Review
BibTex RIS Cite

ÇİMLENDİRİLEN TANE VE FİLİZ ÜRÜNLERİN BESLENMEDEKİ ROLÜ VE ÖNEMİ

Year 2023, , 333 - 346, 15.04.2023
https://doi.org/10.15237/gida.GD22094

Abstract

Son yıllarda tüketicilerin besin tercihlerini ve beslenme alışkanlıklarını değiştirme yoluna gitmesi sonucunda organik, glutensiz ve fermente gıdaların tüketiminin yanı sıra çimlendirilmiş tane ve filiz ürünlerinin de tüketimi artmıştır. Çimlendirilmiş tanelerin vitamin, mineral, antioksidatif özellikler ve çeşitli biyoaktif bileşenler yönünden daha zengin olduğu, ayrıca besinlerin yalnızca kimyasal özelliklerinde değil lezzet, koku ve renk gibi duyusal özelliklerinde de olumlu değişimler gözlemlendiği ortaya konulmuştur. Bununla birlikte çimlenme, makro ve mikro besin ögelerinin emilimini engelleyen enzimleri inaktive etmesinden dolayı yetersiz beslenme sorununa alternatif bir çözüm olarak değerlendirilmektedir. Bu derlemede, bazı besinlerin çimlendirilmesiyle besinsel kompozisyonunda ve fonksiyonel etkilerinde meydana gelen değişimlerin incelenmesi amaçlanmıştır.

