Research Article
BibTex RIS Cite

KINETIC MODELLING OF OHMIC, MICROWAVE AND ULTRASOUND ASSISTED EXTRACTIONS OF PHENOLIC COMPOUNDS FROM OLIVE MILL WASTE WATER

Year 2024, Volume: 49 Issue: 6, 1010 - 1027
https://doi.org/10.15237/gida.GD24075

Abstract

The aim of the study is to compare different extraction systems for the removal of phenolic compounds from olivemill wastewater. Besides, the another aim of the study is kinetic modelling and extraction of phenolics using DES (DES: choline cloride:formic acid (1:2, n:n). In the study, different extraction methods (ohmic, microwave, ultrasound and maceration) and extraction times were used. Moreover, choline chloride:formic acid (1:2, n:n) and water mixture (1:1, v:v) was used as the solvent and the solute to solvent ratio was adjusted to 1:5 (m:v) wastewater: solvent ratio. Total phenolic content was selected as dependent variable. Maximum total phenolic content (24.25±1.19 mg GAE/g OMW) was reached at microwave (270 W power) and 80 minutes process time. In addition, it was found that the variaiton of TPC with respect to time fit Peleg model. The highest B0 and Cmax values were detected at ohmic and microwave, assisted extraction respectively.

Project Number

TAGEM-20/AR-GE/07

References

  • Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R.K., Tambyrajah, V. (2003). Novel solvent properties of choline chloride/urea mixtures. Chemical Communications, (1): 70-71, doi: 10.1039/B210714G.
  • Alara, O.R., Abdurahman, N.H., Ukaegbu, C.I. (2021). Extraction of phenolic compounds: A review. Current Research in Food Science, 4: 200-214, doi: 10.1016/j.crfs.2021.03.011.
  • Al-Hilphy, A.R., AlRikabi, A.K., Al-Salim, A.M. (2015). Extraction of phenolic compounds from wheat bran using ohmic heating. Food Science and Quality Management, 43: 21-28.
  • Alifakı, Y.Ö., Şakıyan, Ö., Isci, A. (2022). Extraction of phenolic compounds from cranberrybush (Viburnum opulus L.) fruit using ultrasound, microwave, and ultrasound-microwave combination methods. Journal of Food Measurement and Characterization, 16(5), 4009-4024, doi: 10.1007/s11694-022-01498-9.
  • Alifakı, Y.Ö., Şakıyan Demirkol, Ö., İsci Yakan, A. (2018). Gilaburu (Vibirium opulus L.) Meyvesinden Fenolik Bileşiklerin Ultrason Destekli Ekstraksiyonu. GIDA, 43(5): 846-855, doi: 10.15237/gida.GD18069.
  • Alvi, T., Asif, Z., Khan, M.K.I. (2022). Clean label extraction of bioactive compounds from food waste through microwave-assisted extraction technique-A review. Food Bioscience, 46, 101580, doi: 10.1016/j.fbio.2022.101580.
  • Bagade, S.B., Patil, M. (2019). Recent Advances in Microwave Assisted Extraction of Bioactive Compounds from Complex Herbal Samples: A Review. Critical Reviews in Analytical Chemistry, 51(2), 138–149, doi: 10.1080/10408347.2019.1686966.
  • Bondam, A.F., da Silveira, D.D., dos Santos, J.P., Hoffmann, J.F. (2022). Phenolic compounds from coffee by-products: Extraction and application in the food and pharmaceutical industries. Trends in Food Science and Technology, 123: 172-186, doi: 10.1016/j.tifs.2022.03.013.
  • Bubalo, M.C., Ćurko, N., Tomašević, M., Ganić, K.K., Redovniković, I.R. (2016). Green extraction of grape skin phenolics by using deep eutectic solvents. Food Chemistry, 200:159–166, doi: 10.1016/j.foodchem.2016.01.040.
  • Cabas, B.M., Icier, F. (2021). Ohmic heating–assisted extraction of natural color matters from red beetroot. Food and Bioprocess Technology, 14: 2062-2077, doi: 10.1007/s11947-021-02698-9.
  • Chanioti, S., Tzia, C. (2018). Extraction of phenolic compoundsfrom olive pomace by using natural deep eutectic solvents and innovative extraction techniques. Innovative Food Science and Emerging Technology, 48: 228–239, doi: 10.3390/ijerph18179153.
  • Chemat, F., Cravotto, G. (2012). Microwave-assisted extraction for bioactive compounds: theory and practice. Springer, New York.
  • Çilingir, S., Goksu, A., Sabanci, S. (2021). Production of pectin from lemon peel powder using ohmic heating-assisted extraction process. Food and Bioprocess Technology, 14(7): 1349-1360, doi: 10.1007/s11947-021-02636-9.
  • De Marco, E., Savarese, M., Paduano, A., Sacchi, R. (2007). Characterization and fractionation of phenolic compounds extracted from olive oil mill wastewaters. Food chemistry, 104(2), 858-867.
  • El-Abbassi, A., Kiai, H., Hafidi, A. (2012). Phenolic profile and antioxidant activities of olive mill wastewater. Food Chemistry, 132(1), 406-412.
  • Ferreira-Santos, P., Nobre, C., Rodrigues, R.M., Genisheva, Z., Botelho, C., Teixeira, J.A. (2024). Extraction of phenolic compounds from grape pomace using ohmic heating: Chemical composition, bioactivity and bioaccessibility. Food Chemistry, 436: 137780, doi: 10.1016/j.foodchem.2023.137780.
  • Foti, P., Romeo, F.V., Russo, N., Pino, A., Vaccalluzzo, A., Caggia, C., Randazzo, C.L. (2021). Olive mill wastewater as renewable raw materials to generate high added-value ingredients for agro-food industries. Applied Sciences, 11(16): 7511, doi: 10.3390/app11167511.
