ÇEVRESEL DEĞİŞKENLERİN LAKTİK ASİT BAKTERİLERİ TARAFINDAN ANTİMİKROBİYAL MADDE ÜRETİMİ ÜZERİNDEKİ ETKİSİ: BOX-BEHNKEN TASARIM YAKLAŞIMI
Year 2025,
Volume: 50 Issue: 3, 466 - 478, 10.06.2025
Evrim Güneş Altuntaş
Abstract
Bu araştırmada, laktik asit bakterileri (LAB) tarafından antimikrobiyal madde üretimi için optimum koşulları belirlemek amacıyla 3 faktörlü Box-Behnken deneysel tasarımı (BBD) kullanılmıştır. Deneysel parametreler üç değişkenden oluşmakta olup, bu değişkenler: sıcaklık (30, 35 ve 37oC), inkübasyon süresi (24, 48 ve 72 saat) ve substrat konsantrasyonu (%1, %2 ve %3) olarak belirlenmiştir. Lactiplantibacillus plantarum F2 izolatı tarafından antimikrobiyal madde üretiminin, değişen inkübasyon süresinden etkilendiği gözlenmiştir. Pediococcus pentosaceus 50 izolatının en yüksek antimikrobiyal madde üretimi (deneysel süreçte elde edilen ortalama inhibisyon zon çapı 12.00 mm; Box-Behnken tasarımında tahmin edilen değer 12.09 mm), inkübasyon sıcaklığı 37°C, inkübasyon süresi 24 saat ve ortamda %2'lik bir substrat konsantrasyonu olduğunda elde edilmiştir. Bu bulgular, LAB'nin antimikrobiyal aktivitesinin genellikle logaritmik fazın sonuna doğru ve durağan fazda arttığını, bunun da muhtemelen ikincil metabolitlerin artan üretiminden kaynaklandığını göstermektedir.
Project Number
TÜSEB 12028
References
-
Abedi, E., Hashemi, S. M. B. (2020). Lactic acid production – producing microorganisms and substrates sources-state of art. Heliyon, 6(10), e04974. https://doi.org/10.1016/j.heliyon.2020.e04974
-
Ahsan, T., Zang, C., Yu, S., Pei, X., Xie, J., Lin, Y., Liu, X., Liang, C. (2022). Screening, and Optimization of Fermentation Medium to Produce Secondary Metabolites from Bacillus amyloliquefaciens, for the Biocontrol of Early Leaf Spot Disease, and Growth Promoting Effects on Peanut (Arachis hypogaea L.). Journal of Fungi, 8(11).
-
Alvarez-Sieiro, P., Montalbán-López, M., Mu, D., Kuipers, O. P. (2016). Bacteriocins of lactic acid bacteria: extending the family. Applied Microbiology and Biotechnology, 100(7), 2939-2951. https://doi.org/10.1007/s00253-016-7343-9
-
Box, G.E.P., Behnken, D.W. (1960). Some new three level design for study of quantitative variables, Technometerics, 2, 455-476.
-
Box, G.E.P., Draper N.R. (1987). Empirical model-building and response surfaces, A Wiley-Interscience Publication. 1st ed. Canada John Wiley and Sons pp. 34-57, 304-381, 423-474.
-
Cardoso, C.E.D., Almeida, J.C., Rocha, J. et al. (2025). Application of Box-Behnken design to optimize the phosphorus removal from industrial wastewaters using magnetic nanoparticles. Environmental Science and Pollution Research, 32, 6804–6816.
-
Celik, A.A. (2022). Determination of the amount of lactic and diacetyl produced by Pediococcus strains isolated from some fermented foods. Master Degree Thesis submitted to Ankara University Science Institute, Ankara-Turkey.