References

  • Al-Ansi, W., Zhang, Y., Alkawry, T. A. A., Al-Adeeb, A., Mahdi, A. A., Al-Maqtari, Q. A., ... & Wang, L. (2022). Influence of germination on bread-making behaviors, functional and shelf-life properties, and overall quality of highland barley bread. LWT, 159, 113200.
  • Aparicio-García, N., Martínez-Villaluenga, C., Frias, J., & Peñas, E. (2021). Sprouted oat as a potential gluten-free ingredient with enhanced nutritional and bioactive properties. Food Chemistry, 338, 127972.
  • Attri, P., Ishikawa, K., Okumura, T., Koga, K., Shiratani, M., & Mildaziene, V. (2021). Impact of seed color and storage time on the radish seed germination and sprout growth in plasma agriculture. Scientific reports, 11(1), 1-10.
  • Atudorei, D., Stroe, S. G., & Codină, G. G. (2021). Impact of germination on the microstructural and physicochemical properties of different legume types. Plants, 10(3), 592.
  • Baenas, N., Gómez-Jodar, I., Moreno, D. A., García-Viguera, C., & Periago, P. M. (2017). Broccoli and radish sprouts are safe and rich in bioactive phytochemicals. Postharvest Biology and Technology, 127, 60-67.
  • Bakhshandeh, E., & Gholamhossieni, M. (2019). Modelling the effects of water stress and temperature on seed germination of radish and cantaloupe. Journal of Plant Growth Regulation, 38(4), 1402-1411.
  • Bangar, S. P., Sandhu, K. S., Trif, M., Manjunatha, V., & Lorenzo, J. M. (2022). Germinated Barley Cultivars: Effect on Physicochemical and Bioactive Properties. Food Analytical Methods, 1-8.
  • Baxter, L. L., Grey, T. L., Tucker, J. J., & Hancock, D. W. (2019). Optimizing temperature requirements for clover seed germination. Agrosystems, Geosciences & Environment, 2(1), 1-7.
  • Beaulieu, J. C., Boue, S. M., & Goufo, P. (2022). Health-promoting germinated rice and value-added foods: a comprehensive and systematic review of germination effects on brown rice. Critical Reviews in Food Science and Nutrition, 1-34.
  • Bhinder, S., Kumari, S., Singh, B., Kaur, A., & Singh, N. (2021). Impact of germination on phenolic composition, antioxidant properties, antinutritional factors, mineral content and Maillard reaction products of malted quinoa flour. Food Chemistry, 346, 128915.
  • Bhinder, S., Singh, N., & Kaur, A. (2022). Impact of germination on nutraceutical, functional and gluten free muffin making properties of Tartary buckwheat (Fagopyrum tataricum). Food Hydrocolloids, 124, 107268.
  • Bouajila, A., Ammar, H., Chahine, M., Khouja, M., Hamdi, Z., Khechini, J., ... & López, S. (2020). Changes in phytase activity, phosphorus and phytate contents during grain germination of barley (Hordeum vulgare L.) cultivars. Agroforestry Systems, 94(4), 1151-1159.
  • Cabrera-Santos, D., Ordoñez-Salanueva, C.A., Sampayo-Maldonado, S., Campos, J. E., Orozco-Segovia, A., & Flores-Ortiz, C. M. (2021). Chia (Salvia hispanica L.) Seed soaking, germination, and fatty acid behavior at different temperatures. Agriculture, 11(6), 498.
  • Chauhan, A., Kumari, N., Saxena, D. C., & Singh, S. (2022). Effect of germination on fatty acid profile, amino acid profile and minerals of amaranth (Amaranthus spp.) grain. Journal of Food Measurement and Characterization, 16(3), 1777-1786.
  • Chiriac, E. R., Chiţescu, C. L., Sandru, C., Geană, E. I., Lupoae, M., Dobre, M., ... & Boscencu, R. (2020b). Comparative study of the bioactive properties and elemental composition of red clover (Trifolium pratense) and alfalfa (Medicago sativa) sprouts during germination. Applied Sciences, 10(20), 7249.
  • Chiriac, E.R., Chiţescu, C.L., Borda, D., Lupoae, M., Gird, C.E., Geana, E.-I., Blaga, G.-V., Boscencu, R (2020a). Comparison of the Polyphenolic Profile of Medicago sativa L. and Trifolium pratense L. Sprouts in Different Germination Stages Using the UHPLC-Q Exactive Hybrid Quadrupole Orbitrap High-Resolution Mass Spectrometry. Molecules 25, 2321.
  • Darwish, A. M., Al‐Jumayi, H. A., & Elhendy, H. A. (2021). Effect of germination on the nutritional profile of quinoa (Cheopodium quinoa Willd.) seeds and its anti‐anemic potential in Sprague–Dawley male albino rats. Cereal Chemistry, 98(2), 315-327.
  • de Abreu Silva, L., Verneque, B. J. F., Mota, A. P. L., & Duarte, C. K. (2021). Chia Seeds (Salvia Hispanica L.) Consumption and Lipid Profile: A Systematic Review and Meta-analysis. Food & Function.
  • Desai, S. D., Desai, D. G., & Kaur, H. (2009). Saponins and their bio-logical activities. Pharma Times, 41(3), 13–16.
  • Di Bella, M. C., Niklas, A., Toscano, S., Picchi, V., Romano, D., Lo Scalzo, R., & Branca, F. (2020). Morphometric characteristics, polyphenols and ascorbic acid variation in Brassica oleracea L. novel foods: Sprouts, microgreens and baby leaves. Agronomy, 10(6), 782.
  • Doblado, R., Frías, J., Vidal-Valverde, C., (2007). Changes in vitamin C content and antioxidant capacity of raw and germinated cowpea (Vigna sinensis var. carilla) seeds induced by high pressure treatment, Food Chemistry, 101,918–923.
  • Domínguez-Arispuro, D. M., Cuevas-Rodríguez, E. O., Milán-Carrillo, J., León-López, L., Gutiérrez-Dorado, R., & Reyes-Moreno, C. (2018). Optimal germination condition impacts on the antioxidant activity and phenolic acids profile in pigmented desi chickpea (Cicer arietinum L.) seeds. Journal of food science and technology, 55(2), 638-647.
  • Duenas, M., Hernandez, T., Estrella, I., & Fernandez, D. (2009). Germination as a process to increase the polyphenol content and antioxidant activity of lupin seeds (Lupinus angustifolius L.). Food chemistry, 117(4), 599-607.
  • Eum, H. L., Park, Y., Yi, T. G., Lee, J. W., Ha, K. S., Choi, I. Y., & Park, N. I. (2020). Effect of germination environment on the biochemical compounds and anti-inflammatory properties of soybean cultivars. PloS one, 15(4), e0232159. FAO (2011). La Quinua: Cultivo milenario para contribuir a la se-guridad alimentaria mundial. Oficina Regional Para America Latina Y El Caribe, FAO, 37, 66. https://doi.org/10.1016/j.jaridenv.2009.03.010F