  • García, A., Rodríguez-Juan, E., Rodríguez-Gutiérrez, G., Rios, J.J., Fernández-Bolaños, J. (2016). Extraction of phenolic compounds from virgin olive oil by deep eutectic solvents (DESs). Food Chemistry, 197: 554-561, doi: 10.1016/j.foodchem.2015.10.131.
  • Gil-Martín, E., Forbes-Hernández, T., Romero, A., Cianciosi, D., Giampieri, F., Battino, M. (2022). Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chemistry, 378: 131918, doi: 10.1016/j.foodchem.2021.131918.
  • Grishina, E.P., Kudryakova, N.O. (2017). Conductivity and electrochemical stability of concentrated aqueous choline chloride solutions. Russian Journal of Physical Chemistry A, 91: 2024-2028, doi: 10.1134/ S0036024417100144.
  • Gueboudji, Z., Kadi, K., Mahmoudi, M., Hannachi, H., Nagaz, K., Addad, D., ... Hessini, K. (2023). Maceration and liquid–liquid extractions of phenolic compounds and antioxidants from Algerian olive oil mill wastewater. Environmental Science and Pollution Research, 30(2): 3432-3439, doi: 10.1007/s11356-022-22482-2.
  • Hashemi Gahruie, H., Parastouei, K., Mokhtarian, M., Rostami, H., Niakousari, M., Mohsenpour, Z. (2020). Application of innovative processing methods for the extraction of bioactive compounds from saffron (Crocus sativus) petals. Journal of Applied Research on Medicinal and Aromatic Plants, 19: 100264, doi: 10.1016/j.jarmap.2020.100264.
  • Icier, F., Ilıcalı, C. (2004). Electrical conductivity of apple and sourcherry juice concentrates during ohmic heating. Journal of Food Process Engineering, 27(3): 159-180, doi: 10.1111/j.1745-4530.2004.tb00628.x.
  • Jesus, M.S., Ballesteros, L.F., Pereira, R.N., Genisheva, Z., Carvalho, A.C., PereiraWilson, C., Teixeira, J.A., Domingues, L. (2020). Ohmic heating polyphenolic extracts from vine pruning residue with enhanced biological activity. Food Chemistry, 316: 126298, doi: 10.1111/j.1745-4530.2004.tb00628.x.
  • Kaderides, K., Papaoikonomou, L., Serafim, M., Goula, A.M. (2019). Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chemical Engineering and Processing-Process Intensification, 137: 1-11, doi: 10.1016/j.cep.2019.01.006.
  • Kaur, M., Kumar, S., Samota, M. K., Lalremmawii. (2024). Ohmic heating technology systems, factors governing efficiency and its application to inactivation of pathogenic microbial, enzyme inactivation, and extraction of juice, oil, and bioactive compounds in the food sector. Food and Bioprocess Technology, 17(2), 299-324, doi: 10.1007/s11947-023-03126-w.
  • Kehili, M., Isci, A., Thieme, N., Kaltschmitt, M., Zetzl, C., Smirnova, I. (2024). Microwave-assisted deep eutectic solvent extraction of phenolics from defatted date seeds and its effect on solubilization of carbohydrates. Biomass Conversion and Biorefinery, 14(6): 7695-7706, doi: 10.1007/ s13399-022-03027-6.
  • Khdair, A. I., Abu-Rumman, G., Khdair, S. I. (2019). Pollution estimation from olive mills wastewater in Jordan. Heliyon, 5(8), doi: 10.1016/j.heliyon.2019.e02386.
  • Kumar, N., Goel, N. (2019). Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnology Reports, 24: 00370, doi: 10.1016/j.btre.2019.e00370.
  • Kumar, K., Srivastav, S., Sharanagat, V.S. (2021). Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrasonics Sonochemistry, 70: 105325, doi: 10.1016/j.ultsonch.2020.105325.
  • Kumari, B., Tiwari, B. K., Hossain, M. B., Rai, D. K., Brunton, N. P. (2017). Ultrasound‐assisted extraction of polyphenols from potato peels: profiling and kinetic modelling. International Journal of Food Science & Technology, 52(6), 1432-1439, doi: 10.1111/ijfs.13404.
  • Kumari, T., Das, A.B., Deka, S.C. (2022). Impact of extraction methods on functional properties and extraction kinetic of insoluble dietary fiber from green pea peels: A comparative analysis. Journal of Food Processing and Preservation, 46(4): 16476, doi: 10.1111/jfpp.16476.
  • Kutlu, N., Isci, A., Sakiyan, O., Yilmaz, A.E. (2021). Extraction of phenolic compounds from cornelian cherry (Cornus mas L.) using microwave and ohmic heating assisted microwave methods. Food and Bioprocess Technology, 14: 650-664, doi: 10.1007/s11947-021-02588-0.
  • Lin, D., Ma, Q., Zhang, Y., Peng, Z. (2020). Phenolic compounds with antioxidant activity from strawberry leaves: a study on microwave-assisted extraction optimization. Preparative Biochemistry & Biotechnology, 50(9), 874–882, doi: 10.1080/10826068.2020.1762213.
  • Lomba, L., Ribate, M.P., Sangüesa, E., Concha, J., Garralaga, M.A.P., Errazquin, D., ... Giner, B. (2021). Deep eutectic solvents: are they safe? Applied Sciences, 11(21): 10061, doi: 10.3390/app112110061.
  • López-Salazar, H., Camacho-Díaz, B.H., Ocampo, M.L.A., Jiménez-Aparicio, A.R. (2023). Microwave-assisted extraction of functional compounds from plants: A Review. Bioresources, 18(3): 6614-6638.
  • Lovrić, V., Putnik, P., Bursać Kovačević, D., Jukić, M., Dragović-Uzelac, V. (2017). Effect of microwave-assisted extraction on the phenolic compounds and antioxidant capacity of blackthorn flowers. Food technology and biotechnology, 55(2), 243-250.
  • Ma, Y.Q., Chen, J.C., Liu, D.H., Ye, X.Q. (2009). Simultaneous extraction of phenolic compounds of citrus peel extracts: effect of ultrasound. Ultrasonics Sonochemistry, 16: 57–62, doi: 10.1016/j.ultsonch.2008.04.012.
