Development Of The Electrical Conductivity In Carbon Based Polymer Composites
Year 2018,
Volume: 4 Issue: 2, 77 - 83, 16.08.2018
Metin Yurddaskal
Mustafa Erol
,
Erdal Çelik
Abstract
Conductive polymer composites are nowadays used in technological applications and they constitute components of functional materials in many important applications. It is of great importance to reduce the high electrical resistance level of the polymers. Carbon containing additives are widely used to increase the electrical conductivity of polymers. In this context, some percolated networks were created to improve the level of electrical conductivity using graphite and carbon black. The produced conductive polymer composites were characterized to show their structures, electrical and thermo-resistive properties. We investigated percolation threshold values of composite films including both carbon black and graphite. Thanks to adding small amounts of carbon black together with graphite, it was achieved to be lower levels of resistance if compared to the individually filled composites. Graphite and carbon black filled conductive polymer composites to be considered as the candidates for temperature sensors exhibited good responses to temperature changes by the changes in their resistances.
References
- [1] M. Erol and E. Celik, “Graphite-flake carbon-black-reinforced polystyrene-matrix composite films deposited on glass-fiber woven fabrics as plane heaters”, Mater. Technol., vol. 47, pp. 25–28, 2013
- [2] M. Yurddaskal, M. Erol and E. Celik, “Carbon black and graphite filled conducting nanocomposite films for temperature sensor applications”, J. Mater. Sci. Mater. Electron., vol. 28, pp. 9514–9518, 2017
[3] N.A. Mohd Radzuan, A.B. Sulong and J. Sahari, “A review of electrical conductivity models for conductive polymer composite”, Int. J. Hydrogen Energy., vol. 42, pp. 9262–9273, 2017
- [4] U. Staudinger, P. Thoma, F. Lüttich, A. Janke, O. Kobsch, O.D. Gordan, P. Pötschke, B. Voit and D.R.T. Zahn, “Properties of thin layers of electrically conductive polymer/MWCNT composites prepared by spray coating”, Compos. Sci. Technol., vol. 138, pp. 134–143, 2017
- [5] X. Zhang and S.K. Manohar, “Polyaniline nanofibers: chemical synthesis using surfactants”, Chem. Commun., vol. 13, 2360-2361, 2004
- [6] M. Cui, Z. Song, Y. Wu, B. Guo, X. Fan and X. Luo, “A highly sensitive biosensor for tumor maker alpha fetoprotein based on poly(ethylene glycol) doped conducting polymer PEDOT”, Biosens. Bioelectron. , vol. 79, pp. 736–741, 2016
- [7] M. Park, H. Kim and J.P. Youngblood, “Strain-dependent electrical resistance of multi-walled carbon nanotube/polymer composite films”, Nanotechnology., vol. 19, 55705, 2008
- [8] X. Yu, N. Zhou, S. Han, H. Lin, D.B. Buchholz, J. Yu, R.P.H. Chang, T.J. Marks and A. Facchetti, “Flexible spray-coated TIPS-pentacene organic thin-film transistors as ammonia gas sensors”, J. Mater. Chem. C., vol. 1, 6532-6535, 2013
- [9] Aneli J., Gennady Z. and Omar M., “Physical principles of the conductivity of electrically conductive polymer composites”, Chemistry, vol. 5, pp. 1-8, 2011