-
Chen, W., Wang, L. (2019). The Preparation Technology of Pharmaceutical Preparations of Lactic Acid Bacteria. In W. Chen (Ed.), Lactic Acid Bacteria: Bioengineering and Industrial Applications (pp. 227-255). Springer Singapore. https://doi.org/10.1007/978-981-13-7283-4_9
-
Demir, Ö., Aksu, B., Özsoy, Y. (2017). İlaç Formülasyonu Geliştirilmesinde Deney Tasarımı Seçimi ve Kullanım, Marmara Pharmaceutical Journal, 21/2: 216-227. DOI: 10.12991/ marupj.277719
-
Elibol, M. (2004). Optimization of medium composition for actinorhodin production by Streptomyces coelicolor A3(2) with response surface methodology. Process Biochemistry, 39(9), 1057-1062. https://doi.org/https://doi.org/ 10.1016/S0032-9592(03)00232-2
-
Ferreira, S.L.C., Bruns, R.E., Ferreira, H.S., Matos, G.D., David, J.M., Brandão, G.C., da Silva, E.G.P., Portugal, L.A., dos Reis, P.S., Souza, A.S., dos Santos, W.N.L. (2007). Box-Behnken design: An alternative for the optimization of analytical methods. Analytica Chimica Acta, 597(2), 179-186. https://doi.org/https://doi.org/10.1016/j.aca.2007.07.011
-
Harris, L.J., Daeschel, M.A., Stiles, M.E., Klaenhammer, T.R. (1989). Antimicrobial Activity of Lactic Acid Bacteria Against Listeria monocytogenes. Journal of Food Protection, 52(6), 3784-387.
-
Managamuri, U., Vijayalakshmi, M., Poda, S., Ganduri, V. S. R. K., Babu, R. S. (2016). Optimization of culture conditions by response surface methodology and unstructured kinetic modeling for bioactive metabolite production by Nocardiopsis litoralis VSM-8. 3 Biotech, 6(2), 219. https://doi.org/10.1007/s13205-016-0535-2
-
Mahato, A.K., Kumari, L., Singh, R.S., Alam, M.T. (2021). Fermentative study on optimization of lactic acid production from cane sugar by Lactobacillus spp. European Journal of Molecular & Clinical Medicine, 8(2): 712-723.
-
Manzoor, A., Qazi, J.I., Haq, I.U., Mukhtar, H., Rasool, A. (2017). Significantly enhanced biomass production of a novel bio-therapeutic strain Lactobacillus plantarum (AS-14) by developing low cost media cultivation strategy. Journal of Biological Engineering, 5;11:17. doi: 10.1186/s13036-017-0059-2. PMID: 28484513; PMCID: PMC5418682.
-
Montgomery, D.C. (2001). Design and analysis of experiments, A Wiley-Interscience Publication. 5th ed. Canada, John Wiley and Sons, pp. 427-510.
-
Moradi, S., Zeraatpisheh, F., Tabatabaee-Yazdi, F. (2023). Investigation of lactic acid production in optimized dairy wastewater culture medium. Biomass Conversion and Biorefinery, 13, 14837–14848. https://doi.org/10.1007/s13399-022-03230-5
-
Neal-McKinney, J. M., Lu, X., Duong, T., Larson, C. L., Call, D. R., Shah, D. H., Konkel, M. E. (2012). Production of Organic Acids by Probiotic Lactobacilli Can Be Used to Reduce Pathogen Load in Poultry. PLOS ONE, 7(9), e43928. https://doi.org/10.1371/journal.pone.0043928
-
Özoğlu, Ö., Gümüştaş, M., Özkan, S. A., Güneş-Altuntaş, E. (2021). Investigation of Antimicrobial Activities and Lactic Acid Production Levels of Presumptive Lactic Acid Bacteria Isolated From Naturally Fermented Foods [Research]. Journal of Agricultural Faculty of Bursa Uludag University, 36(1), 25-40. https://doi.org/https://doi.org/10.20479/bursauludagziraat.943244
-
Prema, P., Ali, D., Nguyen, V.H., Pradeep, B.V., Veeramanikandan, V., Daglia, M., Arciola, C.R., Balaji, P. (2024). A Response Surface Methodological Approach for Large-Scale Production of Antibacterials from Lactiplantibacillus plantarum with Potential Utility against Foodborne and Orthopedic Infections. Antibiotics (Basel), 13(5):437.
-
Project No #119O343. (2023). The searching the effect of structural modifications of pediocin molecule on antimicrobial activity by in silico and in vitro way. The project supported by TUBITAK-Turkey between 2019-2023.