  • Francis, H., Debs, E., Koubaa, M., Alrayess, Z., Maroun, R. G., & Louka, N. (2022). Sprouts Use as Functional Foods. Optimization of Germination of Wheat (Triticum aestivum L.), Alfalfa (Medicago sativa L.), and Radish (Raphanus sativus L.) Seeds Based on Their Nutritional Content Evolution. Foods, 11(10), 1460.
  • Gan, Ren-You, Wing-Yee Lui, Kao Wu, Chak-Lun Chan, Shu-Hong Dai, Zhong-Quan Sui, and Harold Corke. "Bioactive compounds and bioactivities of germinated edible seeds and sprouts: An updated review." Trends in Food Science & Technology 59 (2017): 1-14.
  • Ghafoor, K., Al Juhaimi, F., Özcan, M. M., Uslu, N., Ahmed, I. A. M., & Babiker, E. E. (2022). The effect of boiling, germination and roasting on bioactive properties, phenolic compounds, fatty acids and minerals of chia seed (Salvia hispanica L.) and oils. International Journal of Gastronomy and Food Science, 27, 100447.
  • Gonçalves, A., Goufo, P., Barros, A., Domínguez‐Perles, R., Trindade, H., Rosa, E. A., ... & Rodrigues, M. (2016). Cowpea (Vigna unguiculata L. Walp), a renewed multipurpose crop for a more sustainable agri‐food system: nutritional advantages and constraints. Journal of the Science of Food and Agriculture, 96(9), 2941-2951.
  • Hosseini, H., & Jafari, S. M. (2020). Introducing nano/microencapsulated bioactive ingredients for extending the shelf-life of food products. Advances in Colloid and Interface Science, 282, 102210.
  • Hsu, C. K., Chiang, B. H., Chen, Y. S., Yang, J. H., & Liu, C. L. (2008). Improving the antioxidant activity of buckwheat (Fagopyrum tataricm Gaertn) sprout with trace element water. Food Chemistry, 108(2), 633-641.
  • Hu, M., Du, X., Liu, G., Zhang, S., Wu, H., & Li, Y. (2022). Germination improves the functional properties of soybean and enhances soymilk quality. International Journal of Food Science & Technology, 57(7), 3892-3902.
  • Ikram, A., Saeed, F., Afzaal, M., Imran, A., Niaz, B., Tufail, T., ... & Anjum, F. M. (2021). Nutritional and end‐use perspectives of sprouted grains: A comprehensive review. Food science & nutrition, 9(8), 4617-4628.
  • Ishikawa, H., Ikazaki, K., & Iseki, K. (2021). Visual observation of cowpea pod elongation to predict nitrogen accumulation in immature seeds. Plant Production Science, 24(2), 224-229.
  • Ispiryan, L., Kuktaite, R., Zannini, E., & Arendt, E. K. (2021). Fundamental study on changes in the FODMAP profile of cereals, pseudo-cereals, and pulses during the malting process. Food Chemistry, 343, 128549.
  • James, S., Nwabueze, T. U., Ndife, J., Onwuka, G. I., & Usman, M. A. A. (2020). Influence of fermentation and germination on some bioactive components of selected lesser legumes indigenous to Nigeria. Journal of Agriculture and Food Research, 2, 100086.
  • Janicki, B., Kupcewicz, B., Napierała, A., & Mądzielewska, A. (2005). Effect of temperature and light (UV, IR) on flavonol content in radish and alfalfa sprouts. Folia biologica (Kraków), 53(4), 121-125.
  • Jin, J., Ohanenye, I. C., & Udenigwe, C. C. (2022). Buckwheat proteins: Functionality, safety, bioactivity, and prospects as alternative plant-based proteins in the food industry. Critical Reviews in Food Science and Nutrition, 62(7), 1752-1764.
  • Karaman, E. E., & Soylu, A. G. Gastronomi Ve Mutfak Sanatları Doktora Öğrencilerinin Çiğ Beslenme (Raw Food) Algılarının Belirlenmesine Yönelik Bir Araştırma. Gastroia: Journal of Gastronomy And Travel Research, 4(2), 251-269.
  • Kaur, R., & Prasad, K. (2022). Elucidation of chickpea hydration, effect of soaking temperature, and extent of germination on characteristics of malted flour. Journal of Food Science, 87(5), 2197-2210.
  • Khan, M. K., Karnpanit, W., Nasar‐Abbas, S. M., Huma, Z. E., & Jayasena, V. (2018). Development of a fermented product with higher phenolic compounds and lower anti‐nutritional factors from germinated lupin (Lupinus angustifolius L.). Journal of Food Processing and Preservation, 42(12), e13843.
  • Khang, D. T., Vasiljevic, T., & Xuan, T. D. (2016). Bioactive compounds, antioxidant and enzyme activities in germination of oats (Avena sativa L.). International Food Research Journal, 23(5), 1980.
  • Khattak, A. B., A. Zeb, N. Bibi, S. A. Khalil, and M. S. Khattak. (2007). Influence of germination techniques on phytic acid and polyphenols content of chickpea (Cicer arietinum L.) sprouts. Food Chemistry, 104 (3):1074–1079.
  • Khattak, A. B., Zeb, A., & Bibi, N. (2008). Impact of germination time and type of illumination on carotenoidcontent, protein solubility and in vitro protein digestibility of chickpea (Cicer arietinum L.) sprouts. Food chemistry, 109(4), 797-801 Kılınçer, F. N., & Demir, M. K. (2019). Çimlendirilmiş Bazı Tahıl Ve Baklagillerin Fiziksel Ve Kimyasal Özellikleri. Gıda, 44(3), 419-429.
  • Hao, J., Li, J., & Zhao, D. (2021). Effect of slightly acidic electrolysed water on functional components, antioxidant and α‐glucosidase inhibitory ability of buckwheat sprouts. International Journal of Food Science & Technology, 56(7), 3463-3473.
  • Koyama, M., Nakamura, C., & Nakamura, K. (2013). Changes in phenols contents from buckwheat sprouts during growth stage. Journal of Food Science and Technology, 50(1), 86-93.
  • Krishna, H., Janakiram, T., Singh, M. K., Karuppaiah, V., Yadava, R. B., Prasad, R. N., ... & Behera, T. K. (2022). Immunomodulatory potential of vegetables vis-à-vis human health. The Journal of Horticultural Science and Biotechnology, 1-20. Kumar, S., & Pandey, G. (2020). Biofortification of pulses and legumes to enhance nutrition. Heliyon, 6(3), e03682.
  • Landfeld, A., Novotna, P., Strohalm, J., Rysova, J., & Houška, M. (2014). Yield stress and sensorial evaluation of soya yoghurts prepared from germinated soybeans. Czech Journal of Food Sciences, 32(5), 464-469.
