Research Article
BibTex RIS Cite

Effect of Hydrothermal Ageing on Interlaminar Shear Strength of Recycled PLA-Based Glass Fiber Reinforced Composites

Year 2025, Volume: 11 Issue: 3, 345 - 354, 31.12.2025

Abstract

In the industrialized world, polymer use is increasing daily, but due to raw material depletion and environmental pollution, polymer recycling is gaining importance. Currently, PLA (polylactic acid) is recognized as one of the leading polymers in terms of application frequency. In this study, glass fiber-reinforced polymer (GFRP) composite sheets were produced using recycled PLA produced through additive manufacturing as matrix material. The composite materials were hot-molded and pressed under a force of 100 kN at 215°C and allowed to cool at room temperature. The composite sheets produced were subjected to accelerated aging for various periods. The Short Beam Shear (SBS) tests were then conducted to determine the Interlaminar Shear Strength (ILSS) of the composite materials, and post-test surface morphologies were examined. The results show that aging reduced the ILSS of the sample by up to 54.9%. Furthermore, after 36 h of aging, the ILSS of the sample subjected to the wet SBS test decreased by up to 27.5% compared to the dry sample. In general, it was observed that the aging process and duration affected the ILSS of the sample.

References

  • [1] N. Vidakis, M. Petousis, N. Michailidis, D. Sagris, C. David, V. Papadakis, M. Spyridaki, A. Argyros, I. Valsamos, E. Dimitriou and E. Kymakis, “Thermomechanical recyclability of acrylonitrile styrene acrylate (ASA) for cyclic economy-driven MEX additive manufacturing,” Cleaner Engineering and Technology, vol. 25, pp. 100925, 2025. doi: 10.1016/j.clet.2025.100925
  • [2] M. Hasan, J. Zhao and Z. Jiang, “Micromanufacturing of composite materials: A review,” International Journal of Extreme Manufacturing, vol. 1, no. 1, pp. 012004, 2019. doi: 10.1088/2631-7990/ab0f74
  • [3] F. Khan, N. Hossain, J. J. Mim, S. M. Rahman, Md. J. Iqbal, M. Billah and A. Chowdhury, “Advances of composite materials in automobile applications – A review,” Journal of Engineering Research, vol. 13, pp. 1001-1023, 2025. doi: 10.1016/j.jer.2024.02.017
  • [4] S. David Müzel, E. P. Bonhin, N. M. Guimarães and E. S. Guidi, “Application of the Finite Element Method in the Analysis of Composite Materials: A Review,” Polymers, vol. 12, no. 4, pp. 818, 2020. doi: 10.3390/polym12040818
  • [5] M. Korku, E. Feyzullahoğlu and R. İlhan, “Farklı Türlerde Polyester ve Çekme Katkısı İçeren Cam Elyaf Takviyeli Polyester Kompozit Malzemelerde Çevresel Koşulların Aşınma Davranışlarına Olan Etkilerinin İncelenmesi,” Politeknik Dergisi, vol. 27, no. 1, pp. 197–209, 2024. doi: 10.2339/politeknik.1105329
  • [6] H. Yaka and İ. Aslan, “Friction Stir Welding (FSW) and Friction Stir Spot Welding (FSSW) on Polycarbonates: A Review,” Selcuk University Journal of Engineering Sciences, vol. 23, no. 2, pp. 54-63, 2024.
  • [7] M. Rahatuzzaman, M. Mahmud, S. Rahman and M. E. Hoque, “Design, fabrication, and characterization of 3D-printed ABS and PLA scaffolds potentially for tissue engineering,” Results in Engineering, vol. 21, pp. 101685, 2024. doi: 10.1016/j.rineng.2023.101685
  • [8] R. A. Ilyas, S. M. Sapuan, M. M. Harussani, M. Y. A. Y. Hakimi, M. Z. M. Haziq, M. S. N. Atikah, M. R. M Asyraf, M. R. Ishak, M. R. Razman, N. M. Nurazzi, M. N. F. Norrrahim, H. Abral and M. Asrofi, “Polylactic Acid (PLA) Biocomposite: Processing, Additive Manufacturing and Advanced Applications,” Polymers, vol. 13, no. 8, pp. 1326, 2021. doi: 10.3390/polym13081326
  • [9] P. Majgaonkar, R. Hanich, F. Malz and R. Brüll, “Chemical Recycling of Post-Consumer PLA Waste for Sustainable Production of Ethyl Lactate,” Chemical Engineering Journal, vol. 423, pp. 129952, 2021. doi: 10.1016/j.cej.2021.129952
  • [10] B. Karaçor and M. Özcanli, “Effect of Various Matrix Materials on Mechanical Properties of Basalt/Jute/Glass Fiber Reinforced Hybrid Composites,” Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, vol. 36, no. 4, pp. 941–954, 2021
  • [11] P. Morampudi, K. K. Namala, Y. K. Gajjela, M. Barath and G. Prudhvi, “Review on glass fiber reinforced polymer composites,” Materials Today: Proceedings, vol. 43, pp. 314–319, 2021. doi: 10.1016/j.matpr.2020.11.669
  • [12] G. Wang, D. Zhang, G. Wan, B. Li and G. Zhao, “Glass fiber reinforced PLA composite with enhanced mechanical properties, thermal behavior, and foaming ability,” Polymer, vol. 181, pp. 121803, 2019. doi: 10.1016/j.polymer.2019.121803
  • [13] M. Albayrak, A. M. Asan, M. O. Kaman and İ. Bozkurt, "Experimental and numerical determination of interlayer shear strength of glass fiber-reinforced epoxy composites," Journal of Structural Engineering & Applied Mechanics, vol. 5, no. 4, 2022. doi: 10.31462/jseam.2022.04289299