-
Rifa'i, M., Fitri Atho'illah, M.F., Arifah, S.N., Suharto, A.R., Fadhilla, A.N., Sa'adah, N.A.M., Ardiansyah, E., Izati, R., Faizah, B.N.A., Fadlilah, D.N., Kavitarna, S.A., Wardhani, S.O., Barlianto, W., Tsuboi, H., Jatmiko, Y.D. (2025). Physicochemical and functional optimization of probiotic yogurt with encapsulated Lacticaseibacillus paracasei E1 enriched with green tea using Box–Behnken design. Applied Food Research, 5(1), 100690, ISSN 2772-5022.
-
Ringø, E., Hoseinifar, S. H., Ghosh, K., Doan, H. V., Beck, B. R., Song, S. K. (2018). Lactic Acid Bacteria in Finfish—An Update [Review]. Frontiers in Microbiology, 9. https://doi.org/ 10.3389/fmicb.2018.01818
-
Rohmatussolihat, R., Lisdiyanti, P., Yopi, Y., Widyastuti, Y., Sukara, E. (2018). Medium Optimizatıon For Antimicrobial Production By Newly Screened Lactic Acid Bacteria. Annales Bogorienses, 22(1): 1-11.
-
Salem-Bekhit, M.M., Riad, O.K.M., Selim, H.M.R.M., Tohamy, S.T.K., Taha, E.I., Al-Suwayeh, S.A., Shazly, G.A. (2023). Box–Behnken Design for Assessing the Efficiency of Aflatoxin M1 Detoxification in Milk Using Lactobacillus rhamnosus and Saccharomyces cerevisiae. Life, 13, 1667.
-
Singh, V., Haque, S., Niwas, R., Srivastava, A., Pasupuleti, M., Tripathi, C. K. (2016). Strategies for Fermentation Medium Optimization: An In-Depth Review. Frontiers in Microbiology, 7, 2087. https://doi.org/10.3389/fmicb.2016.02087
-
Sridevi, V., Padmaja, M., Sahitya, A., Harsha Vardhan, N., H. Rao, G. (2015). Application of Box-Behnken Design for the Optimized Production of Lactic Acid by Newly Isolated Lactobacillus plantarum JX183220 Using Cassava (Manihot esculenta Crantz) Flour. Biotechnology Journal International, 9(2), 1–9. https://doi.org/10.9734/BBJ/2015/20236
-
Tekindal, M.A., Bayrak, H., Özkaya, B., Genç, Y. (2012). Box-behnken experimental design in factorial experiments: the importance of bread for nutrition and health running head. Turkish Journal of Field Crops, 17(2):115-123.
-
Tekindal, M., Kaymaz, Ö. (2018). An evaluation of the psychological life quality of women with disabled children with Box Behnken experimental design. OPUS Uluslararası Toplum Araştırmaları Dergisi, 8(15):988-1004.
-
Wang, Y., Wu, J., Lv, M., Shao, Z., Hungwe, M., Wang, J., Bai, X., Xie, J., Wang, Y., Geng, W. (2021). Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry. Frontiers in Bioengineering and Biotechnology, 9, DOI=10.3389/fbioe.2021.612285.
