Review
BibTex RIS Cite

Integration of Image Processing Techniques into Automotive Quality Control Processes: Methods, Applications, and Future Perspectives

Year 2025, Volume: 11 Issue: 3, 426 - 448, 31.12.2025

Abstract

Guided by PRISMA, this review synthesizes research from 2000 to 2025 on image processing and AI-driven quality control in industry, placing feasibility ahead of accuracy as the primary criterion. It links algorithmic choices with optics, lighting, and automation so that system design aligns with cycle time, robustness targets, available data regimes, explainability needs, and the cost of quality. Departing from earlier surveys centered on accuracy or a single method family, the review co-evaluates hardware and algorithms alongside online latency, environmental variability, data scarcity and class imbalance, operator acceptance, and economic payback. Comparative analyses of Convolutional Neural Networks, autoencoders, and Vision Transformers consider data demands, computational cost, throughput, reliability, and interpretability, and culminate in an implementation playbook covering transfer learning, synthetic data generation, calibration and contamination control, and human-in-the-loop workflows tied to line constraints. Outcomes are interpreted through an ROI framework that connects inspection design to scrap, rework, appraisal effort, and payback windows. The review closes with a forward agenda on edge inference, federated learning, and multimodal sensing, together with governance, cybersecurity, and workforce upskilling. Overall, it offers a concise, decision-oriented guide to selecting, deploying, and sustaining AI-driven inspection on real production lines.

