BibTex RIS Cite

TAHILLARDA ARABİNOKSİLANLAR

Year 2015, Volume: 40 Issue: 6, 357 - 362, 01.12.2015

Abstract

Arabinoksilanlar tahılların aleuron ve endosperm hücre duvarlarının majör nişasta içermeyenpolisakkaritleridir. Onlar tahıl tanelerinde diyet lifinin ana bileşenleridirler ve suda-çözünebilenarabinoksilanlar ve suda-çözünmeyen arabinoksilanlar olmak üzere iki gruba ayrılırlar. Suda-çözünebilirarabinoksilanlar solüsyonlarda viskoz yapı oluşturabilme kabiliyetlerinin yanı sıra oksidatif ajanlarlamuamele edildiklerinde jel oluşturabilme kapasiteleri de mevcuttur. Onlar yüksek düzeydeki su bağlamakapasiteleriyle ekmek yapım kalitesi, nişasta retrogradasyonu ve hamur reolojik özelliklerinde önemlirol oynarlar. Ayrıca arabinoksilanlar gastrointestinal sistemdeki mikroorganizmalar için prebiyotik olarakgörev yaparlar

References

  • Izydorczyk MS, Biliaderi CG. 1995. Cereal arabinoxylans: Advances in structure and physicochemical properties. Carbohydr Polym, 28, 33-48.
  • Vries DJW, Prosky L, Li B, Cho S. 1999. A historical perspective on defining dietary fiber. Cereal Foods World, 44, 367-369.
  • Saeed F, Pasha I, Anjum FM, Sultan MT. 2011. Arabinoxylans and Arabinogalactans: A comprehensive treatise. Crit Rev Food Sci Nutr, 51(5), 467-476.
  • Mendis M, and Simsek S. 2014. Arabinoxylans and human health. Food Hydrocoll, 42, 239-243.
  • Buksa K, Zioboro R, Nowotna A, Adamczyk G, Sikora M, Zylewski M. 2014. Water binding capacity of rye flours with the addition of native and modified arabinoxylan preparations. J Agric Sci Technol, 16, 1083-1095.
  • Reanappa SB, Salimath NPV. 2015. Structural variations of arabinoxylans extracted from different wheat (Triticum aestivum) cultivars in relation to chapati-quality. Food Hydrocoll, 43, 736-742.
  • Ying R, Saulnier L, Rondeau-Mouro C. 2011. Films of arabinoxylans and β-glucans extracted from cereal grains: Molecular motions by TD-NMR. Carbohydr Polym, 86, 812-822.
  • Revanappa SB, Nandini CD, Salimath PV. 2015. Structural variations of arabinoxylans extracted from different wheat (Triticum aestivum) cultivars in relation to chapatti-quality. Food Hydrocoll, 43, 736-742.
  • Ayala-Soto F, Serna- Saldívar SO, Pérez-Carrillo E, García-Lara S. 2014. Relationship between hydroxycinnamic profile with gelation capacity and rheological properties of arabinoxylans extracted from different maize fiber sources. Food Hydrocoll, 39, 280-285.
  • Fincher GB, Stone BA. 1986. Cell walls and their components in cereal grain technology. Advances Cereal Chem, 8, 207-295.
  • Stone B, Morell M. K. 2009. Carbohydrates. In K. Khan, and P. R. Shewry (Eds.), Wheat chemistry and technology (4th ed.). (pp. 299-362) Minnesota: AACC International.
  • Zhou S, Liu X, Guo Y, Wang Q, Peng D, Cao L. 2010. Comparison of the immunological activities of arabinoxylans from wheat bran with alkali and xylanaseaided extraction. Carbohydr Polym, 81(4), 784-789.
  • Broekaert WF, Courtin CM, Verbeke K, Van de Wiele T, Verstraete W, Delcour JA. 2011. Prebiotic and other health-related effects of cereal-derived arabinoxylans, arabinoxylan-oligosaccharides, and xylooligosaccharides. Crit Rev Food Sci Nutr, 51(2), 178-194.
  • Basic A, Stone BA. 1980. A (1-3)- and (1→4)- Linked β-d-glucan the endosperm cell walls of wheat. Carbohydr Res, 82, 372-377.
  • Pastell H, Virkki L, Harju E, Tuomainen P, Tenkanen M. 2009. Presence of 1→3-linked 2-O-β-D-xylopyranosyl-α-L-arabinofuranosyl side chains in cereal arabinoxylans. Carbohydr Res, 344, 2480-2488.