-
Wang, S., Chen, P., Dang, H. (2019). Lactic Acid Bacteria and γ-Aminobutyric Acid and Diacetyl. In W. Chen (Ed.), Lactic Acid Bacteria: Bioengineering and Industrial Applications (pp. 1-19). Springer Singapore. https://doi.org/ 10.1007/978-981-13-7283-4_1
-
Zapaśnik, A., Sokołowska, B., Bryła, M. (2022). Role of Lactic Acid Bacteria in Food Preservation and Safety. Foods, 11(9). https://doi.org/ 10.3390/foods11091283
-
Zhang, B., Shu, G., Bao, C., Cao, J., Tan, Y. (2017). Optimization of Culture Medium for Lactobacillus bulgaricus using Box-Behnken Design. Acta Universitatis Cibiniensis. Series E: Food Technology, 21(1): 3-10. https://doi.org/ 10.1515/aucft-2017-0001
IMPACT OF ENVIRONMENTAL VARIABLES ON ANTIMICROBIAL SUBSTANCE PRODUCTION BY LACTIC ACID BACTERIA: A BOX-BEHNKEN DESIGN APPROACH
Year 2025,
Volume: 50 Issue: 3, 466 - 478, 10.06.2025
Evrim Güneş Altuntaş
Abstract
In this research, we employed a 3-factor Box-Behnken experimental design (BBD) to ascertain the optimal conditions for the production of antimicrobial substances by lactic acid bacteria (LAB). The experimental parameters encompassed three variables: temperature (30, 35 and 37oC), incubation time (24, 48 and 72 hours), and substrate concentration (1%, 2% and 3%). The production of antimicrobial substances by Lactiplantibacillus plantarum F2 isolate was influenced by the incubation period. The highest antimicrobial substance production (average inhibition zone diameter 12.00 mm for antimicrobial activity assay; 12.09 mm for Box-Behnken estimation) of Pediococcus pentosaceus 50 isolate was achieved at a temperature of 37°C, an incubation period of 24 hours, and a substrate concentration of 2% in the environment. These findings indicate that the antimicrobial activity of LAB typically intensifies toward the end of the logarithmic phase and into the stationary phase, likely due to the increased production of secondary metabolites.
Ethical Statement
Author Contribution Conceptualization: EGA. Analysis and data curation: BS, AAC, OK, EGA. Funding acquisition: EGA. Methodology: OK, EGA. Investigation: BS, AAC, OK. Supervision: EGA. Writing – original draft - review & editing: EGA. All authors have read and agreed to the published version of the manuscript.
Conflict of Interest The authors declare no competing interests.
Supporting Institution
This study was supported by TUSEB (Health Ministry of Turkey) with the Grant No #12028.
Project Number
TÜSEB 12028
Thanks
The Lactic acid bacteria isolates used in this study were obtained previously in the project supported by TUBITAK Grant No #119O343 and the master degree thesis of Asena Aslihan Celik submitted to Ankara University Science Institute, Ankara-Turkey.
References
-
Abedi, E., Hashemi, S. M. B. (2020). Lactic acid production – producing microorganisms and substrates sources-state of art. Heliyon, 6(10), e04974. https://doi.org/10.1016/j.heliyon.2020.e04974
-
Ahsan, T., Zang, C., Yu, S., Pei, X., Xie, J., Lin, Y., Liu, X., Liang, C. (2022). Screening, and Optimization of Fermentation Medium to Produce Secondary Metabolites from Bacillus amyloliquefaciens, for the Biocontrol of Early Leaf Spot Disease, and Growth Promoting Effects on Peanut (Arachis hypogaea L.). Journal of Fungi, 8(11).
-
Alvarez-Sieiro, P., Montalbán-López, M., Mu, D., Kuipers, O. P. (2016). Bacteriocins of lactic acid bacteria: extending the family. Applied Microbiology and Biotechnology, 100(7), 2939-2951. https://doi.org/10.1007/s00253-016-7343-9
-
Box, G.E.P., Behnken, D.W. (1960). Some new three level design for study of quantitative variables, Technometerics, 2, 455-476.
-
Box, G.E.P., Draper N.R. (1987). Empirical model-building and response surfaces, A Wiley-Interscience Publication. 1st ed. Canada John Wiley and Sons pp. 34-57, 304-381, 423-474.
-
Cardoso, C.E.D., Almeida, J.C., Rocha, J. et al. (2025). Application of Box-Behnken design to optimize the phosphorus removal from industrial wastewaters using magnetic nanoparticles. Environmental Science and Pollution Research, 32, 6804–6816.
-
Celik, A.A. (2022). Determination of the amount of lactic and diacetyl produced by Pediococcus strains isolated from some fermented foods. Master Degree Thesis submitted to Ankara University Science Institute, Ankara-Turkey.