  • Safarzadeh Markhali, F., Teixeira, J. A., Rocha, C. M. (2022). Effect of ohmic heating on the extraction yield, polyphenol content and antioxidant activity of olive mill leaves. Clean Technologies, 4(2), 512-528, doi: 10.3390/cleantechnol4020031.
  • Muley, P.D., Mobley, J.K., Tong, X., Novak, B., Stevens, J., Moldovan, D., ... Boldor, D. (2019). Rapid microwave-assisted biomass delignification and lignin depolymerization in deep eutectic solvents. Energy Conversion and Management, 196: 1080-1088, doi: 10.1016/ j.enconman.2019.06.070.
  • Muley, P. D., Boldor, D. (2013). Investigation of microwave dielectric properties of biodiesel components. Bioresource technology, 127, 165-174.
  • Milićević, N., Kojić, P., Sakač, M., Mišan, A., Kojić, J., Perussello, C., ... Tiwari, B. (2021). Kinetic modelling of ultrasound-assisted extraction of phenolics from cereal brans. Ultrasonics Sonochemistry, 79: 105761, doi: 10.1016/j.ultsonch.2021.105761.
  • Peleg, M. (1988). An empirical model for the description of moisture sorption curves. Journal of Food Science, 53(4): 1216–1219, doi: 10.1111/j.1365-2621.1988.tb13565.x.
  • Pereira, R.N., Coelho, M.I., Genisheva, Z., Fernandes, J.M., Vicente, A.A., Pintado, M.E. (2020). Using Ohmic Heating effect on grape skins as a pretreatment for anthocyanins extraction. Food and Bioproducts Processing, 124: 320-328, doi: 10.1016/j.fbp.2020.09.009.
  • Pereira, R.N., Rodrigues, R.M., Genisheva, Z., Oliveira, H., de Freitas, V., Teixeira, J.A., Vicente, A.A. (2016). Effects of ohmic heating on extraction of food-grade phytochemicals from colored potato. Lwt, 74: 493-503, doi: 10.1016/j.lwt.2016.07.074.
  • Popovic, B.M., Micic, N., Potkonjak, A., Blagojevic, B., Pavlovic, K., Milanov, D., Juric, T. (2022). Novel extraction of polyphenols from sour cherry pomace using natural deep eutectic solvents–Ultrafast microwave-assisted NADES preparation and extraction. Food Chemistry, 366: 130562, doi: 10.1016/j.foodchem.2021.130562.
  • Rashmi, H.B., Negi, P.S. (2020). Phenolic acids from vegetables: A review on processing stability and health benefits. Food Research International, 136: 109298, doi: 10.1016/j.foodres.2020.109298.
  • Romeo, R., De Bruno, A., Imeneo, V., Piscopo, A., Poiana, M. (2019). Evaluation of enrichment with antioxidants from olive oil mill wastes in hydrophilic model system. Journal of Food Processing and Preservation, 43(11), e14211.
  • Shabir, S., Ilyas, N., Saeed, M., Bibi, F., Sayyed, R.Z., Almalki, W.H. (2023). Treatment technologies for olive mill wastewater with impacts on plants. Environmental Research, 216: 114399, doi: 10.1016/j.envres.2022.114399.
  • Shewale, S.P., Kapadia, M., Rathod, V.K. (2022). Intensification of total phenolic compounds extraction from Azadirachta indica (Neem) leaves by ultrasound. Chemical Engineering and Processing-Process Intensification, 181: 109099, doi: 10.1016/j.cep.2022.109099.
  • Singleton, V.L., Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3): 144-158, doi: 10.5344/ajev.1965.16.3.144.
  • Shaukat, S., Buchner, R. (2011). Densities, viscosities [from (278.15 to 318.15) K], and electrical conductivities (at 298.15 K) of aqueous solutions of choline chloride and chloro-choline chloride. Journal of Chemical & Engineering Data, 56(12): 4944-4949.
  • Shi, J., Yu, J., Pohorly, J., Young, J.C., Bryan, M., Wu, Y. (2003). Optimization of the extraction of polyphenols from grape seed meal by aqueous ethanol solution. Food, Agriculture and Environment, 1(2): 42-47.
  • Solomakou, N., Goula, A.M. (2021). Treatment of olive mill wastewater by adsorption of phenolic compounds. Reviews in Environmental Science and Bio/Technology, 20(3): 839-863, doi: 10.1007/s11157-021-09585-x.
  • Suthar, P., Kaushal, M., Vaidya, D., Thakur, M., Chauhan, P., Angmo, D., ... Negi, N. (2023). Deep eutectic solvents (DES): an update on the applications in food sectors. Journal of Agriculture and Food Research, 14: 100678, doi: 10.1016/j.jafr.2023.100678.
  • Wang, Y., Wang, C., Xue, H., Jin, Y., Yang, M., Leng, F. (2023). Comparative analysis of three kinds of extraction kinetic models of crude polysaccharides from Codonopsis pilosula and evaluate the characteristics of crude polysaccharides. Biomass Conversion and Biorefinery, 13(14), 12917-12933, doi: 10.1007/s13399-022-02518-w.
  • Xu, Q., Wang, S., Milliron, H., Han, Q. (2022). The efficacy of phenolic compound extraction from potato peel waste. Processes, 10(11): 2326, doi: doi.org/10.3390/pr10112326.
  • Yılmaz, M.S., Kantar, N.K., Erdem, G., Demirkol, Ö.Ş., Yakan, A.İ. (2021). Fenolik bileşiklerin aliç meyvesinden (Crataegus monogyna) mikrodalga ve ultrases destekli yöntemler ile ekstraksiyonu. GIDA, 46(4): 1002-1015, 10.15237/gida.GD21018.
  • Yusoff, I.M., Taher, Z.M., Rahmat, Z., Chua, L.S. (2022). A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. Food research international, 157, 111268. doi: 10.1016/j.foodres.2022.111268.
  • Zahi, M.R., Zam, W., El Hattab, M. (2022). State of knowledge on chemical, biological and nutritional properties of olive mill wastewater. Food Chemistry, 381: 132238, doi: 10.1016/j.foodchem.2022.132238.