  • Saulnier, L., Robert, P., Grintchenko, M., Jamme, F., Bouchet, B., Guillon, F. 2009. Wheat endosperm cell walls: spatial heterogeneity of polysaccharide structure and composition using micro-scale enzymatic fingerprinting and FT-IR microspectroscopy. J Cereal Sci, 50, 312-317.
  • Li W, Zhang S, Smith C. 2015. The molecular structure features-immune stimulatory activity of arabinoxylans derived from the pentosan faction of wheat flour. J Cereal Sci, 62, 81-85.
  • Foschia M, Peressini D, Sensidoni A, Brennan CS. 2013. The effects of dietary fibre addition on the quality of common cereal products. J Cereal Sci, 58, 216-227.
  • Manu B T, Prasada Rao, UJS. 2008. Influence of size distribution of proteins, thiol and disulfide content in whole wheat flour on rheological and chapati texture of Indian wheat varieties. Food Chem, 110, 88-95.
  • Courtin CM, Delcour JA. 2002. Arabinoxylans and endoxylanases in wheat flour bread-making. J Cereal Sci, 35, 225-243.
  • Wang J, Smits E, Boom RM, Schutyse MAI. 2015. Arabinoxylans concentrates from wheat bran by electrostatic separation. J Food Eng, 155, 29-36.
  • Cao L, Liu X, Qian T, Sun G, Guo Y, Chang F, Zhou S, Sun X. 2011. Antitumor and immunomodulatory activity of arabinoxylans: a major constituent of wheat bran. Int J Biol Macromol, 48 (1), 160-164.
  • Lu ZX, Gibson PR, Muir JG, Fielding M, O’Dea K. 2000. Arabinoxylan fiber from a by-product of wheat flour processing behaves physiologically like a soluble, fermentable fiber in the large bowel of rats. J Nutr, 130, 1984-1990. 24. Ring SR, Selvendran RR. 1980. Isolation and analysis of cell wall material from beeswing wheat bran (Triticum aestivum). Phytochemistry, 19, 1723-1730.
  • Hübner F, Elke K, Arendt EK. 2013. Germination of cereal grains as a way to improve the nutritional value: A review. Crit Rev Food Sci Nutr, 53(8), 853-861.
  • Kale MS, Yadav Mp, Hicks KB, Hanah K. 2015. Concentration and shear rate dependence of solution viscosity for arabinoxylans from different sources. Food Hydrocoll, 47, 178-183.
  • Hemalatha MS, Manohar RS, Salimath PV, Prasad Rao UJS. 2013. Effect of added arabinoxylans isolated from good and poor chapati making wheat varieties on rheological properties of dough and chapati making quality. Food and Nutr Sci, 4, 884-892.
  • Saeed F, Pasha I, Anjum FM, Sultan JI. 2011. Water-extractable arabinoxylan content in milling fractions of spring wheats. CyTA - J Food, 9, No. 1, May 2011, 43-48.
  • Jelaca SL, Hlynca I. 1972. Effect of wheat-flour pentosans in dough, gluten and bread. Cereal Chem, 49, 489-495.
  • Vinkx CJ, Delcour JA. 1996. Rye (Secale cereale L.) arabinoxylans: A critical review. J Cereal Sci, 24, 1-14.
  • Rasmussen CV, Hansen, HB, Hansen A, Larsen LM. 2001. pH, temperature and time-dependent activities of endogenous endo-β-D-Xylanase, β-D-Xylosidase and α-L Arabinofuranosidase in extracts from ungerminated rye (Secale cereale L.) grain. J Cereal Sci, 34, 49-60.
  • Banu I, Vasilean I. Constantin OE, Aprodu I. 2011. Prediction of rye dough behaviour and bread quality using response surface methodology. Irish J Agr Food Res, 50, 239-247.
  • Biliaderis CG, Izydorczyk MS, Rattan 0. 1995. Effcet of arabinoxylans on bread-making quality of wheat flours. Food Chem, 5, 165-171.
  • Autio K, Flander L, Heinonen R, Kinnunen A. 1999. Comparison of small and large deformation measurements of whole meal rye doughs. Cereal Chem, 76, 912-914.
  • Zhang Z, Smith C, Li W. 2014. Extraction and modification technology of arabinoxylans from cereal by-products: A critical review. Food Res Int, 65, 423-436.
  • Finnie SM, Bettge AD, Norris CF. 2006. Influence of cultivar and environment on water-soluble and water-insoluble arabinoxylans in soft wheat. Cereal Chem, 83(6), 617-623.