  • [14] J. U. Roh and W. I. Lee, "Manufacture of Continuous Glass Fiber / Polylactic Acid (PLA) Composite and Its Properties," EPI International Journal of Engineering, 2(1), 1–4, 2019. doi: 10.25042/epi-ije.022019.01
  • [15] H. B. Kaybal, "Tabakalararası kayma mukavemeti ve kırılma tokluğu üzerine deneysel bir çalışma: CaCO3 nanoparçacıkları ile iyileştirilmiş karbon fiber takviyeli epoksi kompozitler," Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 10, no. 2, pp. 777-783, 2021. doi: 10.28948/ngumuh.838807
  • [16] S. K. Chaudhary, K. K. Singh and R. Venugopal, "Effect of Using Carbon Nanotubes on ILSS of Glass Fiber-Reinforced Polymer Laminates," Transactions of the Indian Institute of Metals, vol. 71, no. 12, pp. 3029–3036, 2018. doi: 10.1007/s12666-018-1404-y
  • [17] J. J. Espadas-Escalante and P. Isaksson, "A study of induced delamination and failure in woven composite laminates subject to short-beam shear testing," Engineering Fracture Mechanics, vol. 205, pp. 359–369, 2019. doi: 10.1016/j.engfracmech.2018.10.015
  • [18] K. Sai Dinesh and S. Gowthaman, "Short beam shear behaviour of ZnO nanowire reinforced glass/epoxy composites," Materials Today: Proceedings, vol. 44, pp. 821–826, 2021. doi: 10.1016/j.matpr.2020.10.713
  • [19] M. Malik and P. Saxena, "3D-Printed Continuous Basalt Fiber-Reinforced Polylactic Acid Composites: Effect of Printing Parameters on Impact and Interlaminar Shear Strength," Journal of Materials Engineering and Performance, vol. 34, pp. 20879-20891, 2025. doi: 10.1007/s11665-025-10767-9
  • [20] I. R. Chowdhury, N. P. O’Dowd and A. J. Comer, "Experimental study of hygrothermal ageing effects on failure modes of non-crimp basalt fibre-reinforced epoxy composite," Composite Structures, vol. 275, pp. 114415, 2021. doi: 10.1016/j.compstruct.2021.114415
  • [21] İ. Erdoğan, "Cam Elyaf Takviyeli Epoksi Nanokompozitlerin (CTP) Hızlandırılmış Yaşlandırma Koşullarında Dinamik Davranışlarının İncelenmesi," Ph.D. dissertation, Harran Univ., Şanlıurfa, Türkiye, 2024
  • [22] I. García-Moreno, M. Caminero, G. Rodríguez and J. López-Cela, "Effect of Thermal Ageing on the Impact Damage Resistance and Tolerance of Carbon-Fibre-Reinforced Epoxy Laminates," Polymers, vol. 11, no. 1, pp. 160, 2019. doi: 10.3390/polym11010160
  • [23] O. Gil-Castell, J. D. Badia, T. Kittikorn, E. Strömberg, M. Ek, S. Karlsson and A. Ribes-Greus, "Impact of hydrothermal ageing on the thermal stability, morphology and viscoelastic performance of PLA/sisal biocomposites," Polymer Degradation and Stability, vol. 132, pp. 87–96, 2016. doi: 10.1016/j.polymdegradstab.2016.03.038
  • [24] A. K. Bandaru, S. Hickey, D. Singh, R. Gujjala and S. Pichandi, "Influence of hygrothermal ageing on the novel infusible thermoplastic resin reinforced with quadriaxial non-crimp glass fabrics," Journal of Thermoplastic Composite Materials, vol. 36, no. 10, pp. 3813–3836, 2023. doi: 10.1177/08927057221137805
  • [25] K. Tanaka, A. Inagaki and T. Katayama, "Influence of Treatment against Decomposition and Water Absorption on Fiber Matrix Interfacial Shear Strength of Glass Fiber Reinforced PLA," Journal of the Society of Materials Science, vol. 67, no. 10, pp. 937–942, 2018. doi: 10.2472/jsms.67.942
  • [26] Y. Hu, A. W. Lang, X. Li and S. R. Nutt, "Hygrothermal aging effects on fatigue of glass fiber/polydicyclopentadiene composites," Polymer Degradation and Stability, vol. 110, pp. 464–472, 2014. doi: 10.1016/j.polymdegradstab.2014.10.018
  • [27] S. K. Sahu and M. K. Rath, Hygrothermal Aging Behavior of Fiber-Reinforced Composites, In Processing of Green Composites, pp. 49-64, Springer Nature, 2019.
  • [28] E. Kuram, “Cam Elyaf Katkılı Poli (oksimetilen) Kompozitinin Laboratuar Ortamında ve Suda Yaşlandırılması Sonucunda Mekanik, Reolojik ve Morfolojik Özelliklerindeki Değişimler,” Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarim ve Teknoloji, vol. 6, no. 4, pp. 721-728, 2018. doi: 10.29109/gujsc.351383
There are 28 citations in total.

Details

Primary Language English
Subjects Material Design and Behaviors
Journal Section Research Article
Authors

Harun Yaka 0000-0003-4859-9609

İbrahim Aslan 0000-0002-9157-9286

Submission Date August 19, 2025
Acceptance Date September 16, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Volume: 11 Issue: 3

Cite

IEEE [1]H. Yaka and İ. Aslan, “Effect of Hydrothermal Ageing on Interlaminar Shear Strength of Recycled PLA-Based Glass Fiber Reinforced Composites”, GJES, vol. 11, no. 3, pp. 345–354, Dec. 2025, [Online]. Available: https://izlik.org/JA68JG55UY

GJES is indexed and archived by:

3311333114331153311633117

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY) 1366_2000-copia-2.jpg