  • Lee, S. J., Ahn, J. K., Khanh, T. D., Chun, S. C., Kim, S. L., Ro, H. M., ... & Chung, I. M. (2007). Comparison of isoflavone concentrations in soybean (Glycine max (L.) Merrill) sprouts grown under two different light conditions. Journal of agricultural and food chemistry, 55(23), 9415-9421.
  • Li, X., Liu, J., Chang, Q., Zhou, Z., Han, R., & Liang, Z. (2021). Antioxidant and antidiabetic activity of proanthocyanidins from Fagopyrum dibotrys. Molecules, 26(9), 2417.
  • López-Martínez, L. X., Leyva-López, N., Gutiérrez-Grijalva, E. P., & Heredia, J. B. (2017). Effect of cooking and germination on bioactive compounds in pulses and their health benefits. Journal of Functional Foods, 38, 624-634.
  • Mastropasqua, L., Dipierro, N., & Paciolla, C. (2020). Effects of darkness and light spectra on nutrients and pigments in radish, soybean, mung bean and pumpkin sprouts. Antioxidants, 9(6), 558.
  • Mattioli, S., Dal Bosco, A., Martino, M., Ruggeri, S., Marconi, O., Sileoni, V., ... & Benincasa, P. (2016). Alfalfa and flax sprouts supplementation enriches the content of bioactive compounds and lowers the cholesterol in hen egg. Journal of Functional Foods, 22, 454-462.
  • Muleke, E. M. M., Yan, W. A. N. G., Zhang, W. T., Liang, X. U., Yıng, J. L., Karanja, B. K., ... & LIU, L. W. (2021). Genome-wide identification and expression profiling of MYB transcription factor genes in radish (Raphanus sativus L.). Journal of Integrative Agriculture, 20(1), 120-131.
  • Murugkar, D. A. (2014). Effect of sprouting of soybean on the chemical composition and quality of soymilk and tofu. Journal of food science and technology, 51(5), 915-921.
  • OM, A., Kiin-Kabari, D. B., & Isah, E. M. (2020). Effects of Processing Methods on In-Vitro Protein Digestibility of Cookies Produced from Sesame Seed Flour Blends.
  • Otondi, E. A., Nduko, J. M., & Omwamba, M. (2020). Physico-chemical properties of extruded cassava-chia seed instant flour. Journal of Agriculture and Food Research, 2, 100058.
  • Pal, R. S., Bhartiya, A., Yadav, P., Kant, L., Mishra, K. K., Aditya, J. P., & Pattanayak, A. (2017). Effect of dehulling, germination and cooking on nutrients, anti-nutrients, fatty acid composition and antioxidant properties in lentil (Lens culinaris). Journal of food science and technology, 54(4), 909-920.
  • Pérez-Balibrea, S., Moreno, D. A., & García-Viguera, C. (2011). Genotypic effects on the phytochemical quality of seeds and sprouts from commercial broccoli cultivars. Food Chemistry, 125(2), 348-354.
  • Plaza, L., de Ancos, B., & Cano, P. M. (2003). Nutritional and health-related compounds in sprouts and seeds of soybean (Glycine max), wheat (Triticum aestivum. L) and alfalfa (Medicago sativa) treated by a new drying method. European Food Research and Technology, 216(2), 138-144.
  • Raza, H., Zaaboul, F., Shoaib, M., & Zhang, L. (2019). An overview of physicochemical composition and methods used for chickpeas processing. International Journal of Agriculture Innovations and Research, 7(5), 495-500.
  • Rico, D., Peñas, E., del Carmen García, M., Rai, D. K., Martínez-Villaluenga, C., Frias, J., & Martín-Diana, A. B. (2021). Development of Antioxidant and Nutritious Lentil (Lens culinaris) Flour Using Controlled Optimized Germination as a Bioprocess. Foods, 10(12), 2924.
  • Saleh, H. M., Hassan, A. A., Mansour, E. H., Fahmy, H. A., & El-Bedawey, A. E. F. A. (2019). Melatonin, phenolics content and antioxidant activity of germinated selected legumes and their fractions. Journal of the Saudi Society of Agricultural Sciences, 18(3), 294-301.
  • Sandoval-Sicairos, E. S., Domínguez-Rodríguez, M., Montoya-Rodríguez, A., Milán-Noris, A. K., Reyes-Moreno, C., & Milán-Carrillo, J. (2020). Phytochemical compounds and antioxidant activity modified by germination and hydrolysis in mexican Amaranth. Plant Foods for Human Nutrition, 75(2), 192-199.
  • Sandoval-Sicairos, E. S., Milán-Noris, A. K., Luna-Vital, D. A., Milán-Carrillo, J., & Montoya-Rodríguez, A. (2021). Anti-inflammatory and antioxidant effects of peptides released from germinated amaranth during in vitro simulated gastrointestinal digestion. Food Chemistry, 343, 128394.
  • Singla, P., Sharma, S., & Singh, A. (2021). Lupine: A Versatile Legume with Enhanced Nutritional Value. In Handbook of Cereals, Pulses, Roots, and Tubers (pp. 427-448). CRC Press.
  • Tang, S., Mao, G., Yuan, Y., Weng, Y., Zhu, R., Cai, C., & Mao, J. (2020). Optimization of oat seed steeping and germination temperatures to maximize nutrient content and antioxidant activity. Journal of Food Processing and Preservation, 44(9), e14683.
  • Taniya, M. S., Reshma, M. V., Shanimol, P. S., Krishnan, G., & Priya, S. (2020). Bioactive peptides from amaranth seed protein hydrolysates induced apoptosis and antimigratory effects in breast cancer cells. Food Bioscience, 35, 100588.
  • Tarasevičienė, Ž., Viršilė, A., Danilčenko, H., Duchovskis, P., Paulauskienė, A., & Gajewski, M. (2019). Effects of germination time on the antioxidant properties of edible seeds. CyTA-Journal of Food, 17(1), 447-454.
  • Vora, J. D., Rane, A. G., & Jadhav, P. (2014). Bıochemıcal, Antımıcrobıal And Organoleptıc Studıes On The Germınatıon Profıle Of Fınger Mıllet (Eleusıne Coracana). International Journal of Life Sciences Biotechnology and Pharma Research, 3(4), 123.
  • Yu, Y., Zhou, L., Li, X., Liu, J., Li, H., Gong, L., ... & Sun, B. (2022). The progress of nomenclature, structure, metabolism, and bioactivities of oat novel phytochemical: avenanthramides. Journal of Agricultural and Food Chemistry, 70(2), 446-457.
  • Zhang, G., Xu, Z., Gao, Y., Huang, X., Zou, Y., & Yang, T. (2015). Effects of germination on the nutritional properties, phenolic profiles, and antioxidant activities of buckwheat. Journal of food science, 80(5), H1111-H1119.