- [10] Chen, G., Weng, W., Wu, D. and Wu, C., “PMMA/graphite nanosheets composite and its conducting properties”, European Polymer Journal, vol. 39(12), pp. 2329-2335, 2003
- [11] S. Ganguli, A. K. Roy and D.P. Anderson, “Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites”, Carbon, vol. 46(5), pp. 806-817, 2008
- [12] Z. Fan, C. Zheng, T. Wei, Y. Zhang and G. Luo, “Effect of carbon black on electrical property of graphite nanoplatelets/epoxy resin composites”, Polymer Engineering & Science, vol. 49(10), pp. 2041-2045, 2009
- [13] Z. Zeng, M. Liu, H. Xu, W. Liu, Y. Liao, H. Jin, L. Zhou, Z. Zhang and Z. Su, “A coatable, light-weight, fast-response nanocomposite sensor for the in situ acquisition of dynamic elastic disturbance: from structural vibration to ultrasonic waves”, Smart Mater. Struct., vol. 25, 65005, 2016
- [14] Zhang, X., Hao, X., Hao, J. and Wang, Q., “Effect of the Addition of Carbon Nanomaterials on Electrical and Mechanical Properties of Wood Plastic Composites”, Polymers, vol. 9, 620, 2017
- [15] W. P. Shih, L. C. Tsao, C. W. Lee, M. Y. Cheng, C. Chang, Y. J. Yang and K. C. Fan, “Flexible Temperature Sensor Array Based on a Graphite-Polydimethylsiloxane Composite”, Sensors, vol. 10, pp. 3597–3610, 2010
- [16] Alamusi, N. Hu, H. Fukunaga, S. Atobe, Y. Liu and J. Li, “Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites”, Sensors, vol. 11, pp.10691–723, 2011
- [17] C. Yan, J. Wang and P.S. Lee, “Stretchable Graphene Thermistor with Tunable Thermal Index”, ACS Nano,vol. 9, pp. 2130–2137, 2015
- [18] C. Dagdeviren, Y. Su, P. Joe, R. Yona, Y. Liu, Y. S. Kim, Y. Huang, A. R. Damadoran, J. Xia, L. W. Martin, Y. Huang and J. A. Rogers, “Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring”, Nat. Commun., vol. 5, 4496, 2014
- [19] P. Li, J. Wu, J. Lin, M. Huang, Y. Huang and Q. Li, “High-performance and low platinum loading Pt/Carbon black counter electrode for dye-sensitized solar cells”, Sol. Energy, vol. 83, pp. 845–849, 2009
Karbon Esaslı Polimer Kompozitlerde Elektriksel İletkenliğin Geliştirilmesi
Year 2018,
Volume: 4 Issue: 2, 77 - 83, 16.08.2018
Metin Yurddaskal
Mustafa Erol
,
Erdal Çelik
Abstract
Günümüzde teknolojik uygulamalarda kullanılan iletken polimer kompozitler birçok önemli uygulamada fonksiyonel malzemelerin bileşenlerini oluşturmaktadır. Polimerlerin yüksek elektrik direnç seviyesini azaltmak büyük önem taşımaktadır. Karbon türevi katkı maddeleri, polimerlerin elektriksel iletkenliğini arttırmak için yaygın olarak kullanılmaktadır. Bu bağlamda, grafit ve karbon karası kullanarak elektrik iletkenliği için iletken perkolasyon yapıları geliştirilmektedir. Üretilen iletken polimer kompozitlerin yapılarını, elektriksel ve termo direnç özelliklerini göstermek için karakterize edilmiştir. Karbon siyahı ve grafit dahil olmak üzere kompozit filmlerin perkolasyon eşiği araştırılmıştır. Grafit ile birlikte az miktarda karbon siyahı eklenmesi sayesinde, tek bileşenli kompozitlerle karşılaştırıldığında daha düşük direnç seviyeleri elde edilmiştir. Sıcaklık sensörleri için aday olarak düşünülen grafit ve karbon siyahı katkılı iletken polimer kompozitlerin, sıcaklık değişimlerine karşı dirençlerinde meydana gelen değişikliklere iyi tepki verdiği görülmüştür.