-
Chen, W., Wang, L. (2019). The Preparation Technology of Pharmaceutical Preparations of Lactic Acid Bacteria. In W. Chen (Ed.), Lactic Acid Bacteria: Bioengineering and Industrial Applications (pp. 227-255). Springer Singapore. https://doi.org/10.1007/978-981-13-7283-4_9
-
Demir, Ö., Aksu, B., Özsoy, Y. (2017). İlaç Formülasyonu Geliştirilmesinde Deney Tasarımı Seçimi ve Kullanım, Marmara Pharmaceutical Journal, 21/2: 216-227. DOI: 10.12991/ marupj.277719
-
Elibol, M. (2004). Optimization of medium composition for actinorhodin production by Streptomyces coelicolor A3(2) with response surface methodology. Process Biochemistry, 39(9), 1057-1062. https://doi.org/https://doi.org/ 10.1016/S0032-9592(03)00232-2
-
Ferreira, S.L.C., Bruns, R.E., Ferreira, H.S., Matos, G.D., David, J.M., Brandão, G.C., da Silva, E.G.P., Portugal, L.A., dos Reis, P.S., Souza, A.S., dos Santos, W.N.L. (2007). Box-Behnken design: An alternative for the optimization of analytical methods. Analytica Chimica Acta, 597(2), 179-186. https://doi.org/https://doi.org/10.1016/j.aca.2007.07.011
-
Harris, L.J., Daeschel, M.A., Stiles, M.E., Klaenhammer, T.R. (1989). Antimicrobial Activity of Lactic Acid Bacteria Against Listeria monocytogenes. Journal of Food Protection, 52(6), 3784-387.
-
Managamuri, U., Vijayalakshmi, M., Poda, S., Ganduri, V. S. R. K., Babu, R. S. (2016). Optimization of culture conditions by response surface methodology and unstructured kinetic modeling for bioactive metabolite production by Nocardiopsis litoralis VSM-8. 3 Biotech, 6(2), 219. https://doi.org/10.1007/s13205-016-0535-2
-
Mahato, A.K., Kumari, L., Singh, R.S., Alam, M.T. (2021). Fermentative study on optimization of lactic acid production from cane sugar by Lactobacillus spp. European Journal of Molecular & Clinical Medicine, 8(2): 712-723.
-
Manzoor, A., Qazi, J.I., Haq, I.U., Mukhtar, H., Rasool, A. (2017). Significantly enhanced biomass production of a novel bio-therapeutic strain Lactobacillus plantarum (AS-14) by developing low cost media cultivation strategy. Journal of Biological Engineering, 5;11:17. doi: 10.1186/s13036-017-0059-2. PMID: 28484513; PMCID: PMC5418682.
-
Montgomery, D.C. (2001). Design and analysis of experiments, A Wiley-Interscience Publication. 5th ed. Canada, John Wiley and Sons, pp. 427-510.
-
Moradi, S., Zeraatpisheh, F., Tabatabaee-Yazdi, F. (2023). Investigation of lactic acid production in optimized dairy wastewater culture medium. Biomass Conversion and Biorefinery, 13, 14837–14848. https://doi.org/10.1007/s13399-022-03230-5
-
Neal-McKinney, J. M., Lu, X., Duong, T., Larson, C. L., Call, D. R., Shah, D. H., Konkel, M. E. (2012). Production of Organic Acids by Probiotic Lactobacilli Can Be Used to Reduce Pathogen Load in Poultry. PLOS ONE, 7(9), e43928. https://doi.org/10.1371/journal.pone.0043928
-
Özoğlu, Ö., Gümüştaş, M., Özkan, S. A., Güneş-Altuntaş, E. (2021). Investigation of Antimicrobial Activities and Lactic Acid Production Levels of Presumptive Lactic Acid Bacteria Isolated From Naturally Fermented Foods [Research]. Journal of Agricultural Faculty of Bursa Uludag University, 36(1), 25-40. https://doi.org/https://doi.org/10.20479/bursauludagziraat.943244
-
Prema, P., Ali, D., Nguyen, V.H., Pradeep, B.V., Veeramanikandan, V., Daglia, M., Arciola, C.R., Balaji, P. (2024). A Response Surface Methodological Approach for Large-Scale Production of Antibacterials from Lactiplantibacillus plantarum with Potential Utility against Foodborne and Orthopedic Infections. Antibiotics (Basel), 13(5):437.
-
Project No #119O343. (2023). The searching the effect of structural modifications of pediocin molecule on antimicrobial activity by in silico and in vitro way. The project supported by TUBITAK-Turkey between 2019-2023.