THE ROLE AND IMPORTANCE OF GERMINATED GRAIN AND SPROUT PRODUCTS IN NUTRITION

Year 2023, , 333 - 346, 15.04.2023
https://doi.org/10.15237/gida.GD22094

Abstract

In recent years, as a result of consumers changing their food preferences and dietary habits, consumption of organic, gluten-free and fermented foods has increased as well as the consumption of germinated grain and sprout products. It has been revealed that germinated grains are richer in terms of vitamins, minerals, antioxidant properties and various bioactive components, and positive changes are observed not only in chemical properties but also in sensory properties such as flavor, smell and color. However, it is considered as an alternative solution to the problem of malnutrition because it inactivates enzymes that prevent the absorption of germination, macro and micro nutrients. In this review, it is aimed to examine the changes in the nutritional composition and functional effects of some nutrients by germination.

References

  • Al-Ansi, W., Zhang, Y., Alkawry, T. A. A., Al-Adeeb, A., Mahdi, A. A., Al-Maqtari, Q. A., ... & Wang, L. (2022). Influence of germination on bread-making behaviors, functional and shelf-life properties, and overall quality of highland barley bread. LWT, 159, 113200.
  • Aparicio-García, N., Martínez-Villaluenga, C., Frias, J., & Peñas, E. (2021). Sprouted oat as a potential gluten-free ingredient with enhanced nutritional and bioactive properties. Food Chemistry, 338, 127972.
  • Attri, P., Ishikawa, K., Okumura, T., Koga, K., Shiratani, M., & Mildaziene, V. (2021). Impact of seed color and storage time on the radish seed germination and sprout growth in plasma agriculture. Scientific reports, 11(1), 1-10.
  • Atudorei, D., Stroe, S. G., & Codină, G. G. (2021). Impact of germination on the microstructural and physicochemical properties of different legume types. Plants, 10(3), 592.
  • Baenas, N., Gómez-Jodar, I., Moreno, D. A., García-Viguera, C., & Periago, P. M. (2017). Broccoli and radish sprouts are safe and rich in bioactive phytochemicals. Postharvest Biology and Technology, 127, 60-67.
  • Bakhshandeh, E., & Gholamhossieni, M. (2019). Modelling the effects of water stress and temperature on seed germination of radish and cantaloupe. Journal of Plant Growth Regulation, 38(4), 1402-1411.
  • Bangar, S. P., Sandhu, K. S., Trif, M., Manjunatha, V., & Lorenzo, J. M. (2022). Germinated Barley Cultivars: Effect on Physicochemical and Bioactive Properties. Food Analytical Methods, 1-8.
  • Baxter, L. L., Grey, T. L., Tucker, J. J., & Hancock, D. W. (2019). Optimizing temperature requirements for clover seed germination. Agrosystems, Geosciences & Environment, 2(1), 1-7.
  • Beaulieu, J. C., Boue, S. M., & Goufo, P. (2022). Health-promoting germinated rice and value-added foods: a comprehensive and systematic review of germination effects on brown rice. Critical Reviews in Food Science and Nutrition, 1-34.
  • Bhinder, S., Kumari, S., Singh, B., Kaur, A., & Singh, N. (2021). Impact of germination on phenolic composition, antioxidant properties, antinutritional factors, mineral content and Maillard reaction products of malted quinoa flour. Food Chemistry, 346, 128915.
  • Bhinder, S., Singh, N., & Kaur, A. (2022). Impact of germination on nutraceutical, functional and gluten free muffin making properties of Tartary buckwheat (Fagopyrum tataricum). Food Hydrocolloids, 124, 107268.
  • Bouajila, A., Ammar, H., Chahine, M., Khouja, M., Hamdi, Z., Khechini, J., ... & López, S. (2020). Changes in phytase activity, phosphorus and phytate contents during grain germination of barley (Hordeum vulgare L.) cultivars. Agroforestry Systems, 94(4), 1151-1159.
  • Cabrera-Santos, D., Ordoñez-Salanueva, C.A., Sampayo-Maldonado, S., Campos, J. E., Orozco-Segovia, A., & Flores-Ortiz, C. M. (2021). Chia (Salvia hispanica L.) Seed soaking, germination, and fatty acid behavior at different temperatures. Agriculture, 11(6), 498.
  • Chauhan, A., Kumari, N., Saxena, D. C., & Singh, S. (2022). Effect of germination on fatty acid profile, amino acid profile and minerals of amaranth (Amaranthus spp.) grain. Journal of Food Measurement and Characterization, 16(3), 1777-1786.
  • Chiriac, E. R., Chiţescu, C. L., Sandru, C., Geană, E. I., Lupoae, M., Dobre, M., ... & Boscencu, R. (2020b). Comparative study of the bioactive properties and elemental composition of red clover (Trifolium pratense) and alfalfa (Medicago sativa) sprouts during germination. Applied Sciences, 10(20), 7249.
  • Chiriac, E.R., Chiţescu, C.L., Borda, D., Lupoae, M., Gird, C.E., Geana, E.-I., Blaga, G.-V., Boscencu, R (2020a). Comparison of the Polyphenolic Profile of Medicago sativa L. and Trifolium pratense L. Sprouts in Different Germination Stages Using the UHPLC-Q Exactive Hybrid Quadrupole Orbitrap High-Resolution Mass Spectrometry. Molecules 25, 2321.
  • Darwish, A. M., Al‐Jumayi, H. A., & Elhendy, H. A. (2021). Effect of germination on the nutritional profile of quinoa (Cheopodium quinoa Willd.) seeds and its anti‐anemic potential in Sprague–Dawley male albino rats. Cereal Chemistry, 98(2), 315-327.
  • de Abreu Silva, L., Verneque, B. J. F., Mota, A. P. L., & Duarte, C. K. (2021). Chia Seeds (Salvia Hispanica L.) Consumption and Lipid Profile: A Systematic Review and Meta-analysis. Food & Function.
  • Desai, S. D., Desai, D. G., & Kaur, H. (2009). Saponins and their bio-logical activities. Pharma Times, 41(3), 13–16.
  • Di Bella, M. C., Niklas, A., Toscano, S., Picchi, V., Romano, D., Lo Scalzo, R., & Branca, F. (2020). Morphometric characteristics, polyphenols and ascorbic acid variation in Brassica oleracea L. novel foods: Sprouts, microgreens and baby leaves. Agronomy, 10(6), 782.
  • Doblado, R., Frías, J., Vidal-Valverde, C., (2007). Changes in vitamin C content and antioxidant capacity of raw and germinated cowpea (Vigna sinensis var. carilla) seeds induced by high pressure treatment, Food Chemistry, 101,918–923.
  • Domínguez-Arispuro, D. M., Cuevas-Rodríguez, E. O., Milán-Carrillo, J., León-López, L., Gutiérrez-Dorado, R., & Reyes-Moreno, C. (2018). Optimal germination condition impacts on the antioxidant activity and phenolic acids profile in pigmented desi chickpea (Cicer arietinum L.) seeds. Journal of food science and technology, 55(2), 638-647.
