Research Article
BibTex RIS Cite

KAFEİN MOLEKÜLÜNÜN MÜSİN PROTEİNİ İLE OLAN ETKİLEŞİMİNİN FLORESAN SPEKTROSKOPİ TEKNİĞİ İLE ARAŞTIRILMASI

Year 2023, , 50 - 60, 15.02.2023
https://doi.org/10.15237/gida.GD22120

Abstract

Uyanık kalmaya ve yorgunluğun başlamasını önlemeye yardımcı olduğundan, kafein içerikli gıdalar dünya çapında sıklıkla kullanılmaktadır. Bu sebeple hem gıda hem de farmasötik amaçlı kafein kullanımına yönelik araştırmalar son yıllarda artmıştır, fakat yaygın olarak oral yolla alınan kafeinin gastrointestinal sistem boyunca ona eşlik eden salyadaki müsin proteini ile olan etkileşimi hakkında bir araştırma bulunmamaktadır. Bu çalışmamızda kafein ve müsin molekülleri arasındaki etkileşim floresan spektroskopi tekniği kullanılarak araştırılmıştır. Deneysel sonuçlar kafein moleküllerinin müsin proteininin floroforları üzerine söndürme etkisi olduğunu göstermiştir. Bu etki hem ağız/bağırsak ortamına yakın pH 7 hem de mide ortamına yakın pH 3 değerlerinde, her kafein molekülü bir protein molekülü ile etkileşime girmesi ve bu etkileşimin statik floresan söndürme mekanizmasının çalışmasına sebep olmasıyla gerçekleşmektedir. Kafein ve müsin etkileşiminin kafein konsantrasyonu arttıkça, özellikle de mide ortamında, hızla arttığını gösteren bu çalışmamız, kafeinin sindirim ve biyoyararlılık çalışmalarına temel oluşturabilecektir.

Supporting Institution

TÜBİTAK 2209/A Üniversite Öğrencileri Araştırma Projeleri Destek Programı

Project Number

14033406326

Thanks

Bu araştırmayı finanse ettiklerinden dolayı TÜBİTAK 2209/A Üniversite Öğrencileri Araştırma Projeleri Destek Programı’na teşekkür ederiz.