References

  • [1] A. Garcia, M. Gómez-Silva, and A. de la Escalera, “Automated defect recognition of castings defects using neural networks,” in Proc. of arXiv Preprint Series, [Online]. Available: https://arxiv.org/abs/2209.02279. doi: 10.48550/arXiv:2209.02279 [Accessed: 27 Oct. 2025].
  • [2] Y. Liu, “A review of digital image processing techniques and future prospects,” International Journal of Computer Science and Information Technology, vol. 4, no. 3, pp. 223–233, 2024. doi: 10.62051/ijcsit.v4n3.22
  • [3] M. Raisul Islam et al., “Deep learning and computer vision techniques for enhanced quality control in manufacturing processes,” IEEE Access, vol. 12, pp. 121449–121479, 2024. doi: 10.1109/ACCESS.2024.3453664
  • [4] S. Mehta and N. Klarmann, “Autoencoder-based visual anomaly localization for manufacturing quality control,” in Proc. of arXiv Preprint Series, [Online]. Available: https://arxiv.org/abs/2309.06884 [Accessed: 27 Oct. 2025].
  • [5] M. E. Örs and Z. Özçelik, “Görüntü işleme ve derin öğrenme ile kaynak hatalarının gerçek zamanlı tespiti,” DCE Journal of Natural Sciences, vol. 5, no. 2, pp. 83–97, 2025. [Online]. Available: https://dergipark.org.tr/tr/pub/nsjisi/issue/91139/1593754#article_cite [Accessed: 27 Oct. 2025].
  • [6] M. Alber, C. Hönes, and P. Baier, “Evaluating Vision Transformer models for visual quality control in industrial manufacturing,” in Proc. of arXiv Preprint Series, [Online]. Available: https://arxiv.org/abs/2411.14953. doi:10.48550/arXiv.2411.14953 [Accessed: 27 Oct. 2025].
  • [7] A. Kumar and G. Pang, “Defect detection in textured materials using Gabor filters,” IEEE Transactions on Industry Applications, vol. 38, no. 2, pp. 425–440, Mar.–Apr. 2002. doi: 10.1109/28.993164
  • [8] O. Der Erçetin, F. Akkoyun, M. G. C. Patel, R. Şener, M. Çalışkan, N. Olgun, G. Chate, and K. N. Bharath, “Review of image processing methods for surface and tool condition assessments in machining,” Journal of Manufacturing and Materials Processing, vol. 8, no. 6, p. 244, 2024. doi: 10.3390/jmmp8060244
  • [9] J. Lee, Y. Kim, and H. Kim, “Computer-vision-based product quality inspection and novel counting system,” Applied System Innovation, vol. 7, no. 6, p. 127, 2024. doi: 10.3390/asi7060127
  • [10] M. Nadim, H. Ahmadifar, M. Mashkinmojeh, and M. R. Yamaghani, “Application of image processing techniques for quality control of mushroom,” Caspian Journal of Health Research, vol. 4, no. 3, pp. 72–75, 2019. [Online]. Available: http://cjhr.gums.ac.ir/article-1-122-en.html [Accessed: 27 Oct. 2025].
  • [11] D. Y. Pimenov, L. R. R. da Silva, A. Erçetin et al., “State-of-the-art review of applications of image processing techniques for tool condition monitoring on conventional machining processes,” International Journal of Advanced Manufacturing Technology, vol. 130, pp. 57–85, 2024. doi: 10.1007/s00170-023-12679-1
  • [12] K. Diers and C. Pigorsch, “A survey of methods for automated quality control based on images,” International Journal of Computer Vision, vol. 131, pp. 2553–2581, 2023. doi: 10.1007/s11263-023-01822-w
  • [13] M. Babic, M. A. Farahani, and T. Wuest, “Image based quality inspection in smart manufacturing systems: A literature review,” in Procedia CIRP: Proc. of the 54th CIRP Conf. on Manufacturing Systems, 2021, pp. 262–267. doi: 10.1016/j.procir.2021.10.042
  • [14] A. Ever and E. N. Demircioğlu, “Yapay zeka teknolojilerinin kalite maliyetleri üzerine etkisi,” Çukurova University Journal of Social Sciences Institute, vol. 31, no. 1, pp. 59–72, 2022. doi: 10.35379/cusosbil.1023004
  • [15] J. Bauer, “A feature-based approach for the recognition of image quality degradation in automotive applications,” in Proc. of arXiv Preprint Series, [Online]. Available: https://arxiv.org/abs/2303.07100. [Accessed: 27 Oct. 2025].