  • Duenas, M., Hernandez, T., Estrella, I., & Fernandez, D. (2009). Germination as a process to increase the polyphenol content and antioxidant activity of lupin seeds (Lupinus angustifolius L.). Food chemistry, 117(4), 599-607.
  • Eum, H. L., Park, Y., Yi, T. G., Lee, J. W., Ha, K. S., Choi, I. Y., & Park, N. I. (2020). Effect of germination environment on the biochemical compounds and anti-inflammatory properties of soybean cultivars. PloS one, 15(4), e0232159. FAO (2011). La Quinua: Cultivo milenario para contribuir a la se-guridad alimentaria mundial. Oficina Regional Para America Latina Y El Caribe, FAO, 37, 66. https://doi.org/10.1016/j.jaridenv.2009.03.010F
  • Francis, H., Debs, E., Koubaa, M., Alrayess, Z., Maroun, R. G., & Louka, N. (2022). Sprouts Use as Functional Foods. Optimization of Germination of Wheat (Triticum aestivum L.), Alfalfa (Medicago sativa L.), and Radish (Raphanus sativus L.) Seeds Based on Their Nutritional Content Evolution. Foods, 11(10), 1460.
  • Gan, Ren-You, Wing-Yee Lui, Kao Wu, Chak-Lun Chan, Shu-Hong Dai, Zhong-Quan Sui, and Harold Corke. "Bioactive compounds and bioactivities of germinated edible seeds and sprouts: An updated review." Trends in Food Science & Technology 59 (2017): 1-14.
  • Ghafoor, K., Al Juhaimi, F., Özcan, M. M., Uslu, N., Ahmed, I. A. M., & Babiker, E. E. (2022). The effect of boiling, germination and roasting on bioactive properties, phenolic compounds, fatty acids and minerals of chia seed (Salvia hispanica L.) and oils. International Journal of Gastronomy and Food Science, 27, 100447.
  • Gonçalves, A., Goufo, P., Barros, A., Domínguez‐Perles, R., Trindade, H., Rosa, E. A., ... & Rodrigues, M. (2016). Cowpea (Vigna unguiculata L. Walp), a renewed multipurpose crop for a more sustainable agri‐food system: nutritional advantages and constraints. Journal of the Science of Food and Agriculture, 96(9), 2941-2951.
  • Hosseini, H., & Jafari, S. M. (2020). Introducing nano/microencapsulated bioactive ingredients for extending the shelf-life of food products. Advances in Colloid and Interface Science, 282, 102210.
  • Hsu, C. K., Chiang, B. H., Chen, Y. S., Yang, J. H., & Liu, C. L. (2008). Improving the antioxidant activity of buckwheat (Fagopyrum tataricm Gaertn) sprout with trace element water. Food Chemistry, 108(2), 633-641.
  • Hu, M., Du, X., Liu, G., Zhang, S., Wu, H., & Li, Y. (2022). Germination improves the functional properties of soybean and enhances soymilk quality. International Journal of Food Science & Technology, 57(7), 3892-3902.
  • Ikram, A., Saeed, F., Afzaal, M., Imran, A., Niaz, B., Tufail, T., ... & Anjum, F. M. (2021). Nutritional and end‐use perspectives of sprouted grains: A comprehensive review. Food science & nutrition, 9(8), 4617-4628.
  • Ishikawa, H., Ikazaki, K., & Iseki, K. (2021). Visual observation of cowpea pod elongation to predict nitrogen accumulation in immature seeds. Plant Production Science, 24(2), 224-229.
  • Ispiryan, L., Kuktaite, R., Zannini, E., & Arendt, E. K. (2021). Fundamental study on changes in the FODMAP profile of cereals, pseudo-cereals, and pulses during the malting process. Food Chemistry, 343, 128549.
  • James, S., Nwabueze, T. U., Ndife, J., Onwuka, G. I., & Usman, M. A. A. (2020). Influence of fermentation and germination on some bioactive components of selected lesser legumes indigenous to Nigeria. Journal of Agriculture and Food Research, 2, 100086.
  • Janicki, B., Kupcewicz, B., Napierała, A., & Mądzielewska, A. (2005). Effect of temperature and light (UV, IR) on flavonol content in radish and alfalfa sprouts. Folia biologica (Kraków), 53(4), 121-125.
  • Jin, J., Ohanenye, I. C., & Udenigwe, C. C. (2022). Buckwheat proteins: Functionality, safety, bioactivity, and prospects as alternative plant-based proteins in the food industry. Critical Reviews in Food Science and Nutrition, 62(7), 1752-1764.
  • Karaman, E. E., & Soylu, A. G. Gastronomi Ve Mutfak Sanatları Doktora Öğrencilerinin Çiğ Beslenme (Raw Food) Algılarının Belirlenmesine Yönelik Bir Araştırma. Gastroia: Journal of Gastronomy And Travel Research, 4(2), 251-269.
  • Kaur, R., & Prasad, K. (2022). Elucidation of chickpea hydration, effect of soaking temperature, and extent of germination on characteristics of malted flour. Journal of Food Science, 87(5), 2197-2210.
  • Khan, M. K., Karnpanit, W., Nasar‐Abbas, S. M., Huma, Z. E., & Jayasena, V. (2018). Development of a fermented product with higher phenolic compounds and lower anti‐nutritional factors from germinated lupin (Lupinus angustifolius L.). Journal of Food Processing and Preservation, 42(12), e13843.
  • Khang, D. T., Vasiljevic, T., & Xuan, T. D. (2016). Bioactive compounds, antioxidant and enzyme activities in germination of oats (Avena sativa L.). International Food Research Journal, 23(5), 1980.
  • Khattak, A. B., A. Zeb, N. Bibi, S. A. Khalil, and M. S. Khattak. (2007). Influence of germination techniques on phytic acid and polyphenols content of chickpea (Cicer arietinum L.) sprouts. Food Chemistry, 104 (3):1074–1079.
  • Khattak, A. B., Zeb, A., & Bibi, N. (2008). Impact of germination time and type of illumination on carotenoidcontent, protein solubility and in vitro protein digestibility of chickpea (Cicer arietinum L.) sprouts. Food chemistry, 109(4), 797-801 Kılınçer, F. N., & Demir, M. K. (2019). Çimlendirilmiş Bazı Tahıl Ve Baklagillerin Fiziksel Ve Kimyasal Özellikleri. Gıda, 44(3), 419-429.
  • Hao, J., Li, J., & Zhao, D. (2021). Effect of slightly acidic electrolysed water on functional components, antioxidant and α‐glucosidase inhibitory ability of buckwheat sprouts. International Journal of Food Science & Technology, 56(7), 3463-3473.
  • Koyama, M., Nakamura, C., & Nakamura, K. (2013). Changes in phenols contents from buckwheat sprouts during growth stage. Journal of Food Science and Technology, 50(1), 86-93.
  • Krishna, H., Janakiram, T., Singh, M. K., Karuppaiah, V., Yadava, R. B., Prasad, R. N., ... & Behera, T. K. (2022). Immunomodulatory potential of vegetables vis-à-vis human health. The Journal of Horticultural Science and Biotechnology, 1-20. Kumar, S., & Pandey, G. (2020). Biofortification of pulses and legumes to enhance nutrition. Heliyon, 6(3), e03682.
