Research Article
BibTex RIS Cite

SOĞUK PRESLENMİŞ HAŞHAŞ (Papaver somniferum L.) TOHUMU YAĞININ BAZI TİCARİ YAĞLARLA BİRLİKTE TERMAL OKSİDASYONUNUN ARAŞTIRILMASI

Year 2025, Volume: 50 Issue: 3, 406 - 414, 10.06.2025
https://doi.org/10.15237/gida.GD25036

Abstract

Bu çalışmada, haşhaş tohumu yağı (PSO), rafine mısır yağı (CO), fındık yağı (HO) ve ceviz yağı (WO)'nın termal oksidatif stabilitesi incelendi. Yağ örnekleri 180℃'de, 5 dakika boyunca, 12 kez ısıtıldı. Çalışma sırasında, toplam polar madde miktarı (TPM) ve antioksidan aktivite kapasitesindeki (DPPH) değişim, oksidasyon derecesini gösteren diğer parametreler ile birlikte incelendi. Uygulanan ısıtma işlemleri ile birlikte yağ örneklerinin serbest yağ asidi içeriği (FFA), peroksit değeri (PV), p-Anisidin değeri (p-AV), TPM, konjuge dien (CD) ve konjuge trien (CT) değerlerinde önemli bir artış gözlendi (P<0.05). Bunun yanında, antioksidan aktivite kapasiteleri ise önemli oranda azaldı (P<0.05). Genellikle, başlangıç değerlerine göre, PSO örneklerinde p-AV (66.89), TPM (%16.17) ve antioksidan aktivite kapasitesinde (%46.08) ortaya çıkan değişim diğer yağlara göre daha düşüktü. Bu durum fenolik maddeler ve tokoferol içeriği ile ilişkili olabilir. Çalışma sonunda, soğuk preslenmiş haşhaş tohumu yağının alternatif yemelik bir yağ olabileceği sonucuna varılmıştır.