  • Yadav MP, Nunez A, Hicks K B. 2011. Isolation, purification, and identification of protein associated with corn fiber gum. J Agr Food Chem, 59, 13289-13294.
  • Kale MS, Hamaker BR, Campanella OH. 2013. Alkaline extraction conditions determine gelling properties of corn bran arabinoxylans. Food Hydrocoll, 31, 121-126.
  • Geissman T, Neukom H. 1973. On the composition of the water soluble wheat flour pentosans and their oxidative gelation. Lebensm -Wiss Technol, 6, 59-62.
  • Vansteenkiste E, Babot C, Rouau X, Micard V. 2004. Oxidative gelation of feruloylated arabinoxylan as affected by protein. Influence on protein enzymatic hydrolysis. Food Hydrocoll, 18, 557-564.
  • Hughes SA, Shewry PR, Li L, Gibson GR, Sanz ML, Rastall RA. 2007. In vitro fermentation by human fecal microflora of wheat arabinoxylans. J Agr Food Chem, 55, 4589-4595.
  • Damen B, Verspreet J, Pollet A, Broekaert WF, Delcour JA, Courtin C.M. 2011. Prebiotic effects and intestinal fermentation of cereal arabinoxylans and arabinoxylan oligosaccharides in rats depend strongly on their structural properties and joint presence. Mol Nutr Food Res, 55, 1862-1874.
  • Wang J, Sun B, Cao Y, Wang C. 2010. In vitro fermentation of xylooligosaccharides from wheat bran insoluble dietary fiber by Bifidobacteria. Carbohydr Polym, 82, 419-423.
  • Pedreschi R, Campos D, Noratto G, Chirinos R, Cisneros-Zevallos L. 2003. Andean yacon root (Smallanthus sonchifolius Poepp. Endl) fructooligosaccharides as a potential novel source of prebiotics. J Agr Food Chem, 51, 5278-5284.
  • Van der Meulen R, Avonts L, De Vuyst L. 2004. Short fractions of oligofructose are preferentially metabolized by Bifidobacterium animalis DN-173 010. Appl Environ Microbiol, 70, 1923-1930.
  • Molist F, Hermes RG, deSegura AG, Martín- Orşe SM, Gasa J, Manzanilla EG, Pérez JF.2011.Effect and interaction between wheat bran and zinc oxide on productive performance and intestinal health in post-weaning piglets. Br J Nutr, 105, 1592-1600.
  • Aumiller T, Mosenthin R, Weiss E. 2014. Potential of cereal grains and grain legumes in modulating pigs' intestinal microbiota - A review. Livest Sci, http://dx.doi.org/10.1016/j.livsci. 2014.11.016
  • Grootaert C, Van den Abbeele P, Marzorati M, Broekaert WF, Courtin CM, Delcour JA, Verstraete W, Van de Wiele T. 2009. Comparison of prebiotic effects of arabinoxylan oligosaccharides and insulin in a simulator of the human intestinal microbial ecosystem. Fems Microbiol Ecol, 69, 231-242.
  • Fernando WMADB, Brennan CS, Flint S, Ranaweera KKDS, Bamunuarachchi A, Morton H. 2010. Enhancement of short chain fatty acid formation by pure cultures of probiotics on rice fibre. Int J Food Sci Technol, 45, 690-696.
  • Dodevska MS, Djordjevic BI, Sobajic SS, Miletic ID, Djordjevic PB, Dimitrijevic-Sreckovic VS. 2013. Characterisation of dietary fibre components in cereals and legumes used in Serbian diet. Food Chem, 141, 1624-1629.
  • Neyrinck AM, Van Hee VF, Piront N, De Backer F, Toussaint O, Cani PD, Delzenne NM. 2012. Wheat-derived arabinoxylan oligosaccharides with prebiotic effect increase satietogenic gut peptides and reduce metabolic endotoxemia in diet-induced obese mice. Nutr Diabet, 2, e28.
  • Costa MJ, Cerqueira MA, Ruiz HA, Fougnies C, Richel A, Vicente AA, Teixeira JA, Aguedo M. 2015. Use of wheat bran arabinoxylans in chitosan-based films: Effect on physicochemical properties. Ind Crop Prod, 66, 305-311.
  • Kasprzak MM, Lærke HN, Knudsen KEB. 2012. Effects of isolated and complex dietary fiber matrices in breads on carbohydrate digestibility and physicochemical properties of ileal effluent from pigs. J Agr Food Chem, 60, 12469-12476.

