, 51.
  • Christidis, E.G., 2008. Do bentonites have contradictory characteristics? An attempt to answer unanswered questions. Clay Minerals, 43(4), 515-529. Christidis, E. G., and Huff, D. W., 2009. Geological Aspects and Genesis of Bentonites. Elements, 5, 93–98.
  • Christidis, G., and Dunham, A.C., 1997. Compositional variations in smectites: Part II. Alteration of acidic precursors. A case study from Milts Island, Greece. Clay Minerals, 32, 253-270.
  • Christidis, G., and Huff, D.H., 2009. Geologic aspects and genesis of bentonites. Elements 5(2), 93–98.
  • Christidis, G., Scott, P.W., and Marcopoulos, T., 1995. Origin of the bentonite deposits of Eastern Milos, Aegean, Greece. Geological, mineralogical and geochemical evidence. Clays and Clay Minerals. 43, 63-67.
  • Christidis, G., 1998. Comparative study of the mobility of major and trace elements during alteration of an andesite and a rhyolite to bentonite, in the islands of Milos and Kimolos, Aegean, Greece. Clays and Clay Minerals, 46, 379–399.
  • Coppin, F., Berger, G., Bauer, A., Castet, S., and Loubet, M., 2002. Sorption of lanthanides on smectite and kaolinite. Chemical Geology 182, 57–68.
  • Curtis, J.N., Gascooke, R.J., Johnston, R.M., and Pring, A., 2019. A review of the Classfication of Opal with Reference to Recent New Localities. Minerals. 9/299, 1-20.
  • Damby D.E., Llewellin, E.W., Horwell C,J., Williamson, B.J., Najorka, J., Cresseye, G., and Carpenter M., 2014. The a–b phase transition in volcanic cristobalite. Journal of Applied Crystallography. 1205-1215.
  • Damian, G., Damian, F., Szakács, Z., Iepure, G., and Dan A., 2021. Mineralogical and Physico-Chemical Characterization of the Ora¸su-Nou (Romania) Bentonite. Resources Minerals. 11/938, 1-19.
  • Ddani, M., Meunier, A., Zahraoui, M., Beaufort, D., El Wartiti, M., Fontaine, D., Boukili, B., and El Mahi, B., 2005. Clay mineralogy and chemical composition of bentonites from the Gourougou volcanic massif (northeast Morocco). Clays and Clay Minerals, 53, 250-267.
  • Decher, A., 1996. Bentonite der Inset Milos/Griechenland Mineralogie, Geochemie and Entstehung. Bowie ihre geotechnische Verwendung, PhD thesis,210pp.
  • Duru, M., Pehlivan, Ş., Ilgar, A., Dönmez, M., Akçay, E. A., Alan, B., Aydın, A., Erdoğan, K. ve Özer, D., 2007. 1:100.000 ölçekli Türkiye Jeoloji Haritaları, Ayvalık-İ 17 Paftası. No: 98. MTA Genel Müdürlüğü, Ankara.
  • Duru, M., Pehlivan, Ş., Okay, İ.A., Şentürk, Y. ve Kar, H., 2012. Biga Yarımadası’nın Tersiyer öncesi jeolojisi. (Biga Yarımadası’nın Genel ve Ekonomik Jeolojisi, (Eds.: Yüzer, E ve Tunay, G.), sayfa: 7-74, MTA Genel Müdürlüğü, Ankara.
  • Ece Ö.I., and Schroeder P.A., 2007. Clay mineralogy and chemistry of the halloysite and alunite deposits in the Turplu area, Balıkesir, Turkey. Clays and Clay Minerals, 55,18-36.
  • Elzea, J.M., Odom, I.E., and Miles, W.J., 1994. Distinguishing well ordered opal-CT and opal-C from high temperature cristobalite by X-ray diffraction. Analytica Chimica Acta, 286, 107–116.
  • Flörke, O.W., 1955. Zur Frage des Hoch-Cristobalits in Opalen, Bentoniten und Glasern. Neues Jarcbuch Miner. Mh, 217– 233.
  • Flörke, O.W., Graetsch, H., Martin, B., Röller, K., and Wirth, R., 1991. Nomenclature of micro-and non-crystalline silica minerals, based on structure and microstructure. N.Jb. Miner. Abh., 163, 19 – 42.
  • Finkelman, R.B., Dai, S., and French, D., 2019. The importance of minerals in coal as the hosts of chemical elements. A review. Int. J. Coal Geol. 212, 103-251.