References

  • Albayrak, S., Sağdıç, O., Aksoy, A. (2010). The assays used for assessing antioxidant capacities of herbal products and foods. Erciyes University Journal of the Institute of Science and Technology, 26(4): 401-409.
  • AOCS Cd8b-90 (1997). Peroxide value, acetic acid, isooctane method.
  • AOCS Cd18-90 (1998). p-Anisidine value.
  • Ayyıldız, H.F., Topkafa, M., Sherazı, S.T.H., Mahesar, S.A., Kara, H. (2021). Investigation of the chemical characteristics and oxidative stability of some commercial cold-pressed oils. Konya Journal of Engineering Sciences, 9(4): 904-916.
  • Bhattacharya, A.B., Sajilata, M.G., Tiwari, S.R., Singhal, R.S. (2008). Regeneration of thermally polymerized frying oils with adsorbents. Food Chemistry, 110: 562-570.
  • Bozan, B., Temelli, F. (2003). Extraction of poppy seed oil using supercritical CO2. Journal of Food Science, 68(2): 422-426.
  • Brand-Williams, W., Cuvelier, M.E., Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28: 25-30.
  • Ceylan, M.M., Basturk, A. (2022). Investigation of the effects of uckun (Rheum ribes L.), quinoa (Chenopodium quinoa Willd.), and propolis extracts on the thermal oxidation of palm olein oil during the deep-frying process. J. Food Process Preserv., 46: e16210.
  • Çakaloğlu, B., Özyurt, V.H., Ötleş, S. (2018). Cold press in oil extraction. A review. Ukrainian Food Journal, 7(4): 640-654.
  • Çelebi, K., Cerit, I., Demirkol, O. (2021). Effect of hops oil on sunflower oil thermal stability. Progress in Nutrition, 23(4): e2021310.
  • Dabrowski, G., Czaplicki, S., Konopka, I. (2020). Composition and quality of poppy (Papaver somniferum L.) seed oil depending on the extraction method. LWT-Food Science and Technology, 134: 110167.
  • Freitas, I.R., Cattelan, M.G., Rodrigues, M.L., Luzia, D.M.M., Jorge, N. (2017). Effect of grape seed extract (Vitis labrusca L.) on soybean oil under thermal oxidation. Nutrition and Food Science, 47(5): 610-622.
  • Ghafoor, K., Özcan, M.M., AL-Juhaimi, F., Babiker, E.E., Fadimu, G.J. (2019). Changes in quality, bioactive compounds, fatty acids, tocopherols, and phenolic composition in oven- and microwave- roasted poppy seeds and oil. LWT-Food Science and Technology, 99: 490-496.
  • Iqbal, S., Bhanger, M.I. (2007). Stabilization of sunflower oil by garlic extract during accelerated storage. Food Chemistry, 100(1): 246-254.
  • ISO 5509 (1978). Animal and vegetable fats and oils-preparation of methyl esters of fatty acids. IUPAC (1987). Standard methods for the analysis of oils, fats and derivatives.
  • Kalantzakis, G., Blekas, G. (2006). Effect of greek sage and summer savory extracts on vegetable oil thermal stability. European Journal of Lipid Science and Technology, 108(10): 842-847.
  • Magalhaes, L.M., Segundo, M.A., Reis, S., Lima, J.L.F.C. (2008). Methodological aspects about in vitro evaluation of antioxidant properties. Analytica Chimica Acta, 613(1): 1-19.
  • Özbek, Z.A., Ergönül, P.G. (2020). Determination of physicochemical properties, fatty acid, tocopherol, sterol, and phenolic profiles of expeller-pressed poppy seed oils from Turkey. J. Am. Oil Chem. Soc., 97: 591-602.
  • Rahimi, A., Kıralan, M., Arslan, N., Bayrak, A., Doğramacı, S. (2011). Variation in fatty acid composition of registered poppy (Papaver somniferum L.) seed in Turkey. Academic Food Journal, 9(3): 22-25.
  • Solak, R., Turan, S., Kurhan, S., Erge, H.S., Karabulut, I. (2018). Thermal oxidation kinetics of refined hazelnut oil. J. Am. Oil Chem. Soc., 95: 497-508.
  • Şengün, İ.Y., Yücel, E., Öztürk, B., Kılıç, G. (2020). Fatty acid composition, total phenolic content, antioxidant and antimicrobial activities of varieties of poppy (Papaver somniforum) seed oils. GIDA, 45(5): 954-962.
  • Wang, Y., Zhu, M., Mei, J., Luo, S., Leng, T., Chen, Y., Nie, S., Xie, M. (2019). Comparison of furans formation and volatile aldehydes profiles of four different vegetable oils during thermal oxidation. Journal of Food Science, 84(7): 1966-1978.
  • Woo, Y.S., Kim, M.J., Lee, J.H. (2018). Correlation of the solid-fat content in vegetable oils with other parameters during thermal oxidation. J. Am. Oil Chem. Soc., 95: 1179-1187.
  • Yanishlieva, N.V., Marinova, E.M. (2001). Stabilisation of edible oils with natural antioxidants. European Journal of Lipid Science and Technology, 103(11): 752-767.
  • Zhang, Y., Yang, L., Zu, Y., Chen, X., Wang, F., Liu, F. (2010). Oxidative stability of sunflower oil supplemented with carnosic acid compared with synthetic antioxidants during accelerated storage. Food Chemistry, 118(3): 656-662.
  • Zhang, Z., Wei, Y., Guan, N., Li, B., Wang, Y. (2022). Changes in chemical composition of flaxseed oil during thermal-induced oxidation and resultant effect on DSC thermal properties. Molecules, 27: 7135.

INVESTIGATION OF THERMAL OXIDATION OF COLD PRESSED POPPY (Papaver somniferum L.) SEED OIL WITH SOME EDIBLE OILS

Year 2025, Volume: 50 Issue: 3, 406 - 414, 10.06.2025
https://doi.org/10.15237/gida.GD25036

Abstract

The thermal oxidative stability of poppy seed oil (PSO) and refined corn oil (CO), hazelnut oil (HO), walnut oil (WO) were examined. The samples were heated 12 times at 180℃ for 5 minutes. The change in total polar matter amount (TPM) and antioxidative capacity level (DPPH), along with some parameters indicating the degree of oxidation, were examined during the study. A significant increase was observed in free fatty acid (FFA), peroxide value (PV), p-Anisidine value (p-AV), conjugated diene (CD), conjugated triene (CT) and TPM of the samples with the applied heating processes (P<0.05). However, antioxidative capacity levels decreased significantly (P<0.05). Generally, according to initial values, changes in p-AV (66.89), TPM (16.17%) and antioxidative capacity level (46.08%) were observed to be lower in PSO than in other oils. This may be related to the phenolics and tocopherol content. The study was concluded that poppy seed oil could be alternative edible oil.