ZEYTİN KARASUYU FENOLİK BİRLEŞİKLERİNİN OHMİK, MİKRODALGA VE ULTRASON DESTEKLİ EKSTRAKSİYONU ve KİNETİK MODELLEMESİ

Year 2024, Volume: 49 Issue: 6, 1010 - 1027
https://doi.org/10.15237/gida.GD24075

Abstract

Bu çalışmanın amacı, zeytinyağı proses atığı olan karasuyundaki fenolik maddelerin bertaraf edilmesi için ekstraksiyon sistemlerinin kıyaslanmasıdır. Ayrıca çalışmanın bir diğer amacı derin ötektik çözgen (DÖÇ: kolin klorür:formik asit (1:2, n:n)) kullanılarak ohmik, mikrodalga ve ultrason destekli ekstraksiyon sistemi ile fenolik bileşiklerinin ekstraksiyonu ve kinetik modellenmesidir. Çalışmada, dört farklı ekstraksiyon tekniği (ohmik, mikrodalga, ultrason ve maserasyon) ve ekstraksiyon çeşidine göre değişen farklı işlem süreleri kullanılarak kolin klorür:formik asit (1:2, n:n) ve su karışımı (1:1, v:v) ile 1:5 (m:v) karasu:solvent oranında ekstraksiyon işlemi gerçekleştirilmiştir. Bağımlı değişken olarak toplam fenolik madde miktarı belirlenmiştir. En yüksek toplam fenolik madde miktarına (24.25±1.19 mg GAE/g karasu) mikrodalga (270 W güçte) destekli ekstraksiyon işleminde ve 80 dakikada ulaşılmıştır. Ek olarak modelleme sonucunda fenolik madde değişiminin Peleg modeline uyum gösterdiği görülmüştür. En yüksek B0 ve Cmax değerleri sırasıyla ohmik destekli ekstraksiyon işlemi ve mikrodalga destekli ekstraksiyon işleminde tespit edilmiştir.