  • Finlow-Bates, T., and Stumpfl, E.F., 1981. The behaviour of so-called immobile elements in hydrothermally altered rocks associated with volcanogenic submarine-exhalative ore deposits. Mineralium Deposita, 16, 319-328.
  • Förster, H,J., 1998. The chemical composition of REE-Y-Th-U-rich accessory minerals in peraluminous granites of the Erzgebirge-Fichtelgebirge region Germany. Part II: Xenotime” American Mineralogist. 83,1302–1315.
  • Gill, J.B., 1987. Early Geochemical Evolution of an Oceanic Island Arc and Backarc: Fiji and the South Fiji Basin. The Journal of Geology 95/5, 589-615.
  • Goldstein, S.J., and Jacobseny, S.B., 1988. REE in the Great Whale River estuary, northwest Quebec. Earth and Planetary Science Letters 88, 241-252
  • Graetsch, H., 1994. Structural characteristics of opaline and microcrystalline silica minerals. In: Heaney, P.J., Prewitt, C. T. and Gibbs, G. V. (eds.): Reviews in Mineralogy and Geochemistry, Silica: Physical Behaviour, Geochemistry and Materials Applications, 209 – 232.
  • Grim, R.E., and Güven, N., 1978. Bentonites. Geology, Mineralogy, Properties snd Uses”, Developments in Sedimentology, 24. Elsevier Scientific Publishing Company.
  • Güven, N., and Peace, R.W., 1975. Electron-optical investigations on montmorillonites. II. morphological variations in the intermediate members of the montmorillonite-beidellite series. Clays and Clay Minerals, 23, 187-191.
  • Hay, R.L., and Guldman, S.G., 1987. Diagenetic alteration of silicic ash in Searles Lake, California. Clays and Clay Minerals, 35, 449-457.
  • Henning, K.,H., and Störr, M., 1986. Electron Micrographs (TEM, SEM) of Clays and Clay Minerals”, Akademie-Verlag, 350 sayfa, Berlin.
  • Hodson, M.E., 2002. Experimental evidence for mobility of Zr and other trace elements in soils. Geochimica et Cosmochimica Acta. 66, 819-828.
  • Hong, H., Algeo, T.J., Fang, Q., Zhao, L., Ji, K., Yin, K., Wang, C., and Cheng, S., 2019. Facies dependence of the mineralogy and geochemistry of altered volcanic ash beds: An example from PermianTriassic transition strata in southwestern China. Earth-Science Reviews, 190, 58–88.
  • Inoue, A., Meunier, A., and Beaufort, D., 2004. Illite-smectite mixed-layer minerals in felsic voclaniclastic rocks from drill cores, Kakkonda, Japan. Clays and Clay Minerals, 52, 66–84.
  • Ishikawa Y., Sawaguchi T., Iwaya S., and Horiuchi M., 1976. Delineation of Prospecting Targets for Kuroko Deposits Based on Modes of Volcanism of Underlying Dacite and Alteration Haloes. Mining Geology, 26: 105-117.
  • Iveson, A.A., Rowe, M.C., Webster, J.D., and Neili, O.K., 2018. Amphibole-, clinopyroxene- and plagioclase melt partitioning of trace and economic metals in halogen-bearing rhyodacitic melts. Journal of Petrology, 59, 1579–1604.
  • Jiang, S.Y., Wang, R.C., Xu, X.S., and Zhao, K.D., 2005. Mobility of high field strength elements (HFSE) in magmatic, metamorphic, and submarine-hydrothermal systems. Phys. Chem. Earth, 30, 1020–1029. Jones, J.B., and Segnit, E.R., 1971. The nature of opal I. Nomenclature and constituent phases. Journal of the Geological Society of Australia, 18, 57– 68.
  • Kanazawa, Y., and Kamitani, M., 2006. Rare earth minerals and resources in the world. Journal of Alloys and Compounds 408, 1339–1343
  • Karakaya, M.Ç., Karakaya, N., and Küpeli, Ş., 2011. Mineralogical and geochemical properties of Na-and Ca-bentonites of Ordu (NE Turkey). Clays and Clay Minerals. 59/1, 75-94.
  • Kılıç, M., Küçükefe, Ş., Avşar, M., Sarı, R., Vural, A., ve Pehlivan, N., 2004. Kısacık (Ayvacık-Çanakkale) Au sahasının jeolojisi ve jeokimyasına ait ilk veriler. 57. Türkiye Jeoloji Kurultayı Bildiri Özleri. Sayfa 100. Ankara.
  • Kılıç, M., Sarı, R., Avşar, M. ve Küçükefe, Ş., 2009. Kısacık (Ayvacık-Çanakkale) altın sahası maden jeolojisi raporu. MTA Genel Müdürlüğü, Ankara.