-
Rifa'i, M., Fitri Atho'illah, M.F., Arifah, S.N., Suharto, A.R., Fadhilla, A.N., Sa'adah, N.A.M., Ardiansyah, E., Izati, R., Faizah, B.N.A., Fadlilah, D.N., Kavitarna, S.A., Wardhani, S.O., Barlianto, W., Tsuboi, H., Jatmiko, Y.D. (2025). Physicochemical and functional optimization of probiotic yogurt with encapsulated Lacticaseibacillus paracasei E1 enriched with green tea using Box–Behnken design. Applied Food Research, 5(1), 100690, ISSN 2772-5022.
-
Ringø, E., Hoseinifar, S. H., Ghosh, K., Doan, H. V., Beck, B. R., Song, S. K. (2018). Lactic Acid Bacteria in Finfish—An Update [Review]. Frontiers in Microbiology, 9. https://doi.org/ 10.3389/fmicb.2018.01818
-
Rohmatussolihat, R., Lisdiyanti, P., Yopi, Y., Widyastuti, Y., Sukara, E. (2018). Medium Optimizatıon For Antimicrobial Production By Newly Screened Lactic Acid Bacteria. Annales Bogorienses, 22(1): 1-11.
-
Salem-Bekhit, M.M., Riad, O.K.M., Selim, H.M.R.M., Tohamy, S.T.K., Taha, E.I., Al-Suwayeh, S.A., Shazly, G.A. (2023). Box–Behnken Design for Assessing the Efficiency of Aflatoxin M1 Detoxification in Milk Using Lactobacillus rhamnosus and Saccharomyces cerevisiae. Life, 13, 1667.
-
Singh, V., Haque, S., Niwas, R., Srivastava, A., Pasupuleti, M., Tripathi, C. K. (2016). Strategies for Fermentation Medium Optimization: An In-Depth Review. Frontiers in Microbiology, 7, 2087. https://doi.org/10.3389/fmicb.2016.02087
-
Sridevi, V., Padmaja, M., Sahitya, A., Harsha Vardhan, N., H. Rao, G. (2015). Application of Box-Behnken Design for the Optimized Production of Lactic Acid by Newly Isolated Lactobacillus plantarum JX183220 Using Cassava (Manihot esculenta Crantz) Flour. Biotechnology Journal International, 9(2), 1–9. https://doi.org/10.9734/BBJ/2015/20236
-
Tekindal, M.A., Bayrak, H., Özkaya, B., Genç, Y. (2012). Box-behnken experimental design in factorial experiments: the importance of bread for nutrition and health running head. Turkish Journal of Field Crops, 17(2):115-123.
-
Tekindal, M., Kaymaz, Ö. (2018). An evaluation of the psychological life quality of women with disabled children with Box Behnken experimental design. OPUS Uluslararası Toplum Araştırmaları Dergisi, 8(15):988-1004.
-
Wang, Y., Wu, J., Lv, M., Shao, Z., Hungwe, M., Wang, J., Bai, X., Xie, J., Wang, Y., Geng, W. (2021). Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry. Frontiers in Bioengineering and Biotechnology, 9, DOI=10.3389/fbioe.2021.612285.
-
Wang, S., Chen, P., Dang, H. (2019). Lactic Acid Bacteria and γ-Aminobutyric Acid and Diacetyl. In W. Chen (Ed.), Lactic Acid Bacteria: Bioengineering and Industrial Applications (pp. 1-19). Springer Singapore. https://doi.org/ 10.1007/978-981-13-7283-4_1
-
Zapaśnik, A., Sokołowska, B., Bryła, M. (2022). Role of Lactic Acid Bacteria in Food Preservation and Safety. Foods, 11(9). https://doi.org/ 10.3390/foods11091283
-
Zhang, B., Shu, G., Bao, C., Cao, J., Tan, Y. (2017). Optimization of Culture Medium for Lactobacillus bulgaricus using Box-Behnken Design. Acta Universitatis Cibiniensis. Series E: Food Technology, 21(1): 3-10. https://doi.org/ 10.1515/aucft-2017-0001