  • [16] K. Hanbay and H. Üzen, “Nesne tespit ve takip metotları: Kapsamlı bir derleme,” Turkish Journal of Nature and Science, vol. 6, no. 2, pp. 40–49, 2017. [Online]. Available: https://dergipark.org.tr/tr/pub/tdfd/issue/33022/367257. [Accessed: 27 Oct. 2025].
  • [17] Ö. İnik and E. Ülker, “Derin öğrenme ve görüntü analizinde kullanılan derin öğrenme modelleri,” Gaziosmanpaşa Journal of Scientific Research, vol. 6, no. 3, pp. 85–104, 2017. [Online]. Available: https://dergipark.org.tr/tr/pub/gbad/issue/31228/330663. [Accessed: 27 Oct. 2025].
  • [18] M. J. Page, J. E. McKenzie, P. M. Bossuyt, I. Boutron, T. C. Hoffmann, C. D. Mulrow et al., “The PRISMA 2020 statement: An updated guideline for reporting systematic reviews,” BMJ, vol. 372, p. n71, 2021. doi: 10.1136/bmj.n71
  • [19] K. Peker, M. Yıldız, and S. Turgay, “Improving quality inspections with image analysis and artificial intelligence,” International Journal of Accounting, Auditing and Performance Evaluation, vol. 5, pp. 135–146, 2023. doi: 10.23977/acccm.2023.051120
  • [20] O. Morales Matamoros, J. G. Takeo Nava, J. J. Moreno Escobar, and B. A. Ceballos Chávez, “Artificial intelligence for quality defects in the automotive industry: A systemic review,” Sensors, vol. 25, no. 5, p. 1288, 2025. doi: 10.3390/s25051288
  • [21] N. Hütten, M. Alves Gomes, F. Hölken, K. Andricevic, R. Meyes, and T. Meisen, “Deep learning for automated visual inspection in manufacturing and maintenance: A survey of open-access papers,” Applied System Innovation, vol. 7, p. 11, 2024. doi :10.3390/asi7010011
  • [22] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 4th ed. New York, NY, USA: Pearson Education, 2018.
  • [23] M. Arora, “AI-driven Industry 4.0: Advancing quality control through cutting-edge image processing for automated defect detection,” International Journal of Computer Science and Mobile Computing, vol. 12, pp. 16–32, 2023. doi: 10.47760/ijcsmc.2023.v12i08.003
  • [24] S. Sundaram and A. Zeid, “Artificial intelligence-based smart quality inspection for manufacturing,” Micromachines, vol. 14, no. 3, p. 570, Feb. 2023. doi: 10.3390/mi14030570
  • [25] S. Hamid, S. Isa, B. C. Chew, and A. Altun, “Quality management evolution from the past to present: Challenges for tomorrow,” Organizacija, vol. 52, pp. 157–186, 2019. doi: 10.2478/orga-2019-0011
  • [26] J. E. M. Manzano, T. A. H. Bolaños, M. Á. O. Muñoz, V. E. P. Arenas, and H. P. Orozco, “Evaluation of a machine vision system applied to quality control in a liquid filling, lid and labeling line for bottles,” in Telematics and Computing: Proc. of the 2020 WITCOM Conf., M. F. Mata-Rivera, R. Zagal-Flores, and C. Barria-Huidobro, Eds. Cham, Switzerland: Springer, 2020. doi: 10.1007/978-3-030-62554-2_11
  • [27] Z. Qu, J. Shen, R. Li, J. Liu, and Q. Guan, “PartsNet: A unified deep network for automotive engine precision parts defect detection,” in Proc. of arXiv Preprint Series, [Online]. Available: https://arxiv.org/abs/1810.12061. [Accessed: 27 Oct. 2025].
  • [28] T. Batu, H. G. Lemu, and H. Shimels, “Application of artificial intelligence for surface roughness prediction of additively manufactured components,” Materials, vol. 16, no. 18, p. 6266, 2023. doi: 10.3390/ma16186266
  • [29] M. Aykanat, Ö. Kılıç, B. Kurt et al., “Classification of lung sounds using convolutional neural networks,” Journal of Image and Video Processing, no. 65, 2017. doi: 10.1186/s13640-017-0213-2
  • [30] S. Chang and P. Ghafariasl, “A review of artificial intelligence impacting statistical process monitoring and future directions,” in Proc. of arXiv Preprint Series, [Online]. Available: https://arxiv.org/abs/2503.01858. [Accessed: 27 Oct. 2025].