ARABINOXYLANS IN CEREALS

Year 2015, Volume: 40 Issue: 6, 357 - 362, 01.12.2015

Abstract

Arabinoxylans are the major non-starch polysaccharides of the aleurone and starchy endosperm cellwalls of cereals. They are further categorized into water-soluble arabinoxylan, and water-unsolublearabinoxylan and are the major component of the dietary fiber fraction of cereal grains. Water solublearabinoxylans are known not only for their ability to form viscous solutions, but also their gellingcapacity when treated with an oxidizing agent. Due to their high water binding capacity water solublearabinoxylans are known to play an important role in rheological properties of dough, retrogradationof starch and breadmaking quality. Additionally, they act as prebiotics for microorganisms in thegastrointestinal tract

References

  • Izydorczyk MS, Biliaderi CG. 1995. Cereal arabinoxylans: Advances in structure and physicochemical properties. Carbohydr Polym, 28, 33-48.
  • Vries DJW, Prosky L, Li B, Cho S. 1999. A historical perspective on defining dietary fiber. Cereal Foods World, 44, 367-369.
  • Saeed F, Pasha I, Anjum FM, Sultan MT. 2011. Arabinoxylans and Arabinogalactans: A comprehensive treatise. Crit Rev Food Sci Nutr, 51(5), 467-476.
  • Mendis M, and Simsek S. 2014. Arabinoxylans and human health. Food Hydrocoll, 42, 239-243.
  • Buksa K, Zioboro R, Nowotna A, Adamczyk G, Sikora M, Zylewski M. 2014. Water binding capacity of rye flours with the addition of native and modified arabinoxylan preparations. J Agric Sci Technol, 16, 1083-1095.
  • Reanappa SB, Salimath NPV. 2015. Structural variations of arabinoxylans extracted from different wheat (Triticum aestivum) cultivars in relation to chapati-quality. Food Hydrocoll, 43, 736-742.
  • Ying R, Saulnier L, Rondeau-Mouro C. 2011. Films of arabinoxylans and β-glucans extracted from cereal grains: Molecular motions by TD-NMR. Carbohydr Polym, 86, 812-822.
  • Revanappa SB, Nandini CD, Salimath PV. 2015. Structural variations of arabinoxylans extracted from different wheat (Triticum aestivum) cultivars in relation to chapatti-quality. Food Hydrocoll, 43, 736-742.
  • Ayala-Soto F, Serna- Saldívar SO, Pérez-Carrillo E, García-Lara S. 2014. Relationship between hydroxycinnamic profile with gelation capacity and rheological properties of arabinoxylans extracted from different maize fiber sources. Food Hydrocoll, 39, 280-285.
  • Fincher GB, Stone BA. 1986. Cell walls and their components in cereal grain technology. Advances Cereal Chem, 8, 207-295.
  • Stone B, Morell M. K. 2009. Carbohydrates. In K. Khan, and P. R. Shewry (Eds.), Wheat chemistry and technology (4th ed.). (pp. 299-362) Minnesota: AACC International.
  • Zhou S, Liu X, Guo Y, Wang Q, Peng D, Cao L. 2010. Comparison of the immunological activities of arabinoxylans from wheat bran with alkali and xylanaseaided extraction. Carbohydr Polym, 81(4), 784-789.
  • Broekaert WF, Courtin CM, Verbeke K, Van de Wiele T, Verstraete W, Delcour JA. 2011. Prebiotic and other health-related effects of cereal-derived arabinoxylans, arabinoxylan-oligosaccharides, and xylooligosaccharides. Crit Rev Food Sci Nutr, 51(2), 178-194.
  • Basic A, Stone BA. 1980. A (1-3)- and (1→4)- Linked β-d-glucan the endosperm cell walls of wheat. Carbohydr Res, 82, 372-377.
  • Pastell H, Virkki L, Harju E, Tuomainen P, Tenkanen M. 2009. Presence of 1→3-linked 2-O-β-D-xylopyranosyl-α-L-arabinofuranosyl side chains in cereal arabinoxylans. Carbohydr Res, 344, 2480-2488.
  • Saulnier, L., Robert, P., Grintchenko, M., Jamme, F., Bouchet, B., Guillon, F. 2009. Wheat endosperm cell walls: spatial heterogeneity of polysaccharide structure and composition using micro-scale enzymatic fingerprinting and FT-IR microspectroscopy. J Cereal Sci, 50, 312-317.