References

  • Albayrak, S., Sağdıç, O., Aksoy, A. (2010). The assays used for assessing antioxidant capacities of herbal products and foods. Erciyes University Journal of the Institute of Science and Technology, 26(4): 401-409.
  • AOCS Cd8b-90 (1997). Peroxide value, acetic acid, isooctane method.
  • AOCS Cd18-90 (1998). p-Anisidine value.
  • Ayyıldız, H.F., Topkafa, M., Sherazı, S.T.H., Mahesar, S.A., Kara, H. (2021). Investigation of the chemical characteristics and oxidative stability of some commercial cold-pressed oils. Konya Journal of Engineering Sciences, 9(4): 904-916.
  • Bhattacharya, A.B., Sajilata, M.G., Tiwari, S.R., Singhal, R.S. (2008). Regeneration of thermally polymerized frying oils with adsorbents. Food Chemistry, 110: 562-570.
  • Bozan, B., Temelli, F. (2003). Extraction of poppy seed oil using supercritical CO2. Journal of Food Science, 68(2): 422-426.
  • Brand-Williams, W., Cuvelier, M.E., Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28: 25-30.
  • Ceylan, M.M., Basturk, A. (2022). Investigation of the effects of uckun (Rheum ribes L.), quinoa (Chenopodium quinoa Willd.), and propolis extracts on the thermal oxidation of palm olein oil during the deep-frying process. J. Food Process Preserv., 46: e16210.
  • Çakaloğlu, B., Özyurt, V.H., Ötleş, S. (2018). Cold press in oil extraction. A review. Ukrainian Food Journal, 7(4): 640-654.
  • Çelebi, K., Cerit, I., Demirkol, O. (2021). Effect of hops oil on sunflower oil thermal stability. Progress in Nutrition, 23(4): e2021310.
  • Dabrowski, G., Czaplicki, S., Konopka, I. (2020). Composition and quality of poppy (Papaver somniferum L.) seed oil depending on the extraction method. LWT-Food Science and Technology, 134: 110167.
  • Freitas, I.R., Cattelan, M.G., Rodrigues, M.L., Luzia, D.M.M., Jorge, N. (2017). Effect of grape seed extract (Vitis labrusca L.) on soybean oil under thermal oxidation. Nutrition and Food Science, 47(5): 610-622.
  • Ghafoor, K., Özcan, M.M., AL-Juhaimi, F., Babiker, E.E., Fadimu, G.J. (2019). Changes in quality, bioactive compounds, fatty acids, tocopherols, and phenolic composition in oven- and microwave- roasted poppy seeds and oil. LWT-Food Science and Technology, 99: 490-496.
  • Iqbal, S., Bhanger, M.I. (2007). Stabilization of sunflower oil by garlic extract during accelerated storage. Food Chemistry, 100(1): 246-254.
  • ISO 5509 (1978). Animal and vegetable fats and oils-preparation of methyl esters of fatty acids. IUPAC (1987). Standard methods for the analysis of oils, fats and derivatives.
  • Kalantzakis, G., Blekas, G. (2006). Effect of greek sage and summer savory extracts on vegetable oil thermal stability. European Journal of Lipid Science and Technology, 108(10): 842-847.
  • Magalhaes, L.M., Segundo, M.A., Reis, S., Lima, J.L.F.C. (2008). Methodological aspects about in vitro evaluation of antioxidant properties. Analytica Chimica Acta, 613(1): 1-19.
  • Özbek, Z.A., Ergönül, P.G. (2020). Determination of physicochemical properties, fatty acid, tocopherol, sterol, and phenolic profiles of expeller-pressed poppy seed oils from Turkey. J. Am. Oil Chem. Soc., 97: 591-602.
  • Rahimi, A., Kıralan, M., Arslan, N., Bayrak, A., Doğramacı, S. (2011). Variation in fatty acid composition of registered poppy (Papaver somniferum L.) seed in Turkey. Academic Food Journal, 9(3): 22-25.
  • Solak, R., Turan, S., Kurhan, S., Erge, H.S., Karabulut, I. (2018). Thermal oxidation kinetics of refined hazelnut oil. J. Am. Oil Chem. Soc., 95: 497-508.
  • Şengün, İ.Y., Yücel, E., Öztürk, B., Kılıç, G. (2020). Fatty acid composition, total phenolic content, antioxidant and antimicrobial activities of varieties of poppy (Papaver somniforum) seed oils. GIDA, 45(5): 954-962.
  • Wang, Y., Zhu, M., Mei, J., Luo, S., Leng, T., Chen, Y., Nie, S., Xie, M. (2019). Comparison of furans formation and volatile aldehydes profiles of four different vegetable oils during thermal oxidation. Journal of Food Science, 84(7): 1966-1978.
  • Woo, Y.S., Kim, M.J., Lee, J.H. (2018). Correlation of the solid-fat content in vegetable oils with other parameters during thermal oxidation. J. Am. Oil Chem. Soc., 95: 1179-1187.
  • Yanishlieva, N.V., Marinova, E.M. (2001). Stabilisation of edible oils with natural antioxidants. European Journal of Lipid Science and Technology, 103(11): 752-767.
  • Zhang, Y., Yang, L., Zu, Y., Chen, X., Wang, F., Liu, F. (2010). Oxidative stability of sunflower oil supplemented with carnosic acid compared with synthetic antioxidants during accelerated storage. Food Chemistry, 118(3): 656-662.
  • Zhang, Z., Wei, Y., Guan, N., Li, B., Wang, Y. (2022). Changes in chemical composition of flaxseed oil during thermal-induced oxidation and resultant effect on DSC thermal properties. Molecules, 27: 7135.
There are 26 citations in total.