References

  • Alsabri, S. G., Mari, W. O., Younes, S., Elsadawi, M. A., Oroszi, T. L. (2018). Kinetic and dynamic description of caffeine. Journal of Caffeine and Adenosine Research, 8(1), 3-9.
  • Bansil, R., Turner, B. S. (2006). Mucin structure, aggregation, physiological functions and biomedical applications. Current opinion in colloid & interface science, 11(2-3), 164-170.
  • Bian, W., Wei, Y. L., Wang, Y. P., Dong, C. (2006). Study on interaction of caffeine and theophylline with bovine serum albumins. Guang pu xue yu Guang pu fen xi= Guang pu, 26(3), 505-508.
  • Brandão, E., Silva, M. S., García-Estévez, I., Mateus, N., de Freitas, V., Soares, S. (2017). Molecular study of mucin-procyanidin interaction by fluorescence quenching and Saturation Transfer Difference (STD)-NMR. Food chemistry, 228, 427-434.
  • Çelebioğlu, H. Y., Gudjónsdóttir, M., Meier, S., Duus, J. Ø., Lee, S., Chronakis, I. S. (2015). Spectroscopic studies of the interactions between β-lactoglobulin and bovine submaxillary mucin. Food Hydrocolloids, 50, 203-210.
  • Çelebioğlu, H. Y., Lee, S., Chronakis, I. S. (2020). Interactions of salivary mucins and saliva with food proteins: A review. Critical reviews in food science and nutrition, 60(1), 64-83.
  • Giraddi, T. P., Kadadevarmath, J. S., Malimath, G. H., Chikkur, G. C. (1996). Effect of solvent on the fluorescence quenching of organic liquid scintillators by aniline and carbon tetrachloride. Applied radiation and isotopes, 47(4), 461-466.
  • Grosso, G., Godos, J., Galvano, F., Giovannucci, E. L. (2017). Coffee, caffeine, and health outcomes: An umbrella. Annual Review of Nutrition, 37, 131-156.
  • Hamada, E., Nakajima, T., Hata, Y., Hazama, H., Iwasawa, K., Takahashi, M., ... Omata, M. (1997). Effect of caffeine on mucus secretion and agonist-dependent Ca2+ mobilization in human gastric mucus secreting cells. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1356(2), 198-206.
  • Islam, M. M., Sonu, V. K., Gashnga, P. M., Moyon, N. S., Mitra, S. (2016). Caffeine and sulfadiazine interact differently with human serum albumin: A combined fluorescence and molecular docking study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 152, 23-33.
  • Lakowicz, J. R. (1999). Instrumentation for fluorescence spectroscopy. In Principles of fluorescence spectroscopy (pp. 25-61). Springer, Boston, MA.
  • Lakowicz, J.R. (2006). Principles of Fluorescence Spectroscopy; 3rd ed.; Springer: Baltimore, Maryland; ISBN 978-0-387-46312-4.
  • Lisko, J. G., Lee, G. E., Kimbrell, J. B., Rybak, M. E., Valentin-Blasini, L., Watson, C. H. (2017). Caffeine concentrations in coffee, tea, chocolate, and energy drink flavored e-liquids. Nicotine & Tobacco Research, 19(4), 484-492.
  • Madsen, J. B., Sotres, J., Pakkanen, K. I., Efler, P., Svensson, B., Abou Hachem, M., ... Lee, S. (2016). Structural and mechanical properties of thin films of bovine submaxillary mucin versus porcine gastric mucin on a hydrophobic surface in aqueous solutions. Langmuir, 32(38), 9687-9696.
  • Mensi, A., Choiset, Y., Rabesona, H., Haertlé, T., Borel, P., Chobert, J. M. (2013). Interactions of β-lactoglobulin variants A and B with vitamin A. Competitive binding of retinoids and carotenoids. Journal of agricultural and food chemistry, 61(17), 4114-4119.
  • Moco, S., Martin, F. P. J., Rezzi, S. (2012). Metabolomics view on gut microbiome modulation by polyphenol-rich foods. Journal of proteome research, 11(10), 4781-4790.
  • Pan, M. H., Tung, Y. C., Yang, G., Li, S., Ho, C. T. (2016). Molecular mechanisms of the anti-obesity effect of bioactive compounds in tea and coffee. Food & function, 7(11), 4481-4491.
  • Papadopoulou, A., Green, R. J., Frazier, R. A. (2005). Interaction of flavonoids with bovine serum albumin: a fluorescence quenching study. Journal of agricultural and food chemistry, 53(1), 158-163.
  • Svensson, O., Arnebrant, T. (2010). Mucin layers and multilayers—Physicochemical properties and applications. Current Opinion in Colloid & Interface Science, 15(6), 395-405.
  • Wang, Y. Q., Zhang, H. M., Zhou, Q. H. (2009). Studies on the interaction of caffeine with bovine hemoglobin. European journal of medicinal chemistry, 44(5), 2100-2105.
  • Yılmaz, H., Lee, S., Chronakis, I. S. (2021). Interactions of β-Lactoglobulin with Bovine Submaxillary Mucin vs. Porcine Gastric Mucin: The Role of Hydrophobic and Hydrophilic Residues as Studied by Fluorescence Spectroscopy. Molecules, 26(22), 6799.

INVESTIGATION OF THE INTERACTION BETWEEN CAFFEINE MOLECULE AND MUSIN PROTEIN BY FLUORESCENCE SPECTROSCOPY TECHNIQUE

Year 2023, , 50 - 60, 15.02.2023
https://doi.org/10.15237/gida.GD22120

Abstract

Caffeine-containing foods are frequently used around the world, as it helps to stay awake and prevent the onset of fatigue. Therefore, research on the use of caffeine as a food or pharmaceutical purposes has increased in recent years. However, there is no research for the interaction of caffeine with the mucin protein in saliva that accompanies the orally ingested molecules throughout the gastrointestinal tract. In this study, the interaction between caffeine and mucin was investigated using fluorescence spectroscopy technique. Experimental results showed that caffeine molecules have a quenching effect on the fluorophores of mucin protein. This effect occurs when each caffeine molecule interacts with one protein molecule via the static fluorescence quenching mechanism. Moreover, the interaction of caffeine and mucin was enhanced as the caffeine concentration increases, especially in the stomach environment. After all, this study may provide a good basis for the digestion and bioavailability studies of caffeine.