Project Number

TAGEM-20/AR-GE/07

References

  • Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R.K., Tambyrajah, V. (2003). Novel solvent properties of choline chloride/urea mixtures. Chemical Communications, (1): 70-71, doi: 10.1039/B210714G.
  • Alara, O.R., Abdurahman, N.H., Ukaegbu, C.I. (2021). Extraction of phenolic compounds: A review. Current Research in Food Science, 4: 200-214, doi: 10.1016/j.crfs.2021.03.011.
  • Al-Hilphy, A.R., AlRikabi, A.K., Al-Salim, A.M. (2015). Extraction of phenolic compounds from wheat bran using ohmic heating. Food Science and Quality Management, 43: 21-28.
  • Alifakı, Y.Ö., Şakıyan, Ö., Isci, A. (2022). Extraction of phenolic compounds from cranberrybush (Viburnum opulus L.) fruit using ultrasound, microwave, and ultrasound-microwave combination methods. Journal of Food Measurement and Characterization, 16(5), 4009-4024, doi: 10.1007/s11694-022-01498-9.
  • Alifakı, Y.Ö., Şakıyan Demirkol, Ö., İsci Yakan, A. (2018). Gilaburu (Vibirium opulus L.) Meyvesinden Fenolik Bileşiklerin Ultrason Destekli Ekstraksiyonu. GIDA, 43(5): 846-855, doi: 10.15237/gida.GD18069.
  • Alvi, T., Asif, Z., Khan, M.K.I. (2022). Clean label extraction of bioactive compounds from food waste through microwave-assisted extraction technique-A review. Food Bioscience, 46, 101580, doi: 10.1016/j.fbio.2022.101580.
  • Bagade, S.B., Patil, M. (2019). Recent Advances in Microwave Assisted Extraction of Bioactive Compounds from Complex Herbal Samples: A Review. Critical Reviews in Analytical Chemistry, 51(2), 138–149, doi: 10.1080/10408347.2019.1686966.
  • Bondam, A.F., da Silveira, D.D., dos Santos, J.P., Hoffmann, J.F. (2022). Phenolic compounds from coffee by-products: Extraction and application in the food and pharmaceutical industries. Trends in Food Science and Technology, 123: 172-186, doi: 10.1016/j.tifs.2022.03.013.
  • Bubalo, M.C., Ćurko, N., Tomašević, M., Ganić, K.K., Redovniković, I.R. (2016). Green extraction of grape skin phenolics by using deep eutectic solvents. Food Chemistry, 200:159–166, doi: 10.1016/j.foodchem.2016.01.040.
  • Cabas, B.M., Icier, F. (2021). Ohmic heating–assisted extraction of natural color matters from red beetroot. Food and Bioprocess Technology, 14: 2062-2077, doi: 10.1007/s11947-021-02698-9.
  • Chanioti, S., Tzia, C. (2018). Extraction of phenolic compoundsfrom olive pomace by using natural deep eutectic solvents and innovative extraction techniques. Innovative Food Science and Emerging Technology, 48: 228–239, doi: 10.3390/ijerph18179153.
  • Chemat, F., Cravotto, G. (2012). Microwave-assisted extraction for bioactive compounds: theory and practice. Springer, New York.
  • Çilingir, S., Goksu, A., Sabanci, S. (2021). Production of pectin from lemon peel powder using ohmic heating-assisted extraction process. Food and Bioprocess Technology, 14(7): 1349-1360, doi: 10.1007/s11947-021-02636-9.
  • De Marco, E., Savarese, M., Paduano, A., Sacchi, R. (2007). Characterization and fractionation of phenolic compounds extracted from olive oil mill wastewaters. Food chemistry, 104(2), 858-867.
  • El-Abbassi, A., Kiai, H., Hafidi, A. (2012). Phenolic profile and antioxidant activities of olive mill wastewater. Food Chemistry, 132(1), 406-412.
  • Ferreira-Santos, P., Nobre, C., Rodrigues, R.M., Genisheva, Z., Botelho, C., Teixeira, J.A. (2024). Extraction of phenolic compounds from grape pomace using ohmic heating: Chemical composition, bioactivity and bioaccessibility. Food Chemistry, 436: 137780, doi: 10.1016/j.foodchem.2023.137780.
  • Foti, P., Romeo, F.V., Russo, N., Pino, A., Vaccalluzzo, A., Caggia, C., Randazzo, C.L. (2021). Olive mill wastewater as renewable raw materials to generate high added-value ingredients for agro-food industries. Applied Sciences, 11(16): 7511, doi: 10.3390/app11167511.
  • García, A., Rodríguez-Juan, E., Rodríguez-Gutiérrez, G., Rios, J.J., Fernández-Bolaños, J. (2016). Extraction of phenolic compounds from virgin olive oil by deep eutectic solvents (DESs). Food Chemistry, 197: 554-561, doi: 10.1016/j.foodchem.2015.10.131.
  • Gil-Martín, E., Forbes-Hernández, T., Romero, A., Cianciosi, D., Giampieri, F., Battino, M. (2022). Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chemistry, 378: 131918, doi: 10.1016/j.foodchem.2021.131918.
  • Grishina, E.P., Kudryakova, N.O. (2017). Conductivity and electrochemical stability of concentrated aqueous choline chloride solutions. Russian Journal of Physical Chemistry A, 91: 2024-2028, doi: 10.1134/ S0036024417100144.
  • Gueboudji, Z., Kadi, K., Mahmoudi, M., Hannachi, H., Nagaz, K., Addad, D., ... Hessini, K. (2023). Maceration and liquid–liquid extractions of phenolic compounds and antioxidants from Algerian olive oil mill wastewater. Environmental Science and Pollution Research, 30(2): 3432-3439, doi: 10.1007/s11356-022-22482-2.