  • [31] Y. Tashkandy, W. Emam, M. M. Ali, H. M. Yousof, and B. Ahmed, “Quality control testing with experimental practical illustrations under the modified Lindley distribution using single, double, and multiple acceptance sampling plans,” Mathematics, vol. 11, no. 9, p. 2184, 2023. doi: 10.3390/math11092184
  • [32] Ö. Ulus, F. E. Davarcı, and E. E. Gültekin, “Non-destructive testing methods commonly used in aviation,” International Journal of Aeronautics and Astronautics, vol. 5, no. 1, pp. 10–22, 2024. doi: 10.55212/ijaa.1418742
  • [33] S. Özçelik, “İmalat sektörüne yönelik görüntü işleme tabanlı kalite kontrol ve hatalı ürün ayrıştırma otomasyon sistemi tasarımı,” M.Sc. thesis, Dept. of Computer Engineering, Niğde Ömer Halisdemir Univ., Niğde, Türkiye, 2022.
  • [34] H. Magd and H. Karyamsetty, “Organizational performance and sustainability in manufacturing and service through TQM implementation,” Open Journal of Business and Management, vol. 8, pp. 2775–2804, 2020. doi: 10.4236/ojbm.2020.86172
  • [35] H. Çelik and E. Tekin, “Tekstil baskı kalite kontrolünün görüntü işleme teknikleri ile gerçekleştirilmesi,” European Journal of Science and Technology, Special Issue, pp. 268–276, Apr. 2020. doi: 10.31590/ejosat.araconf34
  • [36] J. Huber, D. Knoll, and M. Guthe, “Fully-synthetic training for visual quality inspection in automotive production,” in Procedia CIRP: Proc. of the 58th CIRP Conf. on Manufacturing Systems, 2025, pp. 1–6. doi: 10.48550/arXiv:2503.09354
  • [37] Z. Yuan, K. H. Ghazali, A. Lubis, S. Sunardi, B. Yanto, and S. U. Khan, “Implementing image processing for quality inspection of car air conditioning vents,” in Engineering Proceedings: Proc. of the 2025 Int. Conf. on Engineering Applications, 2025, p. 46. doi: 10.3390/engproc2025084046
  • [38] T. Liu, B. Li, Z. Zhao, X. Du, B. Jiang, and L. Geng, “Reconstruction from edge image combined with color and gradient difference for industrial surface anomaly detection,” in Proc. of arXiv Preprint Series, [Online]. Available: https://arxiv.org/abs/2210.14485. doi: 10.48550/arXiv.2210.14485 [Accessed: 27 Oct. 2025].
  • [39] M. Kesici and M. S. Yıldız, “Kalite kontrol faaliyetlerinde yapay zekâ kullanımı ve bir otomotiv yan sanayisinde uygulanması,” Yalova Journal of Social Sciences, vol. 6, no. 12, pp. 307–323, 2016. [Online]. Available: https://dergipark.org.tr/tr/pub/yalovasosbil/issue/27392/289024. [Accessed: 27 Oct. 2025].
  • [40] K. Chand, T. Fritsch, S. Oster et al., “Review on image registration methods for the quality control in additive manufacturing,” Progress in Additive Manufacturing, 2025. doi: 10.1007/s40964-024-00932-2
  • [41] S. Erpolat, “Robotik sistemlerde görüntü işleme,” M.Sc. thesis, Dept. of Mechatronics, Marmara Univ., Istanbul, Türkiye, 2008.
  • [42] S. A. Shiney, R. Seetharaman, V. J. Sharmila et al., “Deep learning based gasket fault detection: A CNN approach,” Scientific Reports, vol. 15, p. 4776, 2025. doi: 10.1038/s41598-025-85223-8
  • [43] G. Tan, A. S. Yüksel, E. Aydemir, and M. Ersoy, “Derin öğrenme teknikleri ile nesne tespiti ve takibi üzerine bir inceleme,” European Journal of Science and Technology, no. 25, pp. 159–171, 2021. doi: 10.31590/ejosat.878552
  • [44] E. Çakılcı, M. Yakut, and İ. Kandilli, “Dijital görüntü işleme ile lazer tarama tekniği kullanarak ürün kalitesinin belirlenmesi,” Elektronik ve Haberleşme Mühendisliği Bölümü, Kocaeli Üniversitesi, 2023. [Online]. Available: https://www.emo.org.tr/ekler/03596779832763e_ek.pdf. [Accessed: 27 Oct. 2025].
  • [45] O. Hacıfazlıoğlu and E. Aydemir, “Görüntü işleme ile kalite kontrol hatalarının tespit edilmesi,” in Proc. of the International Conference, Konya, Turkey, Jan. 2023, pp. 375–378. [Online]. Available: https://www.researchgate.net/publication/375120725. [Accessed: 27 Oct. 2025].