Project Number

14033406326

References

  • Alsabri, S. G., Mari, W. O., Younes, S., Elsadawi, M. A., Oroszi, T. L. (2018). Kinetic and dynamic description of caffeine. Journal of Caffeine and Adenosine Research, 8(1), 3-9.
  • Bansil, R., Turner, B. S. (2006). Mucin structure, aggregation, physiological functions and biomedical applications. Current opinion in colloid & interface science, 11(2-3), 164-170.
  • Bian, W., Wei, Y. L., Wang, Y. P., Dong, C. (2006). Study on interaction of caffeine and theophylline with bovine serum albumins. Guang pu xue yu Guang pu fen xi= Guang pu, 26(3), 505-508.
  • Brandão, E., Silva, M. S., García-Estévez, I., Mateus, N., de Freitas, V., Soares, S. (2017). Molecular study of mucin-procyanidin interaction by fluorescence quenching and Saturation Transfer Difference (STD)-NMR. Food chemistry, 228, 427-434.
  • Çelebioğlu, H. Y., Gudjónsdóttir, M., Meier, S., Duus, J. Ø., Lee, S., Chronakis, I. S. (2015). Spectroscopic studies of the interactions between β-lactoglobulin and bovine submaxillary mucin. Food Hydrocolloids, 50, 203-210.
  • Çelebioğlu, H. Y., Lee, S., Chronakis, I. S. (2020). Interactions of salivary mucins and saliva with food proteins: A review. Critical reviews in food science and nutrition, 60(1), 64-83.
  • Giraddi, T. P., Kadadevarmath, J. S., Malimath, G. H., Chikkur, G. C. (1996). Effect of solvent on the fluorescence quenching of organic liquid scintillators by aniline and carbon tetrachloride. Applied radiation and isotopes, 47(4), 461-466.
  • Grosso, G., Godos, J., Galvano, F., Giovannucci, E. L. (2017). Coffee, caffeine, and health outcomes: An umbrella. Annual Review of Nutrition, 37, 131-156.
  • Hamada, E., Nakajima, T., Hata, Y., Hazama, H., Iwasawa, K., Takahashi, M., ... Omata, M. (1997). Effect of caffeine on mucus secretion and agonist-dependent Ca2+ mobilization in human gastric mucus secreting cells. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1356(2), 198-206.
  • Islam, M. M., Sonu, V. K., Gashnga, P. M., Moyon, N. S., Mitra, S. (2016). Caffeine and sulfadiazine interact differently with human serum albumin: A combined fluorescence and molecular docking study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 152, 23-33.
  • Lakowicz, J. R. (1999). Instrumentation for fluorescence spectroscopy. In Principles of fluorescence spectroscopy (pp. 25-61). Springer, Boston, MA.
  • Lakowicz, J.R. (2006). Principles of Fluorescence Spectroscopy; 3rd ed.; Springer: Baltimore, Maryland; ISBN 978-0-387-46312-4.
  • Lisko, J. G., Lee, G. E., Kimbrell, J. B., Rybak, M. E., Valentin-Blasini, L., Watson, C. H. (2017). Caffeine concentrations in coffee, tea, chocolate, and energy drink flavored e-liquids. Nicotine & Tobacco Research, 19(4), 484-492.
  • Madsen, J. B., Sotres, J., Pakkanen, K. I., Efler, P., Svensson, B., Abou Hachem, M., ... Lee, S. (2016). Structural and mechanical properties of thin films of bovine submaxillary mucin versus porcine gastric mucin on a hydrophobic surface in aqueous solutions. Langmuir, 32(38), 9687-9696.
  • Mensi, A., Choiset, Y., Rabesona, H., Haertlé, T., Borel, P., Chobert, J. M. (2013). Interactions of β-lactoglobulin variants A and B with vitamin A. Competitive binding of retinoids and carotenoids. Journal of agricultural and food chemistry, 61(17), 4114-4119.
  • Moco, S., Martin, F. P. J., Rezzi, S. (2012). Metabolomics view on gut microbiome modulation by polyphenol-rich foods. Journal of proteome research, 11(10), 4781-4790.
  • Pan, M. H., Tung, Y. C., Yang, G., Li, S., Ho, C. T. (2016). Molecular mechanisms of the anti-obesity effect of bioactive compounds in tea and coffee. Food & function, 7(11), 4481-4491.
  • Papadopoulou, A., Green, R. J., Frazier, R. A. (2005). Interaction of flavonoids with bovine serum albumin: a fluorescence quenching study. Journal of agricultural and food chemistry, 53(1), 158-163.
  • Svensson, O., Arnebrant, T. (2010). Mucin layers and multilayers—Physicochemical properties and applications. Current Opinion in Colloid & Interface Science, 15(6), 395-405.
  • Wang, Y. Q., Zhang, H. M., Zhou, Q. H. (2009). Studies on the interaction of caffeine with bovine hemoglobin. European journal of medicinal chemistry, 44(5), 2100-2105.
  • Yılmaz, H., Lee, S., Chronakis, I. S. (2021). Interactions of β-Lactoglobulin with Bovine Submaxillary Mucin vs. Porcine Gastric Mucin: The Role of Hydrophobic and Hydrophilic Residues as Studied by Fluorescence Spectroscopy. Molecules, 26(22), 6799.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Articles
Authors