  • Hashemi Gahruie, H., Parastouei, K., Mokhtarian, M., Rostami, H., Niakousari, M., Mohsenpour, Z. (2020). Application of innovative processing methods for the extraction of bioactive compounds from saffron (Crocus sativus) petals. Journal of Applied Research on Medicinal and Aromatic Plants, 19: 100264, doi: 10.1016/j.jarmap.2020.100264.
  • Icier, F., Ilıcalı, C. (2004). Electrical conductivity of apple and sourcherry juice concentrates during ohmic heating. Journal of Food Process Engineering, 27(3): 159-180, doi: 10.1111/j.1745-4530.2004.tb00628.x.
  • Jesus, M.S., Ballesteros, L.F., Pereira, R.N., Genisheva, Z., Carvalho, A.C., PereiraWilson, C., Teixeira, J.A., Domingues, L. (2020). Ohmic heating polyphenolic extracts from vine pruning residue with enhanced biological activity. Food Chemistry, 316: 126298, doi: 10.1111/j.1745-4530.2004.tb00628.x.
  • Kaderides, K., Papaoikonomou, L., Serafim, M., Goula, A.M. (2019). Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chemical Engineering and Processing-Process Intensification, 137: 1-11, doi: 10.1016/j.cep.2019.01.006.
  • Kaur, M., Kumar, S., Samota, M. K., Lalremmawii. (2024). Ohmic heating technology systems, factors governing efficiency and its application to inactivation of pathogenic microbial, enzyme inactivation, and extraction of juice, oil, and bioactive compounds in the food sector. Food and Bioprocess Technology, 17(2), 299-324, doi: 10.1007/s11947-023-03126-w.
  • Kehili, M., Isci, A., Thieme, N., Kaltschmitt, M., Zetzl, C., Smirnova, I. (2024). Microwave-assisted deep eutectic solvent extraction of phenolics from defatted date seeds and its effect on solubilization of carbohydrates. Biomass Conversion and Biorefinery, 14(6): 7695-7706, doi: 10.1007/ s13399-022-03027-6.
  • Khdair, A. I., Abu-Rumman, G., Khdair, S. I. (2019). Pollution estimation from olive mills wastewater in Jordan. Heliyon, 5(8), doi: 10.1016/j.heliyon.2019.e02386.
  • Kumar, N., Goel, N. (2019). Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnology Reports, 24: 00370, doi: 10.1016/j.btre.2019.e00370.
  • Kumar, K., Srivastav, S., Sharanagat, V.S. (2021). Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrasonics Sonochemistry, 70: 105325, doi: 10.1016/j.ultsonch.2020.105325.
  • Kumari, B., Tiwari, B. K., Hossain, M. B., Rai, D. K., Brunton, N. P. (2017). Ultrasound‐assisted extraction of polyphenols from potato peels: profiling and kinetic modelling. International Journal of Food Science & Technology, 52(6), 1432-1439, doi: 10.1111/ijfs.13404.
  • Kumari, T., Das, A.B., Deka, S.C. (2022). Impact of extraction methods on functional properties and extraction kinetic of insoluble dietary fiber from green pea peels: A comparative analysis. Journal of Food Processing and Preservation, 46(4): 16476, doi: 10.1111/jfpp.16476.
  • Kutlu, N., Isci, A., Sakiyan, O., Yilmaz, A.E. (2021). Extraction of phenolic compounds from cornelian cherry (Cornus mas L.) using microwave and ohmic heating assisted microwave methods. Food and Bioprocess Technology, 14: 650-664, doi: 10.1007/s11947-021-02588-0.
  • Lin, D., Ma, Q., Zhang, Y., Peng, Z. (2020). Phenolic compounds with antioxidant activity from strawberry leaves: a study on microwave-assisted extraction optimization. Preparative Biochemistry & Biotechnology, 50(9), 874–882, doi: 10.1080/10826068.2020.1762213.
  • Lomba, L., Ribate, M.P., Sangüesa, E., Concha, J., Garralaga, M.A.P., Errazquin, D., ... Giner, B. (2021). Deep eutectic solvents: are they safe? Applied Sciences, 11(21): 10061, doi: 10.3390/app112110061.
  • López-Salazar, H., Camacho-Díaz, B.H., Ocampo, M.L.A., Jiménez-Aparicio, A.R. (2023). Microwave-assisted extraction of functional compounds from plants: A Review. Bioresources, 18(3): 6614-6638.
  • Lovrić, V., Putnik, P., Bursać Kovačević, D., Jukić, M., Dragović-Uzelac, V. (2017). Effect of microwave-assisted extraction on the phenolic compounds and antioxidant capacity of blackthorn flowers. Food technology and biotechnology, 55(2), 243-250.
  • Ma, Y.Q., Chen, J.C., Liu, D.H., Ye, X.Q. (2009). Simultaneous extraction of phenolic compounds of citrus peel extracts: effect of ultrasound. Ultrasonics Sonochemistry, 16: 57–62, doi: 10.1016/j.ultsonch.2008.04.012.
  • Safarzadeh Markhali, F., Teixeira, J. A., Rocha, C. M. (2022). Effect of ohmic heating on the extraction yield, polyphenol content and antioxidant activity of olive mill leaves. Clean Technologies, 4(2), 512-528, doi: 10.3390/cleantechnol4020031.
  • Muley, P.D., Mobley, J.K., Tong, X., Novak, B., Stevens, J., Moldovan, D., ... Boldor, D. (2019). Rapid microwave-assisted biomass delignification and lignin depolymerization in deep eutectic solvents. Energy Conversion and Management, 196: 1080-1088, doi: 10.1016/ j.enconman.2019.06.070.