  • Kiipli, T., Hints, R., Kallaste, T., Verš, E., and Voolma, M., 2017. Immobile and mobile elements during the transition of volcanic ash to bentonite – an example from the early Palaeozoic sedimentary section of the Baltic basin. Sedimentary Geology, 347, 148–159.
  • Konya, J., Nagy, N.M., and Nemes, Z., 2005. The effect of mineral composition on the sorption of cesium ions on geological formations. Journal of Colloid and Interface Science. 290/2, 350-356.
  • Köster, H.M., 2018. Tracing fluids involved in the formation of bentonite deposits”, Technische Universitat München Ingenieurfakultät, PhD Thesis.
  • Kundal, N.S., Chowdhary, N., and Kumar, S., 2022. Geochemistry of bentonitized tuff band of outer NW Himalaya, Jammu and Kashmir, India. Indian Academy of Sciences. J. Earth Syst. Sci.,131:110.
  • Large R.R., Gemmell J.B., Paulick H., and Huston D.L., 2001. The alteration box plot: A simple approach to understanding the relationship between alteration mineralogy and litho geochemistry associated with volcanic hosted massive sulfide deposits. Economic Geology, 96, 957-971.
  • Lewis, A.J., Palmer, M.A., Sturchio, N.C., and Kemp, A.J., 1997. The rare earth element geochemistry of acid-sulphate and acid-sulphate-chloride geothermal systems from Yellowstone National Park, Wyoming, USA. Geochimica et Cosmochimica Acta. 61, 695-706.
  • Liao, Z., Hu, W., Cao, J., Wang, X., Yao, S., Wu, H., Wan, Y., 2016. Heterogeneous volcanism across the Permian–Triassic Boundary in South China and implications for the Latest Permian Mass Extinction: New evidence from volcanic ash layers in the Lower Yangtze Region. Journal of Asian Earth Sciences 127, 197-210.
  • Lipin, B.R., and McKay, G.A., 1989. Geochemistry and Mineralogy of Rare Earth Elements. The Mineralogical Society of America, Washington, D.C., 278pp
  • Loughnan, F.C., 1969. Chemical Weathering of the Silicate Minerals” American Elsevier Publication. Lopez, J.M.G., Bauluz, B., Nieto, C.F. and Oliete, A.Y., 2005. Factors controlling the trace elements distribution in fine grained rocks: The Albian Kaolinite rich deposits of the Oliete Basin (NE Spain). Chemical Geology. 214, 1–19.
  • Malek-Mahmoodi, F., Khalili, M., and Mirlohi, A., 2013. The origin of the Bentonite deposits of Tashtab Mountains (Central Iran) Geological, Geochemical, and Stable Isotope evidences. Journal of Geopercian 3/2, 73-86. Marschall, H.R., Dohmen, R., and Ludwig, T., 2013. Diffusion-induced fractionation of niobium and tantalum during continental crust formation. Earth Planet. Sci. Lett., 375, 361–371.
  • McLennan, M.S., 1989. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary prcesses. In (Lipin, B.R., and McKay, G.A., eds.) Geochemistry and Mineralogy of Rare Earth Elements, The Mineralogical Society of America, 169-196
  • Motoki, S.E., Siche, T.V., Dean P.M., and Motoki, K.F., 2015. Geochemical behaviour of trace elements during fractional crystallization and crustal assimilation of the felsic alkaline magmas of the state of Rio de Janeiro, Brazil. Annals of the Brazilian Academy of Sciences. 87/4, 1959-1979.
  • Muchangos, A.C., 2000. Mineralogy and geochemistry of bauxite and bentonite deposits from Mozambique. Geologica Ultraiectina Mededelingen van de Faculteit Aardwetenschappen Universiteit Utrecht No. 192, PhD Thesis, 110 pp.
  • Muchangos, A.C., 2006. The mobility of rare-earth and other elements in the process of alteration of rhyolitic rocks to bentonite (Lebombo Volcanic Mountainous Chain, Mozambique). Journal of Geochemical Exploration 88, 300–303.
  • Murata, K.J., and Nakata, J.K., 1974. Cristobalite stage in the diagenesis of diatomaceous shales, Temblor Range, California. Journal of Geology Research, USGS 30, 567– 572.
  • Namayandeh, A., Modabeberi, S., and Lopez-Galindo, A., 2020. Trace and rare earth element distribution and mobility during diagenetic alteration of volcanic ash to bentonite in Eastern Iranian bentonite deposits. Clays and Clay Minerals, Vol. 68, No. 1:50–66.