Hilal Yılmaz 0000-0002-0399-355X

Arslan Recep Şahin This is me 0000-0001-5593-6795

Project Number 14033406326
Publication Date February 15, 2023
Published in Issue Year 2023

Cite

APA Yılmaz, H., & Şahin, A. R. (2023). KAFEİN MOLEKÜLÜNÜN MÜSİN PROTEİNİ İLE OLAN ETKİLEŞİMİNİN FLORESAN SPEKTROSKOPİ TEKNİĞİ İLE ARAŞTIRILMASI. Gıda, 48(1), 50-60. https://doi.org/10.15237/gida.GD22120
AMA Yılmaz H, Şahin AR. KAFEİN MOLEKÜLÜNÜN MÜSİN PROTEİNİ İLE OLAN ETKİLEŞİMİNİN FLORESAN SPEKTROSKOPİ TEKNİĞİ İLE ARAŞTIRILMASI. GIDA. February 2023;48(1):50-60. doi:10.15237/gida.GD22120
Chicago Yılmaz, Hilal, and Arslan Recep Şahin. “KAFEİN MOLEKÜLÜNÜN MÜSİN PROTEİNİ İLE OLAN ETKİLEŞİMİNİN FLORESAN SPEKTROSKOPİ TEKNİĞİ İLE ARAŞTIRILMASI”. Gıda 48, no. 1 (February 2023): 50-60. https://doi.org/10.15237/gida.GD22120.
EndNote Yılmaz H, Şahin AR (February 1, 2023) KAFEİN MOLEKÜLÜNÜN MÜSİN PROTEİNİ İLE OLAN ETKİLEŞİMİNİN FLORESAN SPEKTROSKOPİ TEKNİĞİ İLE ARAŞTIRILMASI. Gıda 48 1 50–60.
IEEE H. Yılmaz and A. R. Şahin, “KAFEİN MOLEKÜLÜNÜN MÜSİN PROTEİNİ İLE OLAN ETKİLEŞİMİNİN FLORESAN SPEKTROSKOPİ TEKNİĞİ İLE ARAŞTIRILMASI”, GIDA, vol. 48, no. 1, pp. 50–60, 2023, doi: 10.15237/gida.GD22120.
ISNAD Yılmaz, Hilal - Şahin, Arslan Recep. “KAFEİN MOLEKÜLÜNÜN MÜSİN PROTEİNİ İLE OLAN ETKİLEŞİMİNİN FLORESAN SPEKTROSKOPİ TEKNİĞİ İLE ARAŞTIRILMASI”. Gıda 48/1 (February 2023), 50-60. https://doi.org/10.15237/gida.GD22120.
JAMA Yılmaz H, Şahin AR. KAFEİN MOLEKÜLÜNÜN MÜSİN PROTEİNİ İLE OLAN ETKİLEŞİMİNİN FLORESAN SPEKTROSKOPİ TEKNİĞİ İLE ARAŞTIRILMASI. GIDA. 2023;48:50–60.
MLA Yılmaz, Hilal and Arslan Recep Şahin. “KAFEİN MOLEKÜLÜNÜN MÜSİN PROTEİNİ İLE OLAN ETKİLEŞİMİNİN FLORESAN SPEKTROSKOPİ TEKNİĞİ İLE ARAŞTIRILMASI”. Gıda, vol. 48, no. 1, 2023, pp. 50-60, doi:10.15237/gida.GD22120.
Vancouver Yılmaz H, Şahin AR. KAFEİN MOLEKÜLÜNÜN MÜSİN PROTEİNİ İLE OLAN ETKİLEŞİMİNİN FLORESAN SPEKTROSKOPİ TEKNİĞİ İLE ARAŞTIRILMASI. GIDA. 2023;48(1):50-6.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/