Details

Primary Language English
Subjects Oil Technology
Journal Section Articles
Authors

Kamil Çelebi 0000-0002-1944-1207

Publication Date June 10, 2025
Submission Date March 1, 2025
Acceptance Date May 5, 2025
Published in Issue Year 2025 Volume: 50 Issue: 3

Cite

APA Çelebi, K. (2025). INVESTIGATION OF THERMAL OXIDATION OF COLD PRESSED POPPY (Papaver somniferum L.) SEED OIL WITH SOME EDIBLE OILS. Gıda, 50(3), 406-414. https://doi.org/10.15237/gida.GD25036
AMA Çelebi K. INVESTIGATION OF THERMAL OXIDATION OF COLD PRESSED POPPY (Papaver somniferum L.) SEED OIL WITH SOME EDIBLE OILS. The Journal of Food. June 2025;50(3):406-414. doi:10.15237/gida.GD25036
Chicago Çelebi, Kamil. “INVESTIGATION OF THERMAL OXIDATION OF COLD PRESSED POPPY (Papaver Somniferum L.) SEED OIL WITH SOME EDIBLE OILS”. Gıda 50, no. 3 (June 2025): 406-14. https://doi.org/10.15237/gida.GD25036.
EndNote Çelebi K (June 1, 2025) INVESTIGATION OF THERMAL OXIDATION OF COLD PRESSED POPPY (Papaver somniferum L.) SEED OIL WITH SOME EDIBLE OILS. Gıda 50 3 406–414.
IEEE K. Çelebi, “INVESTIGATION OF THERMAL OXIDATION OF COLD PRESSED POPPY (Papaver somniferum L.) SEED OIL WITH SOME EDIBLE OILS”, The Journal of Food, vol. 50, no. 3, pp. 406–414, 2025, doi: 10.15237/gida.GD25036.
ISNAD Çelebi, Kamil. “INVESTIGATION OF THERMAL OXIDATION OF COLD PRESSED POPPY (Papaver Somniferum L.) SEED OIL WITH SOME EDIBLE OILS”. Gıda 50/3 (June2025), 406-414. https://doi.org/10.15237/gida.GD25036.
JAMA Çelebi K. INVESTIGATION OF THERMAL OXIDATION OF COLD PRESSED POPPY (Papaver somniferum L.) SEED OIL WITH SOME EDIBLE OILS. The Journal of Food. 2025;50:406–414.
MLA Çelebi, Kamil. “INVESTIGATION OF THERMAL OXIDATION OF COLD PRESSED POPPY (Papaver Somniferum L.) SEED OIL WITH SOME EDIBLE OILS”. Gıda, vol. 50, no. 3, 2025, pp. 406-14, doi:10.15237/gida.GD25036.
Vancouver Çelebi K. INVESTIGATION OF THERMAL OXIDATION OF COLD PRESSED POPPY (Papaver somniferum L.) SEED OIL WITH SOME EDIBLE OILS. The Journal of Food. 2025;50(3):406-14.