  • Nesbitt, H.W., 1979. Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature, 279, 206.
  • Nesbitt, H.W., Markovics, G., and Price R.C., 1980. Chemical processes affacting alkalis alkaline earths during continental weathering. Geochimica et Cosmochimica Acta. 44, 1659-1666.
  • Nesbitt, H.W., and Young, G.M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715–717.
  • Ni, S.J., and Jin, J.F., 1992. The mixing and boiling of hydrothermal solution of uraniu deposit and the geological interpretation” Journal of Chengdu College of Geology,4.
  • Othman, D., Melegy A., and Abdelhalima, A., 2022. Stratigraphy, Geochemical and Mineralogical Characterization of Lower Miocene Smectitic clay deposits, case: South El-Hammam, Egypt. Egypt Journal of Chemistry. Vol. 65, No. SI: 13B, pp. 59-72.
  • Pandarinatha, K., Dulskib, P., Torres-Alvaradoa, I.S., Verma, S.P., 2008. Element mobility during the hydrothermal alteration of rhyolitic rocks of the Los Azufres geothermal field, Mexico. Geothermics. 37, 53–72.
  • Raymond, L.P., and Fleischer, M., 1968. Geochemistry of Niobium and Tantalum. Geological survey professional paper 612. Washington.
  • Renock, D., Landis, J.D., and Sharma, M., 2016. Reductive weathering of black shale and release of barium during hydraulic fracturing. Applied Geochemistry, 65, 73-86.
  • Rudnick, R.L., 1992. Xenoliths samples of the lower continental crust. In (Fountain, D., Arculus, R. and Kay, R.W., eds.) Continental Lower Crust, Elsevier, Amsterdam. 269-316.
  • Rudnick, R.L., and Gao, S., 2003. Composition of the continental crust. In: Holland, H.D. and Turekian, K.K. (eds), Treatise on Geochemistry, Vol. 3. Pergamon, Oxford, 1–64.
  • Short, A.S., 1989. Chemical transport of uranium and thorium in Alligator Rivers Uranium Prvince, Northern Territory, Australia. The University of Wollongong. Deparment of Chemistr. Phd Thesis, 301 pp
  • Siritongkham N., Srichan, W., Khositanont, S., and Limtrakun, P., 2020. Mineralogy, geochemistry and genesis of bentonite deposits in Lam Narai volcanic belts, Lop Buri province, central Thailand. Applied Sciences. 2:946.
  • Skirrow, R.G., Jaireth, S., Huston, D., Bastrakov, E., Schofield, A., van der Wielen, S. E., and Barnicoat., A., 2009. Uranium mineral systems: Processes, exploration criteria and a new deposit framework. Geoscience Australia, 2009/20, 38p.
  • Sodo, A., Casanova-Municchia, S., Barucca, F., Bellatreccia, G., Della Ventura, F. Butinib, M., and Riccia, A., 2016. Raman, FT-IR and XRD investigation of natural opals A. Journal of Raman Spectroscopy.
  • Sun, S.S., and McDonough, W.F., 1989. Chemical and isotope systematics of oceanic basalts; implication for mantle compositions and processes. – In: Saunders, A. D., Nory, M. J. (eds.): Magmatism in the Ocean Basins. – Geol. Soc. Spec. Publ. 42, 313 – 345.
  • Wang, X.,J. Zhang, A. Tommasi, Z. Jing, and M. Yuan, 2021. Microstructure and seismic properties of amphibole-rich rocks from the deep crust in southern Tibet. Tectonophysics, 811.
  • Watanabe, T., Sawada, Y., Russel. J. D., McHardy, , and Wilson, M. J., 1992. The conversion of montmorillonite to interstratified halloysite-smectite by weathering in the Omi acid clay deposit, Japan. Clay Minerals. 27, 159-173. Wedepohl, K.H., 1978. Handbook of Geochemistry. Volume II, Springer, Berlin.
  • Wilson, M.J., 1987. A Handbook of Determinative Methods in Clay Mineralogy. Blackie and Son, London. Winchester, J.A., and Floyd, D.A., 1977. Gechemical Discrimination of Different Magma Series and their Differantiation Products Using Immobile Elements. Chemical Geology, 20, 325-343.
  • Wood, S.A., 1990a. The aqueous geochemistry of the REE’s and yttrium. 1. Review of available lowtemperature data for inorganic complexes and the inorganic REE speciation of natural waters. Chemical Geology, 82,159-186.
  • Wood, S.A., 1990b. Theoretical predictions of speciation in hydrothermal solutions at 350 ~ at saturation water vapour pressure. Chemical Geology, 88, p. 99-125.