  • [46] P. Kruachottikul, N. Cooharojananone, G. Phanomchoeng, T. Chavarnakul, K. Kovitanggoon, and D. Trakulwaranont, “Deep learning-based visual defect-inspection system for reinforced concrete bridge substructure: A case of Thailand’s Department of Highways,” Journal of Civil Structural Health Monitoring, vol. 11, pp. 1–17, 2021. doi: 10.1007/s13349-021-00490-z
  • [47] J. Zhang and L. Lin, “Image processing methods in agricultural observation systems,” in Agro-Geoinformatics: Proc. of the Springer Remote Sensing–Photogrammetry Conf., 2021. Cham, Switzerland: Springer, 2021, pp. 81–102. doi: 10.1007/978-3-030-66387-2_6
  • [48] B. Demirkıran, “Akıllı kalite kontrol kameraları ve karşılaştırılması,” European Journal of Science and Technology, no. 28, pp. 627–629, 2021. doi: 10.31590/ejosat.1009203
  • [49] M. Mazzetto, M. Teixeira, E. Rodrigues, and D. Casanova, “Deep learning models for visual inspection on automotive assembling line,” International Journal of Advanced Engineering Research and Science, vol. 7, pp. 473–494, 2020. doi: 10.22161/ijaers.74.56
  • [50] Q. Zhou, R. Chen, B. Huang, C. Liu, J. Yu, and X. Yu, “An automatic surface defect inspection system for automobiles using machine vision methods,” Sensors, vol. 19, no. 3, p. 644, 2019. doi: 10.3390/s19030644
  • [51] Â. Semitela, M. Pereira, A. Completo, N. Lau, and J. P. Santos, “Improving industrial quality control: A transfer learning approach to surface defect detection,” Sensors, vol. 25, p. 527, 2025. doi: 10.3390/s25020527
  • [52] P. Trampert, S. Mantowsky, F. Schmidt et al., “AI-driven toolbox for efficient and transferable visual quality inspection in production,” SN Computer Science, vol. 6, p. 481, 2025. doi: 10.1007/s42979-025-03988-1
  • [53] H. Huang and K. Zhu, “Automotive parts defect detection based on YOLOv7,” Electronics, vol. 13, p. 1817, 2024. doi: 10.3390/electronics13101817
  • [54] M. A. Berwo, Y. Fang, J. Mahmood, N. Yang, Z. Liu, and Y. Li, “FAECCD-CNet: Fast automotive engine components crack detection and classification using ConvNet on images,” Applied Sciences, vol. 12, p. 9713, 2022. doi: 10.3390/app12199713
  • [55] J. Ren, H. Zhang, and M. Yue, “YOLOv8-WD: Deep learning-based detection of defects in automotive brake joint laser welds,” Applied Sciences, vol. 15, p. 1184, 2025. doi: 10.3390/app15031184
  • [56] M. T. Okano, W. A. C. Lopes, S. M. Ruggero, O. Vendrametto, and J. C. L. Fernandes, “Edge AI for industrial visual inspection: YOLOv8-based visual conformity detection using Raspberry Pi,” Algorithms, vol. 18, p. 510, 2025. doi: 10.3390/a18080510
  • [57] A. Allam, M. Moussa, C. Tarry, and M. Veres, “Detecting teeth defects on automotive gears using deep learning,” Sensors, vol. 21, p. 8480, 2021. doi: 10.3390/s21248480
  • [58] G. Andriosopoulou, A. Mastakouris, D. Masouros, P. Benardos, G.-C. Vosniakos, and D. Soudris, “Defect recognition in high-pressure die-casting parts using neural networks and transfer learning,” Metals, vol. 13, p. 1104, 2023. doi: 10.3390/met13061104
  • [59] Y. Koç and D. Özkan, “Otomotiv sektöründe kullanılan parçaların robot ve kamera yardımı ile ölçümü yapılarak, manuel hatanın azaltılması,” Journal of Materials and Mechatronics: A (JournalMM), vol. 2, no. 2, pp. 112–126, 2021. [Online]. Available: https://dergipark.org.tr/tr/pub/jmm/issue/65996/958453. [Accessed: 27 Oct. 2025].
  • [60] R. Nascimento, C. D. Rocha, D. Garcia Gonzalez et al., “Automated optical system for quality inspection on reflective parts,” International Journal of Advanced Manufacturing Technology, vol. 137, pp. 2665–2680, 2025. doi: 10.1007/s00170-025-15309-0