  • Landfeld, A., Novotna, P., Strohalm, J., Rysova, J., & Houška, M. (2014). Yield stress and sensorial evaluation of soya yoghurts prepared from germinated soybeans. Czech Journal of Food Sciences, 32(5), 464-469.
  • Lee, S. J., Ahn, J. K., Khanh, T. D., Chun, S. C., Kim, S. L., Ro, H. M., ... & Chung, I. M. (2007). Comparison of isoflavone concentrations in soybean (Glycine max (L.) Merrill) sprouts grown under two different light conditions. Journal of agricultural and food chemistry, 55(23), 9415-9421.
  • Li, X., Liu, J., Chang, Q., Zhou, Z., Han, R., & Liang, Z. (2021). Antioxidant and antidiabetic activity of proanthocyanidins from Fagopyrum dibotrys. Molecules, 26(9), 2417.
  • López-Martínez, L. X., Leyva-López, N., Gutiérrez-Grijalva, E. P., & Heredia, J. B. (2017). Effect of cooking and germination on bioactive compounds in pulses and their health benefits. Journal of Functional Foods, 38, 624-634.
  • Mastropasqua, L., Dipierro, N., & Paciolla, C. (2020). Effects of darkness and light spectra on nutrients and pigments in radish, soybean, mung bean and pumpkin sprouts. Antioxidants, 9(6), 558.
  • Mattioli, S., Dal Bosco, A., Martino, M., Ruggeri, S., Marconi, O., Sileoni, V., ... & Benincasa, P. (2016). Alfalfa and flax sprouts supplementation enriches the content of bioactive compounds and lowers the cholesterol in hen egg. Journal of Functional Foods, 22, 454-462.
  • Muleke, E. M. M., Yan, W. A. N. G., Zhang, W. T., Liang, X. U., Yıng, J. L., Karanja, B. K., ... & LIU, L. W. (2021). Genome-wide identification and expression profiling of MYB transcription factor genes in radish (Raphanus sativus L.). Journal of Integrative Agriculture, 20(1), 120-131.
  • Murugkar, D. A. (2014). Effect of sprouting of soybean on the chemical composition and quality of soymilk and tofu. Journal of food science and technology, 51(5), 915-921.
  • OM, A., Kiin-Kabari, D. B., & Isah, E. M. (2020). Effects of Processing Methods on In-Vitro Protein Digestibility of Cookies Produced from Sesame Seed Flour Blends.
  • Otondi, E. A., Nduko, J. M., & Omwamba, M. (2020). Physico-chemical properties of extruded cassava-chia seed instant flour. Journal of Agriculture and Food Research, 2, 100058.
  • Pal, R. S., Bhartiya, A., Yadav, P., Kant, L., Mishra, K. K., Aditya, J. P., & Pattanayak, A. (2017). Effect of dehulling, germination and cooking on nutrients, anti-nutrients, fatty acid composition and antioxidant properties in lentil (Lens culinaris). Journal of food science and technology, 54(4), 909-920.
  • Pérez-Balibrea, S., Moreno, D. A., & García-Viguera, C. (2011). Genotypic effects on the phytochemical quality of seeds and sprouts from commercial broccoli cultivars. Food Chemistry, 125(2), 348-354.
  • Plaza, L., de Ancos, B., & Cano, P. M. (2003). Nutritional and health-related compounds in sprouts and seeds of soybean (Glycine max), wheat (Triticum aestivum. L) and alfalfa (Medicago sativa) treated by a new drying method. European Food Research and Technology, 216(2), 138-144.
  • Raza, H., Zaaboul, F., Shoaib, M., & Zhang, L. (2019). An overview of physicochemical composition and methods used for chickpeas processing. International Journal of Agriculture Innovations and Research, 7(5), 495-500.
  • Rico, D., Peñas, E., del Carmen García, M., Rai, D. K., Martínez-Villaluenga, C., Frias, J., & Martín-Diana, A. B. (2021). Development of Antioxidant and Nutritious Lentil (Lens culinaris) Flour Using Controlled Optimized Germination as a Bioprocess. Foods, 10(12), 2924.
  • Saleh, H. M., Hassan, A. A., Mansour, E. H., Fahmy, H. A., & El-Bedawey, A. E. F. A. (2019). Melatonin, phenolics content and antioxidant activity of germinated selected legumes and their fractions. Journal of the Saudi Society of Agricultural Sciences, 18(3), 294-301.
  • Sandoval-Sicairos, E. S., Domínguez-Rodríguez, M., Montoya-Rodríguez, A., Milán-Noris, A. K., Reyes-Moreno, C., & Milán-Carrillo, J. (2020). Phytochemical compounds and antioxidant activity modified by germination and hydrolysis in mexican Amaranth. Plant Foods for Human Nutrition, 75(2), 192-199.
  • Sandoval-Sicairos, E. S., Milán-Noris, A. K., Luna-Vital, D. A., Milán-Carrillo, J., & Montoya-Rodríguez, A. (2021). Anti-inflammatory and antioxidant effects of peptides released from germinated amaranth during in vitro simulated gastrointestinal digestion. Food Chemistry, 343, 128394.
  • Singla, P., Sharma, S., & Singh, A. (2021). Lupine: A Versatile Legume with Enhanced Nutritional Value. In Handbook of Cereals, Pulses, Roots, and Tubers (pp. 427-448). CRC Press.
  • Tang, S., Mao, G., Yuan, Y., Weng, Y., Zhu, R., Cai, C., & Mao, J. (2020). Optimization of oat seed steeping and germination temperatures to maximize nutrient content and antioxidant activity. Journal of Food Processing and Preservation, 44(9), e14683.
  • Taniya, M. S., Reshma, M. V., Shanimol, P. S., Krishnan, G., & Priya, S. (2020). Bioactive peptides from amaranth seed protein hydrolysates induced apoptosis and antimigratory effects in breast cancer cells. Food Bioscience, 35, 100588.
  • Tarasevičienė, Ž., Viršilė, A., Danilčenko, H., Duchovskis, P., Paulauskienė, A., & Gajewski, M. (2019). Effects of germination time on the antioxidant properties of edible seeds. CyTA-Journal of Food, 17(1), 447-454.
  • Vora, J. D., Rane, A. G., & Jadhav, P. (2014). Bıochemıcal, Antımıcrobıal And Organoleptıc Studıes On The Germınatıon Profıle Of Fınger Mıllet (Eleusıne Coracana). International Journal of Life Sciences Biotechnology and Pharma Research, 3(4), 123.
  • Yu, Y., Zhou, L., Li, X., Liu, J., Li, H., Gong, L., ... & Sun, B. (2022). The progress of nomenclature, structure, metabolism, and bioactivities of oat novel phytochemical: avenanthramides. Journal of Agricultural and Food Chemistry, 70(2), 446-457.
  • Zhang, G., Xu, Z., Gao, Y., Huang, X., Zou, Y., & Yang, T. (2015). Effects of germination on the nutritional properties, phenolic profiles, and antioxidant activities of buckwheat. Journal of food science, 80(5), H1111-H1119.
There are 71 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Articles
Authors