  • Vural, A., 2006. Bayramiç (Çanakkale) ve çevresindeki altın zenginleşmelerinin araştırılması. Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, Ankara.
  • Yıldız, A., and Kuşçu, M., 2007. Mineralogy, chemistry and physical properties of bentonites from Başören, Kütahya, W. Anatolia, Turkey. Clay Minerals, 42, 399-414
  • Zielinski, R.A., 1985. Element mobility during alteration of silicic ash to kaolinite-a study of tonstein. Sedimentology, 32, 567–579.
  • Zhong, J.F., Wang, L., Wang, K.X., Liu, J.G., Zhang, Y., Lib, H., Yang, S., Chen, Y. P., Xia, F., and Pan, J.Y., 2023. Mineralogy and geochemistry of hydrothermal alteration of the Mianhuakeng uranium deposit in South China: Implications for mineralization and exploration Ore Geology Reviews, 160, 1-19.
There are 91 citations in total.

Details

Primary Language Turkish
Subjects Mineralogy- Petrography
Journal Section Research Articles
Authors

Gökhan Büyükkahraman 0000-0003-2217-9825

Fazlı Çoban 0000-0002-1917-2852

Publication Date December 27, 2024
Submission Date August 29, 2024
Acceptance Date October 7, 2024
Published in Issue Year 2024 Issue: 60

Cite

APA Büyükkahraman, G., & Çoban, F. (2024). Koşuburnu (Bayramiç-Çanakkale) Bentonit Yatağının Oluşumu Sırasında Ana, İz ve Nadir Toprak Elementlerinin Hareketliliği. Geosound(60), 83-122. https://doi.org/10.70054/geosound.1540695
AMA Büyükkahraman G, Çoban F. Koşuburnu (Bayramiç-Çanakkale) Bentonit Yatağının Oluşumu Sırasında Ana, İz ve Nadir Toprak Elementlerinin Hareketliliği. Geosound. December 2024;(60):83-122. doi:10.70054/geosound.1540695
Chicago Büyükkahraman, Gökhan, and Fazlı Çoban. “Koşuburnu (Bayramiç-Çanakkale) Bentonit Yatağının Oluşumu Sırasında Ana, İz Ve Nadir Toprak Elementlerinin Hareketliliği”. Geosound, no. 60 (December 2024): 83-122. https://doi.org/10.70054/geosound.1540695.
EndNote Büyükkahraman G, Çoban F (December 1, 2024) Koşuburnu (Bayramiç-Çanakkale) Bentonit Yatağının Oluşumu Sırasında Ana, İz ve Nadir Toprak Elementlerinin Hareketliliği. Geosound 60 83–122.
IEEE G. Büyükkahraman and F. Çoban, “Koşuburnu (Bayramiç-Çanakkale) Bentonit Yatağının Oluşumu Sırasında Ana, İz ve Nadir Toprak Elementlerinin Hareketliliği”, Geosound, no. 60, pp. 83–122, December 2024, doi: 10.70054/geosound.1540695.
ISNAD Büyükkahraman, Gökhan - Çoban, Fazlı. “Koşuburnu (Bayramiç-Çanakkale) Bentonit Yatağının Oluşumu Sırasında Ana, İz Ve Nadir Toprak Elementlerinin Hareketliliği”. Geosound 60 (December 2024), 83-122. https://doi.org/10.70054/geosound.1540695.
JAMA Büyükkahraman G, Çoban F. Koşuburnu (Bayramiç-Çanakkale) Bentonit Yatağının Oluşumu Sırasında Ana, İz ve Nadir Toprak Elementlerinin Hareketliliği. Geosound. 2024;:83–122.
MLA Büyükkahraman, Gökhan and Fazlı Çoban. “Koşuburnu (Bayramiç-Çanakkale) Bentonit Yatağının Oluşumu Sırasında Ana, İz Ve Nadir Toprak Elementlerinin Hareketliliği”. Geosound, no. 60, 2024, pp. 83-122, doi:10.70054/geosound.1540695.
Vancouver Büyükkahraman G, Çoban F. Koşuburnu (Bayramiç-Çanakkale) Bentonit Yatağının Oluşumu Sırasında Ana, İz ve Nadir Toprak Elementlerinin Hareketliliği. Geosound. 2024(60):83-122.

The journal *Geosound* encompasses all fields of earth sciences (geology, geophysics, mining, geomorphology, geotechnics, hydrogeology, geostatistics, etc.), publishing original studies, case presentations, and new developments conducted at national and international levels.