  • Li W, Zhang S, Smith C. 2015. The molecular structure features-immune stimulatory activity of arabinoxylans derived from the pentosan faction of wheat flour. J Cereal Sci, 62, 81-85.
  • Foschia M, Peressini D, Sensidoni A, Brennan CS. 2013. The effects of dietary fibre addition on the quality of common cereal products. J Cereal Sci, 58, 216-227.
  • Manu B T, Prasada Rao, UJS. 2008. Influence of size distribution of proteins, thiol and disulfide content in whole wheat flour on rheological and chapati texture of Indian wheat varieties. Food Chem, 110, 88-95.
  • Courtin CM, Delcour JA. 2002. Arabinoxylans and endoxylanases in wheat flour bread-making. J Cereal Sci, 35, 225-243.
  • Wang J, Smits E, Boom RM, Schutyse MAI. 2015. Arabinoxylans concentrates from wheat bran by electrostatic separation. J Food Eng, 155, 29-36.
  • Cao L, Liu X, Qian T, Sun G, Guo Y, Chang F, Zhou S, Sun X. 2011. Antitumor and immunomodulatory activity of arabinoxylans: a major constituent of wheat bran. Int J Biol Macromol, 48 (1), 160-164.
  • Lu ZX, Gibson PR, Muir JG, Fielding M, O’Dea K. 2000. Arabinoxylan fiber from a by-product of wheat flour processing behaves physiologically like a soluble, fermentable fiber in the large bowel of rats. J Nutr, 130, 1984-1990. 24. Ring SR, Selvendran RR. 1980. Isolation and analysis of cell wall material from beeswing wheat bran (Triticum aestivum). Phytochemistry, 19, 1723-1730.
  • Hübner F, Elke K, Arendt EK. 2013. Germination of cereal grains as a way to improve the nutritional value: A review. Crit Rev Food Sci Nutr, 53(8), 853-861.
  • Kale MS, Yadav Mp, Hicks KB, Hanah K. 2015. Concentration and shear rate dependence of solution viscosity for arabinoxylans from different sources. Food Hydrocoll, 47, 178-183.
  • Hemalatha MS, Manohar RS, Salimath PV, Prasad Rao UJS. 2013. Effect of added arabinoxylans isolated from good and poor chapati making wheat varieties on rheological properties of dough and chapati making quality. Food and Nutr Sci, 4, 884-892.
  • Saeed F, Pasha I, Anjum FM, Sultan JI. 2011. Water-extractable arabinoxylan content in milling fractions of spring wheats. CyTA - J Food, 9, No. 1, May 2011, 43-48.
  • Jelaca SL, Hlynca I. 1972. Effect of wheat-flour pentosans in dough, gluten and bread. Cereal Chem, 49, 489-495.
  • Vinkx CJ, Delcour JA. 1996. Rye (Secale cereale L.) arabinoxylans: A critical review. J Cereal Sci, 24, 1-14.
  • Rasmussen CV, Hansen, HB, Hansen A, Larsen LM. 2001. pH, temperature and time-dependent activities of endogenous endo-β-D-Xylanase, β-D-Xylosidase and α-L Arabinofuranosidase in extracts from ungerminated rye (Secale cereale L.) grain. J Cereal Sci, 34, 49-60.
  • Banu I, Vasilean I. Constantin OE, Aprodu I. 2011. Prediction of rye dough behaviour and bread quality using response surface methodology. Irish J Agr Food Res, 50, 239-247.
  • Biliaderis CG, Izydorczyk MS, Rattan 0. 1995. Effcet of arabinoxylans on bread-making quality of wheat flours. Food Chem, 5, 165-171.
  • Autio K, Flander L, Heinonen R, Kinnunen A. 1999. Comparison of small and large deformation measurements of whole meal rye doughs. Cereal Chem, 76, 912-914.
  • Zhang Z, Smith C, Li W. 2014. Extraction and modification technology of arabinoxylans from cereal by-products: A critical review. Food Res Int, 65, 423-436.
  • Finnie SM, Bettge AD, Norris CF. 2006. Influence of cultivar and environment on water-soluble and water-insoluble arabinoxylans in soft wheat. Cereal Chem, 83(6), 617-623.