References
- [1] M. Erol and E. Celik, “Graphite-flake carbon-black-reinforced polystyrene-matrix composite films deposited on glass-fiber woven fabrics as plane heaters”, Mater. Technol., vol. 47, pp. 25–28, 2013
- [2] M. Yurddaskal, M. Erol and E. Celik, “Carbon black and graphite filled conducting nanocomposite films for temperature sensor applications”, J. Mater. Sci. Mater. Electron., vol. 28, pp. 9514–9518, 2017
[3] N.A. Mohd Radzuan, A.B. Sulong and J. Sahari, “A review of electrical conductivity models for conductive polymer composite”, Int. J. Hydrogen Energy., vol. 42, pp. 9262–9273, 2017
- [4] U. Staudinger, P. Thoma, F. Lüttich, A. Janke, O. Kobsch, O.D. Gordan, P. Pötschke, B. Voit and D.R.T. Zahn, “Properties of thin layers of electrically conductive polymer/MWCNT composites prepared by spray coating”, Compos. Sci. Technol., vol. 138, pp. 134–143, 2017
- [5] X. Zhang and S.K. Manohar, “Polyaniline nanofibers: chemical synthesis using surfactants”, Chem. Commun., vol. 13, 2360-2361, 2004
- [6] M. Cui, Z. Song, Y. Wu, B. Guo, X. Fan and X. Luo, “A highly sensitive biosensor for tumor maker alpha fetoprotein based on poly(ethylene glycol) doped conducting polymer PEDOT”, Biosens. Bioelectron. , vol. 79, pp. 736–741, 2016
- [7] M. Park, H. Kim and J.P. Youngblood, “Strain-dependent electrical resistance of multi-walled carbon nanotube/polymer composite films”, Nanotechnology., vol. 19, 55705, 2008
- [8] X. Yu, N. Zhou, S. Han, H. Lin, D.B. Buchholz, J. Yu, R.P.H. Chang, T.J. Marks and A. Facchetti, “Flexible spray-coated TIPS-pentacene organic thin-film transistors as ammonia gas sensors”, J. Mater. Chem. C., vol. 1, 6532-6535, 2013
- [9] Aneli J., Gennady Z. and Omar M., “Physical principles of the conductivity of electrically conductive polymer composites”, Chemistry, vol. 5, pp. 1-8, 2011
- [10] Chen, G., Weng, W., Wu, D. and Wu, C., “PMMA/graphite nanosheets composite and its conducting properties”, European Polymer Journal, vol. 39(12), pp. 2329-2335, 2003
- [11] S. Ganguli, A. K. Roy and D.P. Anderson, “Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites”, Carbon, vol. 46(5), pp. 806-817, 2008
- [12] Z. Fan, C. Zheng, T. Wei, Y. Zhang and G. Luo, “Effect of carbon black on electrical property of graphite nanoplatelets/epoxy resin composites”, Polymer Engineering & Science, vol. 49(10), pp. 2041-2045, 2009
- [13] Z. Zeng, M. Liu, H. Xu, W. Liu, Y. Liao, H. Jin, L. Zhou, Z. Zhang and Z. Su, “A coatable, light-weight, fast-response nanocomposite sensor for the in situ acquisition of dynamic elastic disturbance: from structural vibration to ultrasonic waves”, Smart Mater. Struct., vol. 25, 65005, 2016
- [14] Zhang, X., Hao, X., Hao, J. and Wang, Q., “Effect of the Addition of Carbon Nanomaterials on Electrical and Mechanical Properties of Wood Plastic Composites”, Polymers, vol. 9, 620, 2017
- [15] W. P. Shih, L. C. Tsao, C. W. Lee, M. Y. Cheng, C. Chang, Y. J. Yang and K. C. Fan, “Flexible Temperature Sensor Array Based on a Graphite-Polydimethylsiloxane Composite”, Sensors, vol. 10, pp. 3597–3610, 2010
- [16] Alamusi, N. Hu, H. Fukunaga, S. Atobe, Y. Liu and J. Li, “Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites”, Sensors, vol. 11, pp.10691–723, 2011
- [17] C. Yan, J. Wang and P.S. Lee, “Stretchable Graphene Thermistor with Tunable Thermal Index”, ACS Nano,vol. 9, pp. 2130–2137, 2015
- [18] C. Dagdeviren, Y. Su, P. Joe, R. Yona, Y. Liu, Y. S. Kim, Y. Huang, A. R. Damadoran, J. Xia, L. W. Martin, Y. Huang and J. A. Rogers, “Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring”, Nat. Commun., vol. 5, 4496, 2014
- [19] P. Li, J. Wu, J. Lin, M. Huang, Y. Huang and Q. Li, “High-performance and low platinum loading Pt/Carbon black counter electrode for dye-sensitized solar cells”, Sol. Energy, vol. 83, pp. 845–849, 2009