Ayşenur Kahve 0000-0001-6960-7204

Ebru Bayrak 0000-0001-7279-3255

Publication Date April 15, 2023
Published in Issue Year 2023

Cite

APA Kahve, A., & Bayrak, E. (2023). ÇİMLENDİRİLEN TANE VE FİLİZ ÜRÜNLERİN BESLENMEDEKİ ROLÜ VE ÖNEMİ. Gıda, 48(2), 333-346. https://doi.org/10.15237/gida.GD22094
AMA Kahve A, Bayrak E. ÇİMLENDİRİLEN TANE VE FİLİZ ÜRÜNLERİN BESLENMEDEKİ ROLÜ VE ÖNEMİ. GIDA. April 2023;48(2):333-346. doi:10.15237/gida.GD22094
Chicago Kahve, Ayşenur, and Ebru Bayrak. “ÇİMLENDİRİLEN TANE VE FİLİZ ÜRÜNLERİN BESLENMEDEKİ ROLÜ VE ÖNEMİ”. Gıda 48, no. 2 (April 2023): 333-46. https://doi.org/10.15237/gida.GD22094.
EndNote Kahve A, Bayrak E (April 1, 2023) ÇİMLENDİRİLEN TANE VE FİLİZ ÜRÜNLERİN BESLENMEDEKİ ROLÜ VE ÖNEMİ. Gıda 48 2 333–346.
IEEE A. Kahve and E. Bayrak, “ÇİMLENDİRİLEN TANE VE FİLİZ ÜRÜNLERİN BESLENMEDEKİ ROLÜ VE ÖNEMİ”, GIDA, vol. 48, no. 2, pp. 333–346, 2023, doi: 10.15237/gida.GD22094.
ISNAD Kahve, Ayşenur - Bayrak, Ebru. “ÇİMLENDİRİLEN TANE VE FİLİZ ÜRÜNLERİN BESLENMEDEKİ ROLÜ VE ÖNEMİ”. Gıda 48/2 (April 2023), 333-346. https://doi.org/10.15237/gida.GD22094.
JAMA Kahve A, Bayrak E. ÇİMLENDİRİLEN TANE VE FİLİZ ÜRÜNLERİN BESLENMEDEKİ ROLÜ VE ÖNEMİ. GIDA. 2023;48:333–346.
MLA Kahve, Ayşenur and Ebru Bayrak. “ÇİMLENDİRİLEN TANE VE FİLİZ ÜRÜNLERİN BESLENMEDEKİ ROLÜ VE ÖNEMİ”. Gıda, vol. 48, no. 2, 2023, pp. 333-46, doi:10.15237/gida.GD22094.
Vancouver Kahve A, Bayrak E. ÇİMLENDİRİLEN TANE VE FİLİZ ÜRÜNLERİN BESLENMEDEKİ ROLÜ VE ÖNEMİ. GIDA. 2023;48(2):333-46.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/