  • Yadav MP, Nunez A, Hicks K B. 2011. Isolation, purification, and identification of protein associated with corn fiber gum. J Agr Food Chem, 59, 13289-13294.
  • Kale MS, Hamaker BR, Campanella OH. 2013. Alkaline extraction conditions determine gelling properties of corn bran arabinoxylans. Food Hydrocoll, 31, 121-126.
  • Geissman T, Neukom H. 1973. On the composition of the water soluble wheat flour pentosans and their oxidative gelation. Lebensm -Wiss Technol, 6, 59-62.
  • Vansteenkiste E, Babot C, Rouau X, Micard V. 2004. Oxidative gelation of feruloylated arabinoxylan as affected by protein. Influence on protein enzymatic hydrolysis. Food Hydrocoll, 18, 557-564.
  • Hughes SA, Shewry PR, Li L, Gibson GR, Sanz ML, Rastall RA. 2007. In vitro fermentation by human fecal microflora of wheat arabinoxylans. J Agr Food Chem, 55, 4589-4595.
  • Damen B, Verspreet J, Pollet A, Broekaert WF, Delcour JA, Courtin C.M. 2011. Prebiotic effects and intestinal fermentation of cereal arabinoxylans and arabinoxylan oligosaccharides in rats depend strongly on their structural properties and joint presence. Mol Nutr Food Res, 55, 1862-1874.
  • Wang J, Sun B, Cao Y, Wang C. 2010. In vitro fermentation of xylooligosaccharides from wheat bran insoluble dietary fiber by Bifidobacteria. Carbohydr Polym, 82, 419-423.
  • Pedreschi R, Campos D, Noratto G, Chirinos R, Cisneros-Zevallos L. 2003. Andean yacon root (Smallanthus sonchifolius Poepp. Endl) fructooligosaccharides as a potential novel source of prebiotics. J Agr Food Chem, 51, 5278-5284.
  • Van der Meulen R, Avonts L, De Vuyst L. 2004. Short fractions of oligofructose are preferentially metabolized by Bifidobacterium animalis DN-173 010. Appl Environ Microbiol, 70, 1923-1930.
  • Molist F, Hermes RG, deSegura AG, Martín- Orşe SM, Gasa J, Manzanilla EG, Pérez JF.2011.Effect and interaction between wheat bran and zinc oxide on productive performance and intestinal health in post-weaning piglets. Br J Nutr, 105, 1592-1600.
  • Aumiller T, Mosenthin R, Weiss E. 2014. Potential of cereal grains and grain legumes in modulating pigs' intestinal microbiota - A review. Livest Sci, http://dx.doi.org/10.1016/j.livsci. 2014.11.016
  • Grootaert C, Van den Abbeele P, Marzorati M, Broekaert WF, Courtin CM, Delcour JA, Verstraete W, Van de Wiele T. 2009. Comparison of prebiotic effects of arabinoxylan oligosaccharides and insulin in a simulator of the human intestinal microbial ecosystem. Fems Microbiol Ecol, 69, 231-242.
  • Fernando WMADB, Brennan CS, Flint S, Ranaweera KKDS, Bamunuarachchi A, Morton H. 2010. Enhancement of short chain fatty acid formation by pure cultures of probiotics on rice fibre. Int J Food Sci Technol, 45, 690-696.
  • Dodevska MS, Djordjevic BI, Sobajic SS, Miletic ID, Djordjevic PB, Dimitrijevic-Sreckovic VS. 2013. Characterisation of dietary fibre components in cereals and legumes used in Serbian diet. Food Chem, 141, 1624-1629.
  • Neyrinck AM, Van Hee VF, Piront N, De Backer F, Toussaint O, Cani PD, Delzenne NM. 2012. Wheat-derived arabinoxylan oligosaccharides with prebiotic effect increase satietogenic gut peptides and reduce metabolic endotoxemia in diet-induced obese mice. Nutr Diabet, 2, e28.
  • Costa MJ, Cerqueira MA, Ruiz HA, Fougnies C, Richel A, Vicente AA, Teixeira JA, Aguedo M. 2015. Use of wheat bran arabinoxylans in chitosan-based films: Effect on physicochemical properties. Ind Crop Prod, 66, 305-311.
  • Kasprzak MM, Lærke HN, Knudsen KEB. 2012. Effects of isolated and complex dietary fiber matrices in breads on carbohydrate digestibility and physicochemical properties of ileal effluent from pigs. J Agr Food Chem, 60, 12469-12476.
There are 52 citations in total.