  • [61] M. Tarı, “Görüntü işleme teknikleri ile enjektör üretiminde kalite kontrolü,” M.Sc. thesis, Konya Technical Univ., Konya, Türkiye, 2020. [Online]. Available: https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp. [Accessed: 27 Oct. 2025].
  • [62] Y. Liu, K. Xu, and J. Xu, “An improved MB-LBP defect recognition approach for the surface of steel plates,” Applied Sciences, vol. 9, no. 20, p. 4222, 2019. doi: 10.3390/app9204222
  • [63] O. Morales Matamoros, J. G. Takeo Nava, J. J. Moreno Escobar, and B. A. Ceballos Chávez, “Artificial intelligence for quality defects in the automotive industry: A systemic review,” Sensors, vol. 25, no. 5, p. 1288, 2025. doi: 10.3390/s25051288
  • [64] Z. M. Çınar, A. Abdussalam Nuhu, Q. Zeeshan, O. Korhan, M. Asmael, and B. Safaei, “Machine learning in predictive maintenance towards sustainable smart manufacturing in Industry 4.0,” Sustainability, vol. 12, no. 19, p. 8211, 2020. doi: 10.3390/su12198211
  • [65] S. Ghosh, R. Knoblauch, M. El Mansori et al., “Towards AI driven surface roughness evaluation in manufacturing: A prospective study,” Journal of Intelligent Manufacturing, 2024. doi: 10.1007/s10845-024-02493-1
  • [66] G. Maculotti, G. Genta, E. Verna, S. Bonù, L. Bonù, R. Cagliero, and M. Galetto, “Minimization of defects generation in laser welding process of steel alloy for automotive application,” in Procedia CIRP: Proc. of the 55th CIRP Conf. on Manufacturing Systems, 2022, pp. 48–53. doi: 10.1016/j.procir.2022.10.048
  • [67] C.-L. Li, K. Sohn, J. Yoon, and T. Pfister, “CutPaste: Self-supervised learning for anomaly detection and localization,” in Proc. of arXiv Preprint Series, [Online]. Available: https://arxiv.org/abs/2104.04015. doi:10.48550/arXiv.2104.04015 [Accessed: 27 Oct. 2025].
  • [68] Y. Liang, J. Zhang, S. Zhao, R. Wu, Y. Liu, and S. Pan, “Omni-frequency channel-selection representations for unsupervised anomaly detection,” in Proc. of arXiv Preprint Series, [Online]. Available: https://arxiv.org/abs/2203.00259. doi:10.48550/arXiv.2203.00259 [Accessed: 27 Oct. 2025].
  • [69] National Institute of Standards and Technology, The NIST Cybersecurity Framework (CSF) 2.0, NIST CSWP 29, Feb. 26, 2024. doi: 10.6028/NIST.CSWP.29
  • [70] K. A. Stouffer, J. A. Falco, and K. Scarfone, Guide to Operational Technology (OT) Security, NIST Special Publication 800-82, Rev. 3, Sep. 2023. doi: 10.6028/NIST.SP.800-82r3
  • [71] International Organization for Standardization, “ISO 31000:2018 - Risk management - Guidelines,” ISO.org, 2018. [Online]. Available: https://www.iso.org/standard/65694.html. [Accessed: Nov. 6, 2025].
  • [72] International Organization for Standardization, “ISO/IEC 27001:2022 - Information security, cybersecurity and privacy protection - Information security management systems - Requirements,” ISO.org, 2022. [Online]. Available: https://www.iso.org/standard/27001. [Accessed: Nov. 6, 2025].
  • [73] International Electrotechnical Commission, “IEC 62443-3-3:2013 - Industrial communication networks - Network and system security - Part 3-3: System security requirements and security levels,” IEC Webstore, 2013. [Online]. Available: https://webstore.iec.ch/en/publication/7033. [Accessed: Nov. 6, 2025].
There are 73 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Review
Authors

Berk Ercoşkun 0009-0003-5627-334X

Submission Date June 25, 2025
Acceptance Date November 7, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Volume: 11 Issue: 3

Cite

IEEE B. Ercoşkun, “Integration of Image Processing Techniques into Automotive Quality Control Processes: Methods, Applications, and Future Perspectives”, GJES, vol. 11, no. 3, pp. 426–448, 2025.

GJES is indexed and archived by:

3311333114331153311633117

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY) 1366_2000-copia-2.jpg