  • Muley, P. D., Boldor, D. (2013). Investigation of microwave dielectric properties of biodiesel components. Bioresource technology, 127, 165-174.
  • Milićević, N., Kojić, P., Sakač, M., Mišan, A., Kojić, J., Perussello, C., ... Tiwari, B. (2021). Kinetic modelling of ultrasound-assisted extraction of phenolics from cereal brans. Ultrasonics Sonochemistry, 79: 105761, doi: 10.1016/j.ultsonch.2021.105761.
  • Peleg, M. (1988). An empirical model for the description of moisture sorption curves. Journal of Food Science, 53(4): 1216–1219, doi: 10.1111/j.1365-2621.1988.tb13565.x.
  • Pereira, R.N., Coelho, M.I., Genisheva, Z., Fernandes, J.M., Vicente, A.A., Pintado, M.E. (2020). Using Ohmic Heating effect on grape skins as a pretreatment for anthocyanins extraction. Food and Bioproducts Processing, 124: 320-328, doi: 10.1016/j.fbp.2020.09.009.
  • Pereira, R.N., Rodrigues, R.M., Genisheva, Z., Oliveira, H., de Freitas, V., Teixeira, J.A., Vicente, A.A. (2016). Effects of ohmic heating on extraction of food-grade phytochemicals from colored potato. Lwt, 74: 493-503, doi: 10.1016/j.lwt.2016.07.074.
  • Popovic, B.M., Micic, N., Potkonjak, A., Blagojevic, B., Pavlovic, K., Milanov, D., Juric, T. (2022). Novel extraction of polyphenols from sour cherry pomace using natural deep eutectic solvents–Ultrafast microwave-assisted NADES preparation and extraction. Food Chemistry, 366: 130562, doi: 10.1016/j.foodchem.2021.130562.
  • Rashmi, H.B., Negi, P.S. (2020). Phenolic acids from vegetables: A review on processing stability and health benefits. Food Research International, 136: 109298, doi: 10.1016/j.foodres.2020.109298.
  • Romeo, R., De Bruno, A., Imeneo, V., Piscopo, A., Poiana, M. (2019). Evaluation of enrichment with antioxidants from olive oil mill wastes in hydrophilic model system. Journal of Food Processing and Preservation, 43(11), e14211.
  • Shabir, S., Ilyas, N., Saeed, M., Bibi, F., Sayyed, R.Z., Almalki, W.H. (2023). Treatment technologies for olive mill wastewater with impacts on plants. Environmental Research, 216: 114399, doi: 10.1016/j.envres.2022.114399.
  • Shewale, S.P., Kapadia, M., Rathod, V.K. (2022). Intensification of total phenolic compounds extraction from Azadirachta indica (Neem) leaves by ultrasound. Chemical Engineering and Processing-Process Intensification, 181: 109099, doi: 10.1016/j.cep.2022.109099.
  • Singleton, V.L., Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3): 144-158, doi: 10.5344/ajev.1965.16.3.144.
  • Shaukat, S., Buchner, R. (2011). Densities, viscosities [from (278.15 to 318.15) K], and electrical conductivities (at 298.15 K) of aqueous solutions of choline chloride and chloro-choline chloride. Journal of Chemical & Engineering Data, 56(12): 4944-4949.
  • Shi, J., Yu, J., Pohorly, J., Young, J.C., Bryan, M., Wu, Y. (2003). Optimization of the extraction of polyphenols from grape seed meal by aqueous ethanol solution. Food, Agriculture and Environment, 1(2): 42-47.
  • Solomakou, N., Goula, A.M. (2021). Treatment of olive mill wastewater by adsorption of phenolic compounds. Reviews in Environmental Science and Bio/Technology, 20(3): 839-863, doi: 10.1007/s11157-021-09585-x.
  • Suthar, P., Kaushal, M., Vaidya, D., Thakur, M., Chauhan, P., Angmo, D., ... Negi, N. (2023). Deep eutectic solvents (DES): an update on the applications in food sectors. Journal of Agriculture and Food Research, 14: 100678, doi: 10.1016/j.jafr.2023.100678.
  • Wang, Y., Wang, C., Xue, H., Jin, Y., Yang, M., Leng, F. (2023). Comparative analysis of three kinds of extraction kinetic models of crude polysaccharides from Codonopsis pilosula and evaluate the characteristics of crude polysaccharides. Biomass Conversion and Biorefinery, 13(14), 12917-12933, doi: 10.1007/s13399-022-02518-w.
  • Xu, Q., Wang, S., Milliron, H., Han, Q. (2022). The efficacy of phenolic compound extraction from potato peel waste. Processes, 10(11): 2326, doi: doi.org/10.3390/pr10112326.
  • Yılmaz, M.S., Kantar, N.K., Erdem, G., Demirkol, Ö.Ş., Yakan, A.İ. (2021). Fenolik bileşiklerin aliç meyvesinden (Crataegus monogyna) mikrodalga ve ultrases destekli yöntemler ile ekstraksiyonu. GIDA, 46(4): 1002-1015, 10.15237/gida.GD21018.
  • Yusoff, I.M., Taher, Z.M., Rahmat, Z., Chua, L.S. (2022). A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. Food research international, 157, 111268. doi: 10.1016/j.foodres.2022.111268.
  • Zahi, M.R., Zam, W., El Hattab, M. (2022). State of knowledge on chemical, biological and nutritional properties of olive mill wastewater. Food Chemistry, 381: 132238, doi: 10.1016/j.foodchem.2022.132238.
There are 60 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Articles
Authors