Details

Other ID JA35UY89VA
Journal Section Research Article
Authors

Hüseyin Boz This is me

Publication Date December 1, 2015
Published in Issue Year 2015 Volume: 40 Issue: 6

Cite

APA Boz, H. (2015). TAHILLARDA ARABİNOKSİLANLAR. Gıda, 40(6), 357-362.
AMA Boz H. TAHILLARDA ARABİNOKSİLANLAR. The Journal of Food. December 2015;40(6):357-362.
Chicago Boz, Hüseyin. “TAHILLARDA ARABİNOKSİLANLAR”. Gıda 40, no. 6 (December 2015): 357-62.
EndNote Boz H (December 1, 2015) TAHILLARDA ARABİNOKSİLANLAR. Gıda 40 6 357–362.
IEEE H. Boz, “TAHILLARDA ARABİNOKSİLANLAR”, The Journal of Food, vol. 40, no. 6, pp. 357–362, 2015.
ISNAD Boz, Hüseyin. “TAHILLARDA ARABİNOKSİLANLAR”. Gıda 40/6 (December 2015), 357-362.
JAMA Boz H. TAHILLARDA ARABİNOKSİLANLAR. The Journal of Food. 2015;40:357–362.
MLA Boz, Hüseyin. “TAHILLARDA ARABİNOKSİLANLAR”. Gıda, vol. 40, no. 6, 2015, pp. 357-62.
Vancouver Boz H. TAHILLARDA ARABİNOKSİLANLAR. The Journal of Food. 2015;40(6):357-62.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/