Yaşar Özlem Alifakı 0000-0002-8098-5617

Merve Sılanur Yılmaz 0000-0002-3184-1780

Özge Şakıyan Demirkol 0000-0002-0778-8211

Asli İşci Yakan 0000-0002-8319-0414

Project Number TAGEM-20/AR-GE/07
Publication Date
Submission Date July 27, 2024
Acceptance Date October 4, 2024
Published in Issue Year 2024 Volume: 49 Issue: 6

Cite

APA Alifakı, Y. Ö., Yılmaz, M. S., Şakıyan Demirkol, Ö., İşci Yakan, A. (n.d.). ZEYTİN KARASUYU FENOLİK BİRLEŞİKLERİNİN OHMİK, MİKRODALGA VE ULTRASON DESTEKLİ EKSTRAKSİYONU ve KİNETİK MODELLEMESİ. Gıda, 49(6), 1010-1027. https://doi.org/10.15237/gida.GD24075
AMA Alifakı YÖ, Yılmaz MS, Şakıyan Demirkol Ö, İşci Yakan A. ZEYTİN KARASUYU FENOLİK BİRLEŞİKLERİNİN OHMİK, MİKRODALGA VE ULTRASON DESTEKLİ EKSTRAKSİYONU ve KİNETİK MODELLEMESİ. The Journal of Food. 49(6):1010-1027. doi:10.15237/gida.GD24075
Chicago Alifakı, Yaşar Özlem, Merve Sılanur Yılmaz, Özge Şakıyan Demirkol, and Asli İşci Yakan. “ZEYTİN KARASUYU FENOLİK BİRLEŞİKLERİNİN OHMİK, MİKRODALGA VE ULTRASON DESTEKLİ EKSTRAKSİYONU Ve KİNETİK MODELLEMESİ”. Gıda 49, no. 6 n.d.: 1010-27. https://doi.org/10.15237/gida.GD24075.
EndNote Alifakı YÖ, Yılmaz MS, Şakıyan Demirkol Ö, İşci Yakan A ZEYTİN KARASUYU FENOLİK BİRLEŞİKLERİNİN OHMİK, MİKRODALGA VE ULTRASON DESTEKLİ EKSTRAKSİYONU ve KİNETİK MODELLEMESİ. Gıda 49 6 1010–1027.
IEEE Y. Ö. Alifakı, M. S. Yılmaz, Ö. Şakıyan Demirkol, and A. İşci Yakan, “ZEYTİN KARASUYU FENOLİK BİRLEŞİKLERİNİN OHMİK, MİKRODALGA VE ULTRASON DESTEKLİ EKSTRAKSİYONU ve KİNETİK MODELLEMESİ”, The Journal of Food, vol. 49, no. 6, pp. 1010–1027, doi: 10.15237/gida.GD24075.
ISNAD Alifakı, Yaşar Özlem et al. “ZEYTİN KARASUYU FENOLİK BİRLEŞİKLERİNİN OHMİK, MİKRODALGA VE ULTRASON DESTEKLİ EKSTRAKSİYONU Ve KİNETİK MODELLEMESİ”. Gıda 49/6 (n.d.), 1010-1027. https://doi.org/10.15237/gida.GD24075.
JAMA Alifakı YÖ, Yılmaz MS, Şakıyan Demirkol Ö, İşci Yakan A. ZEYTİN KARASUYU FENOLİK BİRLEŞİKLERİNİN OHMİK, MİKRODALGA VE ULTRASON DESTEKLİ EKSTRAKSİYONU ve KİNETİK MODELLEMESİ. The Journal of Food.;49:1010–1027.
MLA Alifakı, Yaşar Özlem et al. “ZEYTİN KARASUYU FENOLİK BİRLEŞİKLERİNİN OHMİK, MİKRODALGA VE ULTRASON DESTEKLİ EKSTRAKSİYONU Ve KİNETİK MODELLEMESİ”. Gıda, vol. 49, no. 6, pp. 1010-27, doi:10.15237/gida.GD24075.
Vancouver Alifakı YÖ, Yılmaz MS, Şakıyan Demirkol Ö, İşci Yakan A. ZEYTİN KARASUYU FENOLİK BİRLEŞİKLERİNİN OHMİK, MİKRODALGA VE ULTRASON DESTEKLİ EKSTRAKSİYONU ve KİNETİK MODELLEMESİ. The Journal of Food. 49(